
Introduction

Clifford algebras find their use in many areas of mathematics: in dif-

ferential analysis, where operators of Dirac type are used in proofs of

the Atiyah-Singer index theorem, in harmonic analysis, where the Riesz

transforms provide a higher-dimensional generalization of the Hilbert

transform, in geometry, where spin groups illuminate the structure of

the classical groups, and in mathematical physics, where Clifford alge-

bras provide a setting for electromagnetic theory, spin 1/2 particles, and

the Dirac operator in relativistic quantum mechanics. This book is in-

tended as a straightforward introduction to Clifford algebras, without

going on to study any of the above topics in detail (suggestions for fur-

ther reading are made at the end). This means that it concentrates on

the underlying structure of Clifford algebras, and this inevitably means

that it approaches the subject algebraically.

The first part is concerned with the background from algebra that is

required. The first chapter describes, without giving details, the neces-

sary knowledge of groups and vector spaces that is needed. Any reader

who is not familiar with this material should consult standard texts on

algebra, such as Mac Lane and Birkhoff [MaB], Jacobson [Jac] or Cohn

[Coh]. Otherwise, skim through it, to familiarize yourself with the nota-

tion and terminology that is used.

The second chapter deals with algebras, and modules over algebras.

It turns out that the algebra H of quaternions has an important part to

play in the theory of Clifford algebras, and fundamental properties of this

algebra are developed here. It also turns out that the Clifford algebras

that we study are isomorphic to the algebra of D-endomorphisms of Dk,

where D is either the real field R, the complex field C or the algebra H;

we develop the theory of modules over an algebra far enough to prove

Wedderburn’s theorem, which explains why this is the case.
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2 Introduction

Tensor products of various forms are an invaluable tool for construct-

ing Clifford algebras. Many mathematicians are uncomfortable with ten-

sor products; in Chapter 3 we provide a careful account of the multilinear

algebra that is needed. This involves finite-dimensional vector spaces,

where there is a powerful and effective duality theory, and we make

unashamed use of this duality to construct the spaces of tensor products

that we need.

The second part is the heart of this book. Clifford algebras are con-

structed, starting from a vector space equipped with a quadratic form.

Chapter 4 is concerned with quadratic forms on finite-dimensional real

vector spaces. The reader is probably familiar with the special case of

Euclidean space, where the quadratic form is positive definite. The gen-

eral case is, perhaps surprisingly, considerably more complicated, and we

provide complete details. In particular, we prove the Cartan-Dieudonné

theorem, which shows that an isometry of a regular quadratic space is

the product of simple reflections.

In Chapter 5, we begin the study of Clifford algebras. This can be

done at different levels of generality. At one extreme, we could consider

Clifford algebras over an arbitrary field; these are important, for exam-

ple in number theory, but this is too general for our purposes. At the

other extreme, we could restrict attention to Clifford algebras over the

complex field C; this has the advantage that C is algebraically com-

plete, which leads to considerable simplifications, but in the process it

removes many interesting ideas from consideration. In fact, we shall con-

sider Clifford algebras over the real field; this provides enough generality

to consider many important ideas, while at the same time provides an

appropriate setting for differential analysis, harmonic analysis and math-

ematical physics. We shall see that the complex field C is an example

of such a Clifford algebra; one of its salient features is the conjugation

involution. Universal Clifford algebras also admit such an involutory au-

tomorphism, the principal involution. This leads to a Z2 grading of such

algebras; they are super-algebras. This is one of the fundamental features

of the structure of Clifford algebras. But they are more complicated than

that; besides the principal involution there are two important involutory

anti-automorphisms.

Much of the charm of Clifford algebras lies in the fact that they have

interesting concrete representations, and in Chapters 6 and 7 we calcu-

late many of these. In particular, we use arguments involving Clifford

algebras to prove Frobenius’ theorem, that the only finite-dimensional

real division algebras are the real field R, the complex field C and the
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Introduction 3

algebra H of quaternions. The calculations involve dimensions up to 5;

we also establish a partial periodicity of order 4, and Cartan’s periodicity

theorem, with periodicity of order 8, which enable all Clifford algebras

to be calculated. As a result of these calculations, we find that every

Clifford algebra is either isomorphic to a full matrix algebra over R, C

or H, or is isomorphic to the direct sum of two copies of one of these.

This is a consequence of Wedderburn’s theorem: a finite-dimensional

simple real algebra is isomorphic to a full matrix algebra over a finite-

dimensional real division algebra. Matrices act on vector spaces; at the

end of Chapter 7 we introduce spinor spaces, which are vector spaces on

which a Clifford algebra acts irreducibly.

A large part of mathematics is concerned with symmetry, and the

orthogonal group and special orthogonal group describe the linear sym-

metries of regular quadratic spaces. An important feature of Clifford

algebras is that the group of invertible elements of a Clifford algebra

contains a subgroup, the spin group, which provides a double cover of

the corresponding special orthogonal group. In Chapter 8, spin groups

are defined, and their basic properties are proved. Spin groups, and their

actions, are calculated for spaces up to dimension 4, and for 5- and 6-

dimensional Euclidean space.

In the third part, we describe some of the applications of Clifford

algebras. Our intention here is to provide an introduction to a varied

collection of applications; to whet the appetite, so that the reader will

wish to pursue his or her interests further.

A great deal of interest in Clifford algebras goes back to 1927 and 1928.

In 1927, Pauli introduced the so-called Pauli spin matrices to provide a

quantum mechanical framework for particles with spin 1/2, and in 1928,

Dirac introduced the Dirac operator (though not with this name, nor

in terms of a Clifford algebra) to construct the Dirac equation, which

describes the relativistic behaviour of an electron. In Chapter 9, we

describe the use of the Pauli spin matrices to represent the angular

momentum of particles with spin 1/2. We introduce the Dirac operator,

and construct the Dirac equation. We also show that Maxwell’s equations

for electromagnetic fields can be expressed as a single equation involving

the Dirac operator.

Clifford algebras have important applications in differential and har-

monic analysis. A fascinating topic in two dimensions is the relationship

between harmonic functions and analytic functions, using the Hilbert

transform. In Chapter 10, we show how the Dirac operator, and an aug-

mented Dirac operator, can be used to extend the idea of analyticity
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4 Introduction

to higher dimensions, so that corresponding problems can be considered

there; the Hilbert transform is replaced by the system of Riesz trans-

forms. As a particular application, we show how to extend to higher

dimensions the celebrated theorem of the brothers Riesz, which shows

that if the harmonic Dirichlet extension of a complex measure is ana-

lytic, then the measure is absolutely continuous with respect to Lebesgue

measure, and is represented by a function in the Hardy space H1.

These results concern functions defined on half a vector space. An even

more important use of Dirac operators concerns analysis on a compact

Riemannian manifold; this leads to proofs of the Atiyah-Singer index

theorem. A full account of this demands a detailed knowledge of Rie-

mannian geometry, and so cannot be given at this introductory level,

but we end Chapter 10 by giving a brief description of the set-up in

which Dirac operators can be defined.

The spin groups provide a double cover of the special orthogonal

groups. In Chapter 11, we show how this can be used to describe the

irreducible representations of the special orthogonal groups of Euclidean

spaces of dimensions 2, 3 and 4. The use of the double cover goes much

further, but again this requires a detailed understanding of the repre-

sentation theory of compact Lie groups, inappropriate for a book at this

elementary level.

These remarks show that this book is only an introduction to a large

subject, with many applications. In the final chapter, we make some

further comments, and also make some suggestions for further reading.

I would especially like to thank the referees for their dissatisfaction

with earlier drafts of this book, which led to improvements both of con-

tent and of presentation. I have worked hard to remove errors, but un-

doubtedly some remain. Corrections and further comments can be found

on my personal web-page at www.dpmms.cam.ac.uk.

I acknowledge the use of Paul Taylor’s ‘diagrams’ package, which I

used for the commutative diagrams in the text; I found the package easy

to use.
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PART ONE

THE ALGEBRAIC ENVIRONMENT
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1

Groups and vector spaces

The material in this chapter should be familiar to the reader, but it

is worth reading through it to become familiar with the notation and

terminology that is used. We shall not give details; these are given in

standard textbooks, such as Mac Lane and Birkhoff [MaB], Jacobson

[Jac] or Cohn [Coh].

1.1 Groups

A group is a non-empty set G together with a law of composition, a

mapping (g, h) → gh from G×G to G, which satisfies:

1. (gh)j = g(hj) for all g, h, j in G (associativity),

2. there exists e in G such that eg = ge = g for all g ∈ G, and

3. for each g ∈ G there exists g−1 ∈ G such that gg−1 = g−1g = e.

It then follows that e, the identity element, is unique, and that for each

g ∈ G the inverse g−1 is unique.

A group G is abelian, or commutative, if gh = hg for all g, h ∈ G. If

G is abelian, then the law of composition is often written as addition:

(g, h) → g + h. In such a case, the identity is denoted by 0, and the

inverse of g by −g.

A non-empty subset H of a group G is a subgroup of G if h1h2 ∈ H

whenever h1, h2 ∈ H, and h−1 ∈ H whenever h ∈ H. H then becomes a

group under the law of composition inherited from G.

If A is a subset of a group G, there is a smallest subgroup Gp(A) of G

which contains A, the subgroup generated by A. If A = {g} is a singleton

then we write Gp(g) for Gp(A). Then Gp(g) = {gn : n an integer},
where g0 = e, gn is the product of n copies of g when n > 0, and gn
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8 Groups and vector spaces

is the product of |n| copies of g−1 when n < 0. A group G is cyclic if

G = Gp(g) for some g ∈ G.

If G has finitely many elements, then the order o(G) of G is the num-

ber of elements of G. If G has infinitely many elements, then we set

o(G) = ∞. If g ∈ G then the order o(g) of g is the order of the group

Gp(g).

A mapping θ : G → H from a group G to a group H is a homo-

morphism if θ(g1g2) = θ(g1)θ(g2), for g1, g2 ∈ G. It then follows that θ

maps the identity in G to the identity in H, and that θ(g−1) = (θ(g))−1,

for g ∈ G. A bijective homomorphism is called an isomorphism, and an

isomorphism G → G is called an automorphism of G. The set Aut(G)

of automorphisms of G forms a group, when composition of mappings is

taken as the group law of composition.

A subgroup K of a group G is a normal, or self-conjugate, subgroup if

g−1hg ∈ K for all g ∈ G and k ∈ K. If θ : G → H is a homomorphism,

then the kernel ker(θ) of θ, the set {g ∈ G : θg = eH} (where eH is the

identity in H) is a normal subgroup of G. Conversely, suppose that K

is a normal subgroup of G. The relation g1 ∼ g2 on G defined by setting

g1 ∼ g2 if g−1
1 g2 ∈ K is an equivalence relation on G. The equivalence

classes are called the cosets ofK in G. If C is a coset ofK then C is of the

formKg = {kg : k ∈ K} andKg = gK = {gk : k ∈ K}. If C1 and C2 are

cosets ofK inG then so is C1C2 = {c1c2 : c1 ∈ C1, c2 ∈ C2}; if C1 = Kg1
and C2 = Kg2 then C1C2 = Kg1g2. With this law of composition, the

set G/K of cosets becomes a group, the quotient group. The identity is

K and (Kg)−1 = Kg−1. The quotient mapping q : G → G/K defined

by the equivalence relation is then a homomorphism of G onto G/K,

with kernel K, and q(g) = Kg.

A group G is simple if it has no normal subgroups other than {e} and

G.

We denote the group with one element by 1, or, if we are denoting com-

position by addition, by 0. Suppose that (G0 = 1, G1, . . . , Gk, Gk+1 = 1)

is a sequence of groups, and that θj : Gj → Gj+1 is a homomorphism,

for 0 ≤ j ≤ k. Then the diagram

1
θ0� G1

θ1� G2
θ2� . . .

θk−1� Gk
θk� 1

is an exact sequence if θj−1(Gj−1) is the kernel of θj , for 1 ≤ j ≤ k. If

k = 3, the sequence is a short exact sequence. For example, if K is a
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1.1 Groups 9

normal subgroup of g and q : G → G/K is the quotient mapping, then

1 � K
⊆� G

q� G/K � 1

is a short exact sequence. If A is a subset of a groupG then the centralizer

CG(A) of A in G, defined as

CG(A) = {g ∈ G : ga = ag for all a ∈ A},
is a subgroup of G. The centre Z(G), defined as

Z(G) = {g ∈ G : gh = hg for all h ∈ G},
(which is CG(G)), is a normal subgroup of G.

The product of two groups G1 × G2 is a group, when composition is

defined by

(g1, g2)(h1, h2) = (g1h1, g2h2)

We identify G1 with the subgroup G1 ×{e2} and G2 with the subgroup

{e1} ×G2.

Let us now list some of the groups that we shall meet later.

1. The real numbers R form an abelian group under addition. The set

Z of integers is a subgroup of R. The set R∗ of non-zero real numbers

is a group under multiplication.

2. Any two groups of order 2 are isomorphic. We shall denote the multi-

plicative subgroup {1,−1} of R∗ by D2, and the additive group {0, 1}
by Z2. Z2 is isomorphic to the quotient group Z/2Z. Small though

they are, these groups of order 2 play a fundamental role in the the-

ory of Clifford algebras (and in many other branches of mathematics

and physics).

Suppose that we have a short exact sequence

1 � D2
j� G1

θ� G2
� 1.

Then j(D2) is a normal subgroup of G1, from which it follows that

j(D2) is contained in the centre of G1. If g ∈ G1 then we write −g

for j(−1)g. Then θ(g) = θ(−g), and if h ∈ G2 then θ−1{h} = {g,−g}
for some g in G. In this case, we say that G1 is a double cover of G2.

Double covers play a fundamental role in the theory of spin groups;

these are considered in Chapter 8.

3. A bijective mapping of a set X onto itself is called a permutation.

The set ΣX of permutations of X is a group under the composition

of mappings. ΣX is not abelian if X has at least three elements. We
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10 Groups and vector spaces

denote the group of permutations of the set {1, . . . , n} by Σn. Σn

has order n!. A transposition is a permutation which fixes all but 2

elements. Σn has a normal subgroup An of order n!/2, consisting of

those permutations that can be expressed as the product of an even

number of transpositions. Thus we have a short exact sequence

1 � An
⊆� Σn

ε� D2
� 1.

If σ ∈ Σn then ε(σ) is the signature of σ; ε(σ) = 1 if σ ∈ An, and

ε(σ) = −1 otherwise.

4. The complex numbersC form an abelian group under addition, andR

can be identified as a subgroup of C. The set C∗ of non-zero complex

numbers is a group under multiplication. The set

T = {z ∈ C : |z| = 1} is a subgroup of C∗. There is a short ex-

act sequence

0 � Z
⊆� R

q � T � 1

where Z is the additive group of integers and q(θ) = e2πiθ.

5. The subset Tn = {e2πij/n : 0 ≤ j < n} = {z ∈ C : zn = 1} of T is a

cyclic subgroup of T of order n. Conversely, if G = Gp(g) is a cyclic

group of order n then the mapping gk → e2πik/n is an isomorphism

of G onto Tn.

6. Let D denote the group of isometries of the complex plane C which

fix the origin:

D = {g : C → C : g(0) = 0 and |g(z)−g(w)| = |z−w| for z, w ∈ C}.
D is the full dihedral group. Then an element of D is either a rotation

Rθ (where Rθ(z) = eiθz) or a reflection Sθ (where Sθ(z) = eiθ z̄). The

set Rot of rotations is a subgroup ofD, and the mapping R : eiθ → Rθ

is an isomorphism of T onto Rot. In particular, Rπ(z) = −z. Since

S2
θ (z) = eiθ(eiθ z̄) = eiθe−iθz = z,

S2
θ is the identity. A similar calculation shows that S−1

θ RφSθ = R−φ,

so that R is a normal subgroup of D. We have an exact sequence

1 � T
R� D

δ� D2
� 1

where δ(Rθ)) = 1 and δ(Sθ) = −1, for θ ∈ [0, 2π).

7. If n ≥ 2, let Rn = R(Tn) and letD2n = Rn∪RnS0.D2n is a subgroup

of D, called the dihedral group of order 2n. (Warning: some authors

denote this group by Dn.) The group D4
∼= D2 × D2, and so D4 is
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1.1 Groups 11

abelian. If n ≥ 3 then D2n is the group of symmetries of a regular

polygon with n vertices, with centre the origin; D2n is a non-abelian

subgroup of D of order 2n. If n = 2k is even, then Z(D2n) = {1, r−1},
and we have a short exact sequence

1 � D2
� D2n

� D2k
� 1;

D2n is a double cover of D2k. If n = 2k+1 is odd, then Z(D2n) = {1}.
8. In particular, the dihedral group D8 is a non-abelian group, which is

the group of symmetries of a square with centre the origin. Let us set

α = ri, β = σ1 and γ = σi. Then D8 = {±1,±α,±β,±γ} (where −x

denotes r−1x = xr−1), and

αβ = γ βγ = α γα = β

βα = −γ γβ = −α αγ = −β

α2 = −1 β2 = 1 γ2 = 1.

There is a short exact sequence

1 � D2
� D8

� D4
� 1.

9. The quaternionic group Q is a group of order 8, with elements

{±1,±i,±j,±k}, with identity element 1, and law of composition

defined by

ij = k jk = i ki = j

ji = −k kj = −i ik = −j

i2 = −1 j2 = −1 k2 = −1,

and (−1)x = x(−1) = −x, (−1)(−x) = (−x)(−1) = x for

x = 1, i, j,k. Then Z(Q) = {1,−1}, and there is a short exact se-

quence

1 � D2
� Q � D4

� 1;

Q is a double cover of D4.

The groups D8 and Q are of particular importance in the study of

Clifford algebras. Although they both provide double covers of D4, they

are not isomorphic. Q has six elements of order 4, one of order 2 and

one of order 1. D8 has two elements of order 4, five of order 2 and one

of order 1.
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