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Background

To accomplish our purpose here, we need certain background from matrix the-

ory, graph theory and a few other areas. For simplicity of use, we will list many

of these facts and give references for the reader who would like to see proofs

or know more. We conine ourselves here to just those ideas that we use, even

though these topics are much broader.

0.1 Matrices

The n-by-nmatrices with complex (resp. real) entries are denotedMn(C) (resp.

Mn(R)). An eigenvalue λ (resp. eigenvector x) of A ∈ Mn(C) is a number

λ ∈ C (resp. vector 0 
= x ∈ C
n) such that

Ax = λx

which is necessarily a root of the characteristic polynomial pA(t ) = det(tI −

A). The set of all eigenvalues of A is denoted by σ (A). For a given λ ∈ σ (A),

the (algebraic) multiplicity of λ is the number of times λ occurs as a root of

pA(t ), which we denote as

mA(λ).

If A ∈ Mn(C), there are always n eigenvalues, counting multiplicities, i.e.,
∑

λ∈σ (A) mA(λ) = n. The geometric multiplicity of λ ∈ σ (A), which we denote

by gmA(λ), is n− rank(A− λI), and the geometric multiplicity is never more

than the algebraic multiplicity.

Some good general references about matrices are [HJ13] and [HJ91], and a

centrist elementary linear algebra book is [Lay]. We assume the content of a

thorough elementary linear algebra course, such as may be given from [Lay],

throughout.
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2 Background

0.1.1 Hermitian / Real Symmetric Matrices

The symmetric matrices in Mn(R) are those for which AT = A and, more

generally, the Hermitian matrices in Mn(C) are those for which A∗ = A. All

Hermitian (resp. real symmetric) matrices have only real eigenvalues and are

diagonalizable by unitary (resp. orthogonal) matrices. This means that they

may be written in the form A = U∗DU in which D ∈ Mn(R) is diagonal and

U has orthonormal columns (and is real in the symmetric case). For Hermi-

tian matrices, the algebraic and geometric multiplicity of an eigenvalue are the

same, which is very important throughout. Since the real symmetric matrices

are included among the Hermitian matrices, everything that we say about the

latter applies to the former.

0.1.2 Interlacing Eigenvalues

If a principal submatrix is extracted from an Hermitian matrix A ∈ Mn(C) by

deleting the same row and column i, then the resulting matrix B ∈ Mn−1(C) is

again Hermitian and has real eigenvalues. If the ordered eigenvalues of A are

α1 ≤ α2 ≤ · · · ≤ αn

and those of B are

β1 ≤ β2 ≤ · · · ≤ βn−1,

then

α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ βn−1 ≤ αn,

the interlacing inequalities.

In general we denote the principal submatrix of A ∈ Mn(C) resulting

from deleting (resp. keeping) the rows and columns indexed by the subset

J ⊆ {1, . . . , n} by A(J) (resp. A[J]). In case J = { j}, we abbreviate A(J) to

A( j). Of course A[ j] is the jth diagonal entry of A. In the prior paragraph, B

is just A(i). If more rows and (the same) columns are deleted, as in A(J), then

the interlacing inequalities may be applied multiple times to obtain inequalities

such as

αi ≤ γi ≤ αi+k

if |J| = k, and γ1 ≤ · · · ≤ γn−k are the eigenvalues of A(J).

This and more about Hermitian matrices, eigenvalues and interlacing may

be found in [HJ13]. A simple but important consequence of the interlacing
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0.1 Matrices 3

inequalities is that

∣

∣mA(λ) − mA(i)(λ)
∣

∣ ≤ 1

for Hermitian A ∈ Mn(C), any λ ∈ R and an index i, 1 ≤ i ≤ n, i.e., deleting a

row and (the same) column from an Hermitian matrix can increase or decrease

the multiplicity of an eigenvalue by 1 or leave it the same. No other possibil-

ities occur. This is so even when mA(λ) = 0, and, as we shall see, all three

possibilities can occur.

0.1.3 Rank Inequalities and Change in Hermitian Multiplicities

Since algebraic and geometric multiplicity of an eigenvalue of an Hermitian

matrix are the same, the rank of a change in an Hermitian matrix is important

for understanding any change in the multiplicities. The fundamental inequality

about ranks of sums is the following. Let A and B be m-by-n matrices over a

ield. Then

rankA− rankB ≤ rank(A+ B) ≤ rankA+ rankB.

Thus, if A and B are Hermitian,

|mA+B(λ) − mA(λ)| ≤ rankB.

This means, in particular, that a change in a diagonal entry can change a mul-

tiplicity by no more than 1 (the same for any rank 1 perturbation) or that a

change in an edge weight (off-diagonal entry), or the introduction of an edge,

can change a multiplicity by no more than 2. We will see that the 2 can be

improved under certain circumstances.

0.1.4 Eigenvector Structure When a Submatrix Has the

Same Eigenvalue

Suppose Hermitian matrices A and A( j) have the same eigenvalue λ. What

can be said about the corresponding eigenvectors? This was studied in [JK].

A very special case of the general theory developed is the following. Let

A ∈ Mn(C) be Hermitian and λ ∈ σ (A). Then there is an eigenvector x of A,

associated with λ with a 0 component in position j if and only if λ ∈ σ (A( j)).

If x has such a 0 component, it is an easy calculation that λ ∈ σ (A( j)). The

converse is more interesting and important. It follows that if λ ∈ σ (A) ∩

σ (A( j)), then there is an eigenvector with jth component 0. If mA(λ) = 1

and λ ∈ σ (A( j1)), σ (A( j2)), . . . , σ (A( jk )), then there is an eigenvector of A
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4 Background

associated with λ in which each of the components j1, . . . , jk is 0 and

λ ∈ σ (A({ j1, . . . , jk})).

0.1.5 Perron-Frobenius Theory of Nonnegative Matrices

As we shall see, when T is a tree, all possible multiplicity lists occur even when

we require the entries to be nonnegative. Thus, certain elements of the theory of

irreducible (because our graphs are connected and are often trees) nonnegative

matrices will be useful. (In fact, the matrices may be taken to be primitive, i.e.,

some power is entry-wise positive.) We list these here.

ρ(A) denotes the spectral radius. Of course, there are many other aspects of

the Perron-Frobenius theory that we need not mention.

Suppose that A ∈ Mn(R) is an irreducible (see Section 0.2.3), entry-wise

nonnegative matrix. Then,

1. ρ(A) is an eigenvalue of A;

2. ρ(A) has algebraic multiplicity 1;

3. if B is a proper principal submatrix of A, then ρ(B) < ρ(A); and

4. there is an entry-wise positive eigenvector of A associated with ρ(A), and

no other eigenvalue has an entry-wise nonnegative eigenvector.

0.1.6 Entries of Matrix Powers

For a positive integer k, by Ak, we mean AA · · ·A (k-times). Just as the entries

of AB (or A2) may be written as sums of products of entries from A and B,

the (p, q) entry of Ak is just a sum of products of entries from A = (ai j ). Let

1 ≤ r1, r2, . . . , rk−1 ≤ n be any sequence of indices, repeats allowed, and let

apr1ar1r2 · · · ark−1q be a k-fold p, q product. Then the (p, q) entry of Ak, (Ak )pq,

is the sum of all distinct k-fold p, q products:

(Ak )pq =
∑

r1,r2,...,rk−1

apr1ar1r2 · · · ark−1q.

The sum is over all distinct (ordered) sequences of k − 1 indices. Of course,

this may be viewed in terms of directed path products in a weighted graph, and

there is an analogous formula for distinct factors (A1A2 · · ·Ak )pq. Many of the

summands may be 0, and the sum is 0 if all summands are necessarily 0, which

will occur if there is no k-fold path in the above mentioned graph.

0.1.7 M-matrices

We note that an n-by-n matrix is called anM-matrix (possibly singular) if it is

of the form αI − A, in which A is an n-by-n nonnegative matrix and α ≥ ρ(A)

(see [HJ91]).
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0.2 Graphs 5

We next mention some elementary ideas about graphs and set some of our

notation.

0.2 Graphs

0.2.1 Deinitions

A simple, undirected graph consists of a set of vertices and a set of edges

(2-membered subsets of the vertices) without “loops” or repeated edges. We

will just use the word “graph” throughout. It is convenient to think of a graph

pictorially. For example,

✐
5

✐
1

✐
2��

✐3

����

❅❅ ✐4

G =

has vertices 1, 2, 3, 4, 5 and edges {1, 2}, {1, 5}, {2, 3}, {2, 4} and {3, 4}. Note

that for most purposes, the actual labeling of the vertices is unnecessary and for

referential convenience only. V (G) denotes the vertex set of G and the degree

of a vertex v, denoted degG(v), is the number of edges to which v belongs. The

edge set of G is denoted by E (G).

A path in a graph is an ordered list of edges of the graph:

{i1, i2}, {i2, i3}, . . . , {ik−1, ik}.

This path is from i1 to ik. For example, the highlighted edges in the graph above

constitute a path from 3 to 5 (via 2 and 1). A graph is said to be connected if,

for every pair of distinct vertices, there is a path from one to the other. A path is

simple if no vertex appears in more than two (consecutive) edges, and a cycle

is a path in which each vertex appears in exactly two edges: a simple path from

a vertex to itself.

A subgraph of a given graphG is another graphH, each of whose vertex and

edge sets is a subset of that of G. A supergraph is another graph of which G

is a subgraph. The subgraph H is induced if it contains all edges of G among

the vertices of H. For example, if α is a subset of the vertices of G, G[α] is

the subgraph induced by the vertices α. If v is a vertex of G, we use G− v to

denote the subgraph induced by all vertices, other than v. If α is a subset of the

vertices ofG, we useG− α orG(α) to denote the subgraph ofG induced by all

vertices of G not in α. Note the similarity to principal submatrices of a square

matrix.

New graphs may be obtained by simple changes in other graphs in a variety

of ways. Examples include: (1) adding an edge where there was none before
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6 Background

(without changing the number of vertices); (2) adding a new edge and a vertex

pendent at an existing vertex; or (3) edge subdivision, in which a new vertex of

degree 2 is positioned along an existing edge.

Several special graphs that can occur on any number of vertices are accorded

particular notation: Pn is the graph consisting of a single, simple path on n

vertices (“the path”);Cn is the single, simple cycle on n vertices (“the cycle”);

and Kn is the complete graph on n vertices (all possible edges). A graph is

bipartite if its vertices may be partitioned into two disjoint subsets such that

all edges connect vertices in one subset to vertices in the other. In Km,n, the

complete bipartite graph, on m and n vertices, the two subsets have m and n

vertices, respectively, and all possible (mn) edges occur between them.

0.2.2 Trees

A tree is simply a minimally connected, undirected graph T , i.e., a connected,

undirected graph on n vertices with just n− 1 edges. For example,

✐ ✐

✐

✐

✐

✔✔✐
❚❚ ✐

✐ ✐T =

is a tree with 9 vertices and 8 edges. Trees are very important among all graphs;

for example, a spanning tree of a connected graph is a subgraph with the same

set of vertices that is a tree. And trees have very special structure among graphs.

In several ways, the subject of multiplicities has added to the understanding

of this structure. And certainly, the subject of multiplicities is most structured

when the underlying graph is a tree, as we will see.

Since a tree is connected, there is a path between i and j for each pair of

distinct vertices i and j. Moreover, there is only one simple path (which char-

acterizes trees) and this one has the minimum number of vertices among all

paths. A vertex of a tree may have any degree, but the sum of all degrees is

ixed at 2(n− 1) when there are n vertices. Two different trees may have the

same set of degrees, but there are simple conditions that a partition of 2(n− 1)

into n positive parts be a degree sequence for a tree [ChaLes]. Given these con-

ditions, it is easy to construct some trees with the given degree sequence. Of

course, there must be at least two vertices of degree 1 in a nontrivial tree, and

these are called pendent. There are only two exactly when the tree is a path.

Vertices of degree 2 are also of special importance, but these may or may not
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0.2 Graphs 7

occur. We refer to vertices of all other degrees (at least 3) as high-degree ver-

tices (HDVs); each non-path tree has at least one, and they also play a special

role for us. A tree is called linear if all its HDVs lie along a simple induced path

of the tree. A star is just a tree on n vertices having a vertex of degree n− 1.

If n ≥ 3, then the degree n− 1 vertex is called the central vertex of the star.

An induced path of a tree with the greatest number of vertices is called a diam-

eter (and this number of vertices is the diameter d(T ) of the tree). All trees

are bipartite graphs. (Note that in some literature, diameter is measured by the

number of edges in such a path, but here, our measure is more convenient. The

difference is exactly 1.)

A forest is simply a collection of trees, i.e., a graph on n vertices with no

more than n− 1 edges and no cycles. Induced subgraphs of trees (e.g., resulting

from the removal of a vertex) are forests. A tree is called binary if it has vertices

only of degree ≤ 3 and complete (or full) binary if it is binary with no vertex

of degree 2.

0.2.3 Graphs and Matrices

One important use of graphs is as an accounting device for the nonzero entries

of a matrix, and this can contribute important insights expositorially. Given

an Hermitian matrix A ∈ Mn(C), the graph of A = (ai j ), G(A), is the graph

on n vertices 1, . . . , n with an edge {i, j} if and only if i 
= j and ai j 
= 0. So,

G(A) just identiies the positions of the nonzero (and thus zero) off-diagonal

entries of A. For us, it is crucial to think of all Hermitian or real symmetric

matrices with the same graph G. We let H(G) denote the set of all Hermitian

matrices whose graph isG, and S (G) the set of all real symmetric matrices with

graph G. We emphasize that G presents no constraints on the diagonal entries

of the matrices in H(G) or S (G), except, of course, that they are real.

Sometimes an index set J ⊆ {1, . . . , n} will be indicated indirectly. For

example, if H is a subgraph of G, then A[H] (resp. A(H )) is A[J] (resp. A(J)),

in which J is the set of indices corresponding to the vertices of H.

A square matrix A is said to be reducible if there is a permutation matrix P

such that

P−1AP =

[

B C

0 D

]

in which B and D are square matrices and 0 is a zero matrix. Matrix A is called

irreducible if it is not reducible. If A is symmetric and reducible, then we have

C = 0 and, therefore, the graph of A is disconnected. Thus, the graph of a sym-

metric matrix A is connected if and only if A is irreducible. The eigenvalues of a
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8 Background

reducible matrix are just the union (counting multiplicities) of the eigenvalues

of its diagonal blocks. Thus, in the study of multiplicities, it sufices to consider

only connected graphs (the graphs of irreducible components).

0.2.4 Graphs and Characteristic Polynomial Formulae

When T is a tree and v is a vertex of T , for each A ∈ H(T ) the matrix A(v) is

a direct sum whose summands correspond to components of T − v, which we

call branches of T at v. If degT (v) = k, usually we denote by T1, . . . ,Tk the k

branches of T at v and by ui the neighbor of v in the branch Ti.

We shall use expansions of the characteristic polynomial pA(t ) of an Hermi-

tian matrix A =
(

ai j
)

, whose graph is a tree T .

A useful one, which we call the neighbors formula, is obtained when atten-

tion is focused upon the edges connecting a particular vertex v to its neighbors

u1, . . . , uk in T . We have

pA(t ) = (t − avv )

k
∏

j=1

pA[Tj](t ) −

k
∑

j=1

∣

∣avu j

∣

∣

2
pA[Tj−u j](t )

k
∏

l=1
l 
= j

pA[Tl ](t ), (1)

in which Tj is the branch of T at v, containing u j. This notation will be used

throughout.

We call another useful expansion of the characteristic polynomial the bridge

formula. It is obtained when attention is focused upon the edge connecting two

vertices v and u j. Denoting by Tv the component of T resulting from deletion

of u j and containing v, we have

pA(t ) = pA[Tv ](t )pA[Tj](t ) −
∣

∣avu j

∣

∣

2
pA[Tv−v](t )pA[Tj−u j](t ). (2)

(In (1) and (2), we observe the standard convention that the characteristic poly-

nomial of the empty matrix is identically 1.)

Both expansions appear in [P], and in [MOleVWie], a detailed account

of several expansions of the characteristic polynomial is presented in

graph-theoretical language.

0.3 Other Background

A partition of a positive integer n into k ≤ n parts is a list I = (i1, . . . , ik )

of positive integers i1 ≥ · · · ≥ ik whose sum is n. When k is not speciied, we

just say “partition.” Since an n-by-n Hermitian matrix has exactly n eigenval-

ues, counting multiplicities, a multiplicity list for an n-by-n matrix forms just
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0.3 Other Background 9

a certain (possible unordered) partition of n. So in a sense, we study partitions

(of n).

Oneway to describe a partition is with a rectilinear dot diagram. For example,

the partition of 14 into parts 5, 3, 3, 2, 1 may be viewed as

� � � � � ,

� � �

� � �

� �

�

in which the number of dots in a row is a part of the partition. Given such

a diagram, the conjugate partition may be described. It is just the partition

corresponding to the transpose of the diagram, or the one whose parts are the

numbers of dots per column. The conjugate partition may also be described by

counting the number of parts (at least 1), then the number of parts at least 2, and

so on, then taking irst differences. Thus, if I = (i1, . . . , ik ) is a partition with

i1 ≥ · · · ≥ ik, the conjugate partition of I is then I∗ = (i∗1, . . . , i
∗
i1
), in which i∗r

is the number of js such that i j ≥ r. Note that i∗1 ≥ · · · ≥ i∗i1 ≥ 1 and that I and

I∗ are partitions of the same integer.

Given two partitions of n, say I = (i1, i2, . . . , ik ) and J = ( j1, j2, . . . , js),

the partition I is said to be majorized by J , and we write I � J , if the

inequalities

i1 ≤ j1

i1 + i2 ≤ j1 + j2

i1 + i2 + i3 ≤ j1 + j2 + j3

...

i1 + · · · + ik ≤ j1 + · · · + js

are satisied. Of course, this necessitates that s ≤ k. Since both I and J are

partitions of n, the last inequality in such a list is necessarily an equality, and

this is part of the deinition of majorization. When the last inequality is not

required to be equality (as it is above), the concept is called weak majorization.

Majorization arises in a remarkable number of ways in mathematics and

plays a major role in matrices and inequalities [MarOlk]. The way it arises

in this subject (Chapter 8) is a new one.
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Introduction

1.1 Problem Deinition

For any graph G, there will be (many) matrices in S (G), orH(G), with distinct

eigenvalues, and these eigenvalues can be any (distinct) real numbers. But for

some time, it has been realized that the graph of an Hermitian matrix can sub-

stantially constrain the possible multiplicities of its eigenvalues. For example,

an irreducible tridiagonal Hermitian matrix must have distinct eigenvalues; this

is the case in which G is a path (see Section 2.7). Not surprisingly, if G is a tree

and contains a relatively long path, it must have many different eigenvalues (see

Section 6.2), but if it is not a path, it does allow some multiple eigenvalues.

What lists of multiplicities for the eigenvalues may then occur among the

Hermitian or real symmetric matrices with a given graph G on n vertices?

Apparently, the list (1, 1, . . . , 1), which we abbreviate to (1n), does occur, and

for all nonpaths, other lists occur as well inH(G) or S (G). First, we formalize

the question.

Given a list of eigenvalues, including multiplicities, that occurs for an n-by-n

Hermitian or real symmetric matrix, the multiplicities may be summarized in

two ways: (1) a simple partition of n in which the parts are the multiplicities of

the distinct eigenvalues, usually listed in descending order; and (2) the ordered

version of (1) in which the order of the parts respects the numerical order of the

underlying (real number) eigenvalues. We refer to the former as an unordered

multiplicity list and the latter as an ordered multiplicity list. We may also use

exponents to indicate the frequency of a multiplicity.

For example, if n = 14 and the eigenvalues are

−3,−1,−1, 2, 4, 4, 4, 5, 5, 6, 8, 8, 10, 11,

then, as an unordered multiplicity list, this would become

(3, 23, 15), or (3, 2, 2, 2, 1, 1, 1, 1, 1),

10
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