London Mathematical Society Student Texts 78

Clifford Algebras: An Introduction

D. J. H. Garling
LONDON MATHEMATICAL SOCIETY STUDENT TEXTS

Managing Editor: Professor D. Benson,
Department of Mathematics, University of Aberdeen, UK

37 A mathematical introduction to wavelets, P. Wojtaszczyk
38 Harmonic maps, loop groups, and integrable systems, Martin A. Guest
39 Set theory for the working mathematician, Krzysztof Ciesielski
40 Dynamical systems and ergodic theory, M. Pollicott & M. Yuri
41 The algorithmic resolution of Diophantine equations, Nigel P. Smart
42 Equilibrium states in ergodic theory, Gérard Keller
43 Fourier analysis on finite groups and applications, Audrey Terras
44 Classical invariant theory, Peter J. Olver
45 Permutation groups, Peter J. Cameron
47 Introductory lectures on rings and modules, John A. Beachy
48 Set theory, András Hajnal & Peter Hamburger. Translated by Attila Mate
49 An introduction to K-theory for C*-algebras, M. Rørdam, F. Larsen &
N. J. Laustsen
50 A brief guide to algebraic number theory, H. P. F. Swinnerton-Dyer
51 Steps in commutative algebra: Second edition, R. Y. Sharp
52 Finite Markov chains and algorithmic applications, Olle Häggström
53 The prime number theorem, G. J. O. Jameson
54 Topics in graph automorphisms and reconstruction, Joseph Lauri & Raaffaele
Scafellato
55 Elementary number theory, group theory and Ramanujan graphs, Giuliana Davidoff,
Peter Sarnak & Alain Valette
56 Logic, induction and sets, Thomas Forster
57 Introduction to Banach algebras, operators and harmonic analysis, Garth Dales et al.
58 Computational algebraic geometry, Hal Schenck
59 Frobenius algebras and 2-D topological quantum field theories, Joachim Kock
60 Linear operators and linear systems, Jonathan R. Partington
R. B. Warfield, Jr
62 Topics from one-dimensional dynamics, Karen M. Brucks & Henk Bruin
63 Singular points of plane curves, C. T. C. Wall
64 A short course on Banach space theory, N. L. Carothers
65 Elements of the representation theory of associative algebras I, Ibrahim Assem,
Daniel Simson & Andrzej Skowroński
66 An introduction to sieve methods and their applications, Alina Carmen Cojocaru &
M. Ram Murty
67 Elliptic functions, J. V. Armitage & W. F. Eberlein
68 Hyperbolic geometry from a local viewpoint, Linda Keen & Nikola Lakic
69 Lectures on Kähler geometry, Andrei Moroianu
70 Dependence logic, Jouko Väänänen
71 Elements of the representation theory of associative algebras II, Daniel Simson &
Andrzej Skowroński
72 Elements of the representation theory of associative algebras III, Daniel Simson &
Andrzej Skowroński
73 Groups, graphs and trees, John Meier
74 Representation theorems in Hardy spaces, Javad Mashreghi
75 An introduction to the theory of graph spectra, Dragosi Cvetković, Peter
Rowlinson & Slobodan Simić
76 Number theory in the spirit of Liouville, Kenneth S. Williams
77 Lectures on profinite topics in group theory, Benjamin Klopsch, Nikolay
Nikolov & Christopher Voll
LONDON MATHEMATICAL SOCIETY STUDENT TEXTS 78

Clifford Algebras: An Introduction

D. J. H. GARLING
Emeritus Reader in Mathematical Analysis,
University of Cambridge, and
Fellow of St John’s College, Cambridge
Contents

Introduction

Part One The algebraic environment

1 Groups and vector spaces
 1.1 Groups 7
 1.2 Vector spaces 12
 1.3 Duality of vector spaces 14

2 Algebras, representations and modules
 2.1 Algebras 16
 2.2 Group representations 22
 2.3 The quaternions 24
 2.4 Representations and modules 28
 2.5 Module homomorphisms 29
 2.6 Simple modules 30
 2.7 Semi-simple modules 32

3 Multilinear algebra
 3.1 Multilinear mappings 36
 3.2 Tensor products 38
 3.3 The trace 42
 3.4 Alternating mappings and the exterior algebra 44
 3.5 The symmetric tensor algebra 49
 3.6 Tensor products of algebras 52
 3.7 Tensor products of super-algebras 56
Contents

Part Two Quadratic forms and Clifford algebras 59

4 Quadratic forms 61

- 4.1 Real quadratic forms 61
- 4.2 Orthogonality 63
- 4.3 Diagonalization 64
- 4.4 Adjoint mappings 68
- 4.5 Isotropy 69
- 4.6 Isometries and the orthogonal group 71
- 4.7 The case \(d = 2 \) 73
- 4.8 The Cartan-Dieudonné theorem 76
- 4.9 The groups \(\text{SO}(3) \) and \(\text{SO}(4) \) 80
- 4.10 Complex quadratic forms 82
- 4.11 Complex inner-product spaces 84

5 Clifford algebras 86

- 5.1 Clifford algebras 86
- 5.2 Existence 89
- 5.3 Three involutions 91
- 5.4 Centralizers, and the centre 95
- 5.5 Simplicity 96
- 5.6 The trace and quadratic form on \(A(E, q) \) 100
- 5.7 The group \(G(E, q) \) of invertible elements of \(A(E, q) \) 101

6 Classifying Clifford algebras 104

- 6.1 Frobenius’ theorem 104
- 6.2 Clifford algebras \(A(E, q) \) with \(\dim E = 2 \) 106
- 6.3 Clifford’s theorem 108
- 6.4 Classifying even Clifford algebras 109
- 6.5 Cartan’s periodicity law 110
- 6.6 Classifying complex Clifford algebras 113

7 Representing Clifford algebras 114

- 7.1 Spinors 114
- 7.2 The Clifford algebras \(A_{k,k} \) 117
- 7.3 The algebras \(B_{k,k+1} \) and \(A_{k,k+1} \) 119
- 7.4 The algebras \(A_{k+1,k} \) and \(A_{k+2,k} \) 120
- 7.5 Clifford algebras \(A(E, q) \) with \(\dim E = 3 \) 121
- 7.6 Clifford algebras \(A(E, q) \) with \(\dim E = 4 \) 124
- 7.7 Clifford algebras \(A(E, q) \) with \(\dim E = 5 \) 131
- 7.8 The algebras \(A_6, B_7, A_7 \) and \(A_8 \) 135
Contents

8 Spin
8.1 Clifford groups 137
8.2 Pin and Spin groups 139
8.3 Replacing q by $-q$ 141
8.4 The spin group for odd dimensions 142
8.5 Spin groups, for $d = 2$ 142
8.6 Spin groups, for $d = 3$ 144
8.7 Spin groups, for $d = 4$ 146
8.8 The group Spin$_5$ 147
8.9 Examples of spin groups for $d \geq 6$ 148
8.10 Table of results 151

Part Three Some Applications

9 Some applications to physics
9.1 Particles with spin $1/2$ 155
9.2 The Dirac operator 156
9.3 Maxwell’s equations 159
9.4 The Dirac equation 161

10 Clifford analyticity
10.1 Clifford analyticity 164
10.2 Cauchy’s integral formula 166
10.3 Poisson kernels and the Dirichlet problem 167
10.4 The Hilbert transform 169
10.5 Augmented Dirac operators 170
10.6 Subharmonicity properties 172
10.7 The Riesz transform 174
10.8 The Dirac operator on a Riemannian manifold 177

11 Representations of Spin$_d$ and SO(d) 179
11.1 Compact Lie groups and their representations 179
11.2 Representations of SU(2) 181
11.3 Representations of Spin$_d$ and SO(d) for $d \leq 4$ 182

12 Some suggestions for further reading
References 191
Glossary 193
Index 197