Wireless Physical Layer Network Coding

Discover a fresh approach for designing more efficient and cooperative wireless communications networks with this systematic guide. Covering everything from fundamental theory to current research topics, leading researchers describe a new, network-aware coding strategy that exploits the signal interactions that occur in dense wireless networks directly at the waveform level. Using an easy-to-follow, layered structure, this unique text begins with a gentle introduction for those new to the subject, before moving on to explain key information-theoretic principles and establish a consistent framework for wireless physical layer network coding (WPNC) strategies. It provides a detailed treatment of Network Coded Modulation, covers a range of WPNC techniques such as Noisy Network Coding, Compute and Forward, and Hierarchical Decode and Forward, and explains how WPNC can be applied to parametric fading channels, frequency selective channels, and complex stochastic networks. This is essential reading whether you are a researcher, graduate student, or professional engineer.

Jan Sykora is a professor in the Faculty of Electrical Engineering at the Czech Technical University in Prague, and a consultant for the communications industry in the fields of advanced coding and signal processing.

Alister Burr is Professor of Communications in the Department of Electronic Engineering at the University of York.
Wireless Physical Layer Network Coding

JAN SYKORA
Czech Technical University in Prague

ALISTER BURR
University of York
Contents

Preface xi
Mathematical Symbols xiii
Abbreviations xvi

Part I Motivation and Gentle Introduction 1

1 Introduction 3
1.1 Introduction 3
1.2 The “Network-Aware Physical Layer” 4
1.3 Network Coding at the Network Layer 7
1.4 Wireless Physical Layer Network Coding 8
1.5 Historical Perspective 11
1.6 Practical Usage Scenarios 12

2 Wireless Physical Layer Network Coding: a Gentle Introduction 15
2.1 The 2-Way Relay Channel 15
2.2 Conventional, Network-Layer Network Coding, and WPNC Approaches 16
2.3 WPNC Relay Strategies 19
2.4 Unambiguous Decoding and Hierarchical Side-Information 22
2.5 Achievable Rates of HDF and JDF 24
2.5.1 Two-Source BPSK Hierarchical MAC 25
2.5.2 JDF Strategy 26
2.5.3 HDF Strategy 27
2.5.4 Achievable Rates 28
2.6 2WRC with QPSK: the Problem of Channel Parametrization 29
2.7 Hierarchical Wireless Network Example 34

Part II Fundamental Principles of WPNC 39

3 Fundamental Principles and System Model 41
3.1 Introduction 41
3.2 Scenarios and System Model 42
3.2.1 Nodes 42
3.2.2 Radio Resource Sharing and Network Stages 43
Contents

3.2.3 Network with Cycles 45
3.3 Core Principles of WPNC Network 46
3.3.1 Hierarchical Principle 46
3.3.2 Relay Processing Operation and Data Function 48
3.3.3 Classification of Node Processing Operation Strategies 51
3.3.4 Classification of Back-End Strategies 53
3.3.5 Classification of Front-End Strategies 54
3.3.6 Classification of Relay Node Strategy 55
3.4 Global HNC Map and Generalized Exclusive Law 56
3.5 Hierarchical Constellation 59
3.5.1 Hierarchical Constellation and Hierarchical Codebook 59
3.5.2 Common and Relative Channel Parametrization 61
3.5.3 Singular Fading 64

4 Components of WPNC 67
4.1 Introduction 67
4.2 Network Coded Modulation 67
4.2.1 Multi-Source Network Structure Aware Constellation Space Codebook 67
4.2.2 NCM with Hierarchical Performance Target 71
4.2.3 Layered NCM 71
4.2.4 Isomorphic Layered NCM 73
4.3 Hierarchical Decoder 74
4.3.1 Relay Operation for Decoding Hierarchical Information Measure 74
4.3.2 Joint-Metric Hierarchical Decoder 75
4.3.3 Layered Hierarchical Decoder 77
4.4 Hierarchical Demodulator 78
4.4.1 H-SODEM with Marginalization 79
4.4.2 H-SODEM Providing Sufficient Statistic 82
4.4.3 Soft-Aided H-SODEM 86
4.4.4 H-SODEM with Nonlinear Preprocessor 88
4.5 Hierarchical Error Probability Performance 91
4.5.1 Hierarchical Pairwise Error Probability 91
4.5.2 Hierarchical Pairwise Error Probability for Isomorphic NCM 91
4.5.3 H-PEP for Gaussian Memoryless Channel 93
4.5.4 Hierarchical Distance and Self-Distance Spectrum 95
4.5.5 NCM Design Rules Based on H-PEP 96
4.6 Hierarchical Side-Information Decoding 99
4.6.1 Hierarchical Side-Information Decoding – System Model 99
4.6.2 HSI-Decoding Processing Structure 104
4.7 Hierarchical Network Code Map 106
4.7.1 Linear HNC Map Designs 106
4.7.2 HNC Maps for Linear Isomorphic Layered NCM 108
5 WPNC in Cloud Communications

5.1 Introduction

5.2 Hierarchical Structure and Stages of Wireless Cloud
 5.2.1 Hierarchical Network Transfer Function
 5.2.2 Half-Duplex Constrained Stage Scheduling

5.3 Information-Theoretic Limits
 5.3.1 Information-Theoretic Assessment of WPNC
 5.3.2 Information-Theoretic System Model
 5.3.3 Cut-Set Bound for Multicast Network

5.4 Noisy Network Coding
 5.4.1 Core Principle
 5.4.2 Block Structure
 5.4.3 Transmission Step Codebooks and Encoding
 5.4.4 Compression Step Codebooks and Encoding
 5.4.5 Node Block Relay Processing
 5.4.6 Final Destination Decoding
 5.4.7 Achievable Rates
 5.4.8 Equivalent Model
 5.4.9 Noisy Network Coding in the Perspective of WPNC

5.5 Gaussian Networks
 5.5.1 Gaussian Networks
 5.5.2 Cut-Set Bound for Multicast Gaussian Network
 5.5.3 NNC Achievable Rates for Gaussian Network
 5.5.4 Examples

5.6 Compute and Forward
 5.6.1 Core Principle
 5.6.2 Simplified Motivation Example
 5.6.3 Nested Lattice Codebooks for H-MAC
 5.6.4 H-Codeword with Complex Integer Linear HNC Map
 5.6.5 Hierarchical Euclidean Lattice Decoding
 5.6.6 Equivalent Hierarchical Modulo Lattice Channel
 5.6.7 Optimized Single-Tap Linear MMSE Equalizer
 5.6.8 Achievable Computation Rate
 5.6.9 Special Cases
 5.6.10 Multiple Relays
 5.6.11 Compute and Forward in the Perspective of WPNC
 5.6.12 Examples

5.7 Hierarchical Decode and Forward in Single-Stage H-MAC
 5.7.1 System Model
 5.7.2 HDF Decoding
 5.7.3 Joint-Metric Hierarchical Decoding on Product Codebook
 5.7.4 Layered Hierarchical Decoding for Isomorphic Layered NCM
 5.7.5 Properties of Hierarchical Mutual Information
 5.7.6 HDF Coding Converse Rate
Contents

5.7.7 Hierarchical Capacity 180
5.7.8 Finite Alphabet Regular Layered NCM in Linear Memoryless Gaussian Channel 182

5.8 End-to-End Solvability 184
5.8.1 Global Linear HNC Map 184
5.8.2 Solvability of Linear HNC Map 184
5.8.3 Solving Linear Ring-Based HNC Maps 185
5.8.4 H-Processing Operations 186

Part III Design of Source, Relay, and Destination Strategies

6 NCM and Hierarchical Decoding Design for H-MAC 191
6.1 Introduction 193
6.2 NCM with HNC Maps Adapted to Channel Parameters 193
6.2.1 System Model 193
6.2.2 H-Decoding 194
6.2.3 Channel Optimized HNC Maps 194
6.3 Layered NCM and Layered H-Decoding Design 196
6.3.1 System Model 197
6.3.2 Linear Isomorphic Layered NCM 198
6.3.3 H-Decoding 199
6.3.4 Linear HNC Maps on Extended GF 200
6.3.5 H-Coding Rates 202

7 NCM Design and Processing for Parametric Channels 207
7.1 Introduction 207
7.2 Synchronization and Pilot Design 208
7.2.1 Synchronization and Channel State Estimation in WPNC Context 208
7.2.2 Fundamental Limits for Phase and Magnitude Estimators in Linear AWGN H-MAC 209
7.2.3 Channel Estimators for Linear AWGN H-MAC 214
7.3 NCM in Frequency Selective H-MAC Channel 215
7.3.1 Block-Constant Frequency Selective H-MAC Channel 215
7.3.2 NCM with OFDM Waveform 217
7.4 NCM Design for Parametric Channels 219
7.4.1 Parameter Invariant and Uniformly Most Powerful Design 219
7.4.2 H-Distance Criterion Parametric Design 220
7.4.3 Tx-Based Adaptation and Diversity-Based Solutions 224

8 NCM Design for Partial HSI and Asymmetric H-MAC 226
8.1 Introduction 226
8.2 NCM for Multi-Map H-MAC 227
8.2.1 Design Goals 227
8.2.2 Structured NCM for Multi-Map H-MAC 228
8.2.3 Achievable H-rate Region for Multi-Map H-MAC 229
8.3 Structured NCM Design 236
8.3.1 Layered Block-Structured NCM 236
8.3.2 Layered Superposition-Structured NCM 237
8.3.3 CF-Based Superposition-Structured NCM 244

9 Joint Hierarchical Interference Processing 251
9.1 Introduction 251
9.2 Joint Hierarchical Interference Processing 251
9.3 Joint Hierarchical Interference Processing in CF-Based NCM 252
9.3.1 Integer-Constrained H-Ifc Cancellation 253
9.3.2 Successive Nulling of HNC Map Coefficients 256
9.3.3 Joint Hierarchical Successive CF Decoding 258
9.3.4 H-SCFD with Decoupled Coefficient Optimization 263
9.4 Joint Hierarchical Interference Cancellation for Isomorphic Layered NCM 265
9.4.1 Equivalent Hierarchical Channel with Joint H-Ifc Cancellation 265
9.4.2 Achievable H-rate with H-Ifc Cancellation 265
9.4.3 Conditional Regularity for Linear GF HNC Maps 268

10 WPNC in Complex Stochastic Networks 270
10.1 Principles of Wireless Cloud Coding 270
10.2 Wireless Cloud-Coding-Based Design of NCM 271
10.2.1 Random Channel Class H-MAC and Joint HNC Map 271
10.2.2 Coding Theorems for WCC NCM 274
10.3 Clustered, Nested, and Modular Cloud Framework 280
10.3.1 Clustered Cloud 281
10.3.2 Nested Cloud 282
10.3.3 Modular Cloud Framework 283

Appendix A Background Theory and Selected Fundamentals 284
A.1 Basic Mathematical Definitions 284
A.2 Linear Algebra 284
A.2.1 Algebraic Structures 284
A.2.2 Matrix Analysis 286
A.2.3 Miscellaneous 287
A.3 Detection, Decoding, and Estimation Theory 287
A.3.1 Bayesian Estimators 287
A.3.2 Maximum Likelihood Estimator 289
A.3.3 MAP Sequence and Symbol Decoding 290
A.3.4 Pairwise Error Union Upper Bound 290
A.3.5 Complex-Valued Optimization 292
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3.6 Cramer–Rao Lower Bound</td>
<td>293</td>
</tr>
<tr>
<td>A.3.7 Sufficient Statistic</td>
<td>294</td>
</tr>
<tr>
<td>A.4 Information Theory</td>
<td>294</td>
</tr>
<tr>
<td>A.4.1 Basic Concepts</td>
<td>294</td>
</tr>
<tr>
<td>A.4.2 Capacity Region and Bounds</td>
<td>301</td>
</tr>
<tr>
<td>A.5 Lattice Coding</td>
<td>304</td>
</tr>
<tr>
<td>A.5.1 Lattices</td>
<td>304</td>
</tr>
<tr>
<td>A.5.2 Lattice Coding</td>
<td>306</td>
</tr>
</tbody>
</table>

References 313

Index 316
Preface

About the Book

The book addresses strategies and principles of physical layer coding and signal processing that fully respect and utilize knowledge of the structure of a wireless network. This technique substantially increases the overall network throughput, efficiency, and reliability. Wireless Physical Layer Network Coding (WPNC) (a.k.a. Physical Layer Network Coding (PLNC)) is a general framework for physical (PHY) layer coding and processing strategies in which PHY behavior at a given node depends on its position in the network topology, and the signal-level processing/decoding exploits multiple paths between source and destination. We introduce the concept of Network Coded Modulation (NCM) as a network-structure-aware signal space code, which processes a (hierarchical) joint function of source data. At intermediate nodes NCM utilizes hierarchical decoding, and it is also designed to allow unambiguous decoding at the final destination using multiple hierarchical observations, arriving via different routes. The book addresses the fundamental principles of WPNC in the context of network information theory, and provides a comprehensive classification of the strategies. It also covers advanced design and techniques, including particular coding and processing designs and their respective properties. We also address selected hot research topics and open problems.

Motivation for the Book

It is becoming widely accepted that the most significant future developments in the physical layer of wireless communication systems will not take place in the PHY layer of individual communication links, but rather in the context of complete wireless networks, especially as the density of wireless networks continues to increase. Over the past decade or so there have been significant developments in network information theory; these have shown that very significant overall performance gains are available compared with the conventional paradigm in which PHY techniques are applied to individual links only, leaving network aspects to be dealt with only at higher layers of the protocol stack. One such new research field is network coding, in which coding techniques are applied to multiple data streams at intermediate nodes in a network, rather than only to individual streams on single links. This can exploit network topology to significantly improve
throughput in multi-user networks. However, in its original form it operates at the level
of data streams, rather than signal waveforms, and hence is not well suited to the inher-
ently broadcast nature of wireless networks. Wireless physical layer network coding
(WPNC) allows it to be applied directly to wireless networks, with a further significant
improvement in efficiency. The key advance on conventional PHY techniques is that
the nodes are aware of the network topology and their place within it, and both signal-
ing waveforms and node signal processing exploit this knowledge to improve overall
network throughput.

Book Scope and Organization

The book is carefully balanced, being divided into several “layers” giving different
depths of information for audiences with various levels of background knowledge. Part
I gives a gentle introduction to the key concept with the explanation kept in accessi-
able form. Part II presents fundamental principles in more detail, but still using a “big
picture” global perspective. Part III addresses a mosaic of various particular design tech-
niques and principles that can practically fulfill the general principles of Part II. The
Appendix provides some background material for readers with a weaker background in
communication, signal processing, and information theory.

Throughout the book, we maintain a strong emphasis on the proper classification and
structuring of the problems, techniques, and particular coding, processing, and decod-
ing schemes under discussion. This will help readers to properly orient themselves in
the complex landscape of the different individual approaches. In the currently available
literature these frequently overlap, and suffer from rather “fuzzy” terminology. This may
lead to incorrect comparisons due to the high complexity of the field and the ambigu-
ity and inconsistency of the terminology. (Terminology also changes rapidly due to the
rapid progress of the research community.)

The book is not primarily intended as a university course textbook but rather as a ref-
erence source for researchers, PhD students, and engineers who would like to understand
the principles of WPNC in the context of other techniques or would like to start their
own research work in this field. Therefore the book is a highly structured set of Parts–
Chapters–Sections, which are intended, as far as possible, to be read in a self-contained
manner.

Jan Sykora and Alister Burr
Mathematical Symbols

Basic Symbols, Sets

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N})</td>
<td>positive integers</td>
</tr>
<tr>
<td>(\mathbb{N}_0)</td>
<td>non-negative integers</td>
</tr>
<tr>
<td>(\mathbb{R})</td>
<td>real numbers</td>
</tr>
<tr>
<td>(\mathbb{C})</td>
<td>complex numbers</td>
</tr>
<tr>
<td>(\mathbb{Z})</td>
<td>integer numbers</td>
</tr>
<tr>
<td>(\mathbb{Z}_j)</td>
<td>complex (Gaussian) integers</td>
</tr>
<tr>
<td>(\mathcal{A}_1 \times \mathcal{A}_2)</td>
<td>Cartesian product of sets</td>
</tr>
<tr>
<td>(\mathcal{A}^N)</td>
<td>Cartesian product of sets (N) times</td>
</tr>
<tr>
<td>(</td>
<td>\mathcal{A}</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>empty set</td>
</tr>
<tr>
<td>(\cup), (\cap)</td>
<td>union and intersection operators for the sets</td>
</tr>
<tr>
<td>(\setminus)</td>
<td>set difference (set minus)</td>
</tr>
<tr>
<td>({c_i}_i)</td>
<td>set of variables (c_i) for all feasible indices (i)</td>
</tr>
<tr>
<td>(\tilde{a} = {a_1, \ldots, a_n})</td>
<td>set of all components</td>
</tr>
<tr>
<td>([a, b) = {x : a \leq x < b})</td>
<td>semiopen interval</td>
</tr>
<tr>
<td>([k_1 : k_2])</td>
<td>integer interval ({k_1, k_1 + 1, \ldots, k_2}, k_1, k_2 \in \mathbb{Z})</td>
</tr>
<tr>
<td>(f : A \mapsto B)</td>
<td>(f) mapping from domain (A) to codomain (range) (B)</td>
</tr>
<tr>
<td>(F[], \ldots,]</td>
<td>operator (F)</td>
</tr>
<tr>
<td>(\exists)</td>
<td>there exists</td>
</tr>
<tr>
<td>(\forall)</td>
<td>for all</td>
</tr>
<tr>
<td>(\triangleq)</td>
<td>equal by definition</td>
</tr>
<tr>
<td>(\equiv)</td>
<td>equivalent, defines equivalence class</td>
</tr>
<tr>
<td>(\approx)</td>
<td>approximately or asymptotically equal</td>
</tr>
<tr>
<td>(\lesssim, \gtrsim)</td>
<td>approximately less than and greater than</td>
</tr>
<tr>
<td>(\lesssim, \gtrsim)</td>
<td>asymptotically less than and greater than</td>
</tr>
<tr>
<td>(\Rightarrow, \Leftrightarrow)</td>
<td>implication and equivalence</td>
</tr>
<tr>
<td>({a})</td>
<td>the set of all values the variable (a) can take</td>
</tr>
<tr>
<td>(\delta(t))</td>
<td>Dirac delta function (continuous time)</td>
</tr>
<tr>
<td>(\delta[k])</td>
<td>Kronecker delta (discrete time)</td>
</tr>
<tr>
<td>sup</td>
<td>supremum</td>
</tr>
<tr>
<td>sinc(x) = \sin(\pi x)/(\pi x)</td>
<td>sampling function</td>
</tr>
</tbody>
</table>
Mathematical Symbols

\[\lg x = \log_2 x \] binary logarithm
\[a^* \] complex conjugation
\[U(x) \] unit step function
\[(x)^+ = \max(0, x) \] positive part function
\[\land, \lor \] Boolean “and”, “or”
\[j = \sqrt{-1} \] imaginary unit
\[e \] base of the natural logarithm
\[\angle z \] angle of complex number
\[\frac{\partial f}{\partial x} \] standard partial derivative of the function \(f \) over variable \(x \)
\[\tilde{\frac{\partial f}{\partial z}} \] generalized partial derivative of complex valued function over complex valued variable
\[\int (\cdot) \, d x \] abbreviated form for the integration over the whole domain of variable \(x \), e.g. \(\int_{-\infty}^{\infty} (\cdot) \, d x \)
\[\sum_{x \in \mathcal{G}(x) = y} f(x) \] sum over the set of all \(x \) consistent with explicit condition \(g(x) = y \)

Number Theory, Vectors, Matrices, Inner-Product Spaces, Lattices

\[\langle \cdot, \cdot \rangle \] inner product
\[a \] vector (all vectors are column vectors)
\[\mathbf{1} = [1, \ldots, 1]^T \] unity vector
\[\mathbf{I}, \mathbf{I}_N \] identity matrix with size defined by context, \(N \times N \) identity matrix
\[\text{diag}(a) \] diagonal matrix with the components of \(a \) on the main diagonal
\[A \in \mathbb{C}^{m \times n} \] \((m,n)\) matrix of complex numbers
\[[A]_{i,j} \] element of the matrix on the \(i \)th row and \(j \)th column
\[A \succeq B \] \(A - B \) matrix is positive semi-definite
\[(\cdot)^T \] transposed matrix or vector
\[(\cdot)^H \] Hermitian transpose
\[A^{-1} \] matrix inverse
\[A^\dagger = (A^H A)^{-1} A^H \] matrix pseudoinverse
\[\det A \] determinant of matrix \(A \)
\[\boxtimes \] Kronecker matrix product
\[\circ \] element-wise Hadamard product of two matrices/vectors
\[\mathbb{S}_M \] finite ring
\[\mathbb{F}_p^n \] Galois (finite) extended field with characteristic \(p \)
\[\mathbb{F}_M^{N_1 \times N_2} \] \(N \)-dimensional vector and \(N_1 \times N_2 \) matrix on \(\mathbb{F}_M \) GF
\[\oplus, \otimes \] addition and multiplication on GF (this explicit notation is used only when we need explicitly to distinguish it, otherwise ordinary “plus” and “times” operators are also used)
\[\mathcal{E} \] energy
Mathematical Symbols

- \(c(t) = a(t) \ast b(t) \) convolution in continuous time \(\int a(t - \tau)b(\tau) \, d\tau \)
- \(c = a \circ b \) convolution in discrete time \(c_n = \sum_{k=0}^{\infty} a_{n-k}b_k \), \(a = [\ldots, a_0, a_1, \ldots]^T \) and similarly for \(b, c \)
- \(c = a \odot b \) cyclic convolution \(c_n = \sum_{k=0}^{N-1} a_{n-k} \mod N b_k \), \(a = [a_0, a_1, \ldots, a_{N-1}]^T \) and similarly for \(b, c \)
- \(x \perp y \) orthogonal \(x \) and \(y \), i.e. \(\langle x; y \rangle = 0 \) for some inner product definition
- \(\Lambda \) lattice
- \(\mathcal{V}(\Lambda_x) \) fundamental Voronoi cell of lattice \(\Lambda_x \)
- \(\Lambda_c / \Lambda_s \) quotient group for lattices \(\Lambda_c, \Lambda_s \)

Random Variables, Processes, and Information Theory

- \(X, x \) strict notation for random variable and its particular realization
- \(y, y^{(j)} \) alternative (relaxed) form of notation (identified by its context) for random variable and its particular realization
- \(x^K = \{x_1, x_2, \ldots, x_K\} \) a sequence (a tuple) of variables
- \(X^K = \{X_1, X_2, \ldots, X_K\} \) a sequence (a tuple) of random variables
- \(x(S) = \{x_k : k \in S\} \) set (a tuple) of variables with indices given by \(S \)
- \(\Pr(\cdot) \) probability
- \(p(x), p_X(x), p_x(x) \) PDF (PMF) with implicit and explicit denotation of random variable
- \(p(x|z), p_XZ(x|z), p_{xz}(x|z) \) conditional PDF (PMF) with implicit and explicit denotation of random variables
- \(x \sim p(x) \) drawn according to the given PDF/PMF
- \(A \perp B \) independent random variables
- \(A \perp B | C \) (or \(A \perp B | C \)) \(A \) and \(B \) conditionally independent given \(C \)
- \(\mathcal{U}(S) \) uniform distribution over the set \(S \)
- \(\mathcal{N}(\mathbf{m}, \mathbf{C}) \) Gaussian distribution with mean vector \(\mathbf{m} \) and variance matrix \(\mathbf{C} \)
- \(\mathcal{E}[] \) ensemble domain expectation operator
- \(\mathcal{E}_v[\cdot], \mathcal{E}_{p(v)}[\cdot] \) expectation over explicit random variable or distribution
- \(\mathcal{H}(X) \) entropy of random variable \(X \)
- \(\mathcal{H}(X|Y) \) conditional entropy of \(X \) conditioned by \(Y \)
- \(I(X; Y) \) mutual information between \(X \) and \(Y \)
- \(I(X; Y|Z) \) conditional mutual information between \(X \) and \(Y \) given \(Z \)
- \(\mathcal{H}(p) \) binary entropy function
- \(A \mapsto B \mapsto C \) Markov chain variables
- \((x, y) \in T \) \(x \) and \(y \) are jointly typical
- \(\mathcal{R}(S_1, S_2) \) rate region for independent codebooks with \(S_1, S_2 \) random channel symbols
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2WRC</td>
<td>2-Way Relay Channel</td>
</tr>
<tr>
<td>AF</td>
<td>Amplify and Forward</td>
</tr>
<tr>
<td>AWGN</td>
<td>Additive White Gaussian Noise</td>
</tr>
<tr>
<td>BC</td>
<td>Broadcast Channel</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>CF</td>
<td>Compute and Forward</td>
</tr>
<tr>
<td>CpsF</td>
<td>Compress and Forward</td>
</tr>
<tr>
<td>CRLB</td>
<td>Cramer–Rao Lower Bound</td>
</tr>
<tr>
<td>CSE</td>
<td>Channel State Estimation</td>
</tr>
<tr>
<td>DF</td>
<td>Decode and Forward</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>GF</td>
<td>Galois Field</td>
</tr>
<tr>
<td>H-</td>
<td>Hierarchical</td>
</tr>
<tr>
<td>H-BC</td>
<td>Hierarchical BC</td>
</tr>
<tr>
<td>H-constellation</td>
<td>Hierarchical Constellation</td>
</tr>
<tr>
<td>H-decoding</td>
<td>Hierarchical Decoding</td>
</tr>
<tr>
<td>HDF</td>
<td>Hierarchical Decode and Forward</td>
</tr>
<tr>
<td>HI</td>
<td>Hierarchical Information</td>
</tr>
<tr>
<td>H-Ifc</td>
<td>Hierarchical Interference</td>
</tr>
<tr>
<td>H-MAC</td>
<td>Hierarchical MAC</td>
</tr>
<tr>
<td>HNC map</td>
<td>Hierarchical Network Code map</td>
</tr>
<tr>
<td>H-NTF</td>
<td>Hierarchical Network Transfer Function</td>
</tr>
<tr>
<td>H-NTM</td>
<td>Hierarchical Network Transfer Matrix</td>
</tr>
<tr>
<td>H-PEP</td>
<td>Hierarchical Pairwise Error Probability</td>
</tr>
<tr>
<td>H-SCFD</td>
<td>Hierarchical Successive CF Decoding</td>
</tr>
<tr>
<td>HSI</td>
<td>Hierarchical Side-Information</td>
</tr>
<tr>
<td>H-SODEM</td>
<td>Hierarchical Soft-Output Demodulator</td>
</tr>
<tr>
<td>Ifc</td>
<td>Interference</td>
</tr>
<tr>
<td>iff</td>
<td>if and only if</td>
</tr>
<tr>
<td>IH-codebook</td>
<td>Isomorphic H-codebook</td>
</tr>
<tr>
<td>IID</td>
<td>Independent and Identically Distributed</td>
</tr>
<tr>
<td>JDF</td>
<td>Joint Decode and Forward</td>
</tr>
<tr>
<td>LHS</td>
<td>left-hand side</td>
</tr>
<tr>
<td>MAC</td>
<td>Multiple Access Channel</td>
</tr>
<tr>
<td>MAP</td>
<td>Maximum A posteriori Probability</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple-Input Multiple-Output</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum Likelihood</td>
</tr>
<tr>
<td>MMSE</td>
<td>Minimum Mean Square Error</td>
</tr>
<tr>
<td>MPSK</td>
<td>M-ary Phase Shift Keying</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>NCM</td>
<td>Network Coded Modulation</td>
</tr>
<tr>
<td>NC</td>
<td>Network Coding</td>
</tr>
<tr>
<td>NC-JDF</td>
<td>Network Coding over JDF</td>
</tr>
<tr>
<td>NNC</td>
<td>Noisy Network Coding</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency Division Multiplexing</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability Density Function</td>
</tr>
<tr>
<td>PMF</td>
<td>Probability Mass Function</td>
</tr>
<tr>
<td>PSK</td>
<td>Phase Shift Keying</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QF</td>
<td>Quantize and Forward</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadriphase Phase Shift Keying</td>
</tr>
<tr>
<td>RHS</td>
<td>right-hand side</td>
</tr>
<tr>
<td>Rx</td>
<td>Receiver</td>
</tr>
<tr>
<td>SF</td>
<td>Soft Forward</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SODEM</td>
<td>Soft-Output Demodulator</td>
</tr>
<tr>
<td>UMP</td>
<td>Uniformly Most Powerful</td>
</tr>
<tr>
<td>WPNC</td>
<td>Wireless Physical Layer Network Coding</td>
</tr>
<tr>
<td>w.r.t.</td>
<td>with respect to</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmitter</td>
</tr>
<tr>
<td>WCC</td>
<td>Wireless Cloud Coding</td>
</tr>
<tr>
<td>XOR</td>
<td>eXclusive OR operation</td>
</tr>
</tbody>
</table>