

More Information

# RADIATIVE TRANSFER IN THE ATMOSPHERE AND OCEAN

#### SECOND EDITION

This new and completely updated edition gives a detailed description of radiative transfer processes at a level accessible to advanced students. The volume gives the reader a basic understanding of global warming and enhanced levels of harmful ultraviolet radiation caused by ozone depletion. It teaches the basic physics of absorption, scattering, and emission processes in turbid media, such as the atmosphere and ocean, using simple semiclassical models. The radiative transfer equation, including multiple scattering, is formulated and solved for several prototype problems, using both simple approximate and accurate numerical methods. In addition, the reader has access to a powerful, state-of-theart computational code for simulating radiative transfer processes in coupled atmosphere—water systems, including snow and ice. This computational code can be regarded as a powerful educational aid, but also as a research tool that can be applied to solve a variety of research problems in environmental sciences.

KNUT STAMNES is a Professor in the Department of Physics and Engineering Physics and Director of the Light and Life Laboratory at Stevens Institute of Technology. His research interests include radiative transfer, ocean optics, and remote sensing, and he has published over 200 papers and coauthored two textbooks: this one and *Radiative Transfer in Coupled Environmental Systems* (2015, Wiley). He is a fellow of the Optical Society (OSA), a member of the International Society for Optical Engineering (SPIE), and a member of the Norwegian Academy of Technological Sciences.

GARY E. THOMAS is an Emeritus Professor in the Department of Astrophysical and Planetary Science and Senior Research Associate at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. His research interests are in the remote sensing of Earth and planetary atmospheres. He has published over 150 papers in various fields of planetary and atmospheric science. He taught the graduate course *Radiative Transfer* at the University of Colorado over a period of 30 years.

JAKOB J. STAMNES is a Professor Emeritus in the Department of Physics and Technology at the University of Bergen, Norway, and CEO of Balter Medical, Norway. His research interests include wave propagation, radiative transfer, ocean optics, and remote sensing. He has published over 190 research papers. He is the author of *Waves in Focal Regions* (1986, CRC Press) and coauthored *Radiative Transfer in Coupled Environmental Systems* (2015, Wiley). He is a fellow of the Optical Society (OSA), a member of the International Society for Optical Engineering (SPIE), and a member of the Norwegian Academy of Technological Sciences.



# RADIATIVE TRANSFER IN THE ATMOSPHERE AND OCEAN

SECOND EDITION

KNUT STAMNES

Stevens Institute of Technology, New Jersey

GARY E. THOMAS

University of Colorado, Boulder

JAKOB J. STAMNES

University of Bergen, Norway





#### CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India
79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107094734
DOI: 10.1017/9781316148549

© Knut Stamnes, Gary E. Thomas, and Jakob J. Stamnes 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-09473-4 Hardback

Additional resources for this publication at www.cambridge.org/stamnes.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.



Contents

|   | List o | f Illustra | ations                                             | page xiv |
|---|--------|------------|----------------------------------------------------|----------|
|   | List o | f Tables   |                                                    | xvii     |
| 1 | Basic  | Propert    | ies of Radiation, Atmospheres, and Oceans          | 1        |
|   | 1.1    | Introd     | uction                                             | 1        |
|   | 1.2    | Parts o    | of the Spectrum                                    | 1        |
|   |        | 1.2.1      | Extraterrestrial Solar Irradiance                  | 2        |
|   |        | 1.2.2      | Terrestrial Infrared Irradiance                    | 6        |
|   | 1.3    | Radiat     | tive Interaction with Planetary Media              | 8        |
|   |        | 1.3.1      | Feedback Processes                                 | 8        |
|   |        | 1.3.2      | Types of Matter Which Affect Radiation             | 9        |
|   | 1.4    | Vertica    | al Structure of Planetary Atmospheres              | 10       |
|   |        | 1.4.1      | Hydrostatic Equilibrium and Ideal Gas Laws         | 10       |
|   |        | 1.4.2      | Minor Species in the Atmosphere                    | 15       |
|   |        | 1.4.3      | Optical Line-of-Sight Columns                      | 16       |
|   |        | 1.4.4      | Radiative Equilibrium and the Thermal Structure of |          |
|   |        |            | Atmospheres                                        | 19       |
|   |        | 1.4.5      | Climate Change: Radiative Forcing and Feedbacks    | 22       |
|   | 1.5    | Densit     | ty Structure of the Ocean                          | 26       |
|   | 1.6    | Vertica    | al Structure of the Ocean                          | 27       |
|   |        | 1.6.1      | The Mixed Layer and the Deep Ocean                 | 27       |
|   |        | 1.6.2      | Seasonal Variations of Ocean Properties            | 29       |
|   |        | 1.6.3      | Sea-Surface Temperature                            | 30       |
|   |        | 1.6.4      | Ocean Spectral Reflectance and Opacity             | 31       |
|   | 1.7    | Remar      | rks on Nomenclature, Notation, and Units           | 32       |
|   | 1.8    | Summ       | ary                                                | 34       |
|   | Exerc  | cises      |                                                    | 35       |

V



vi

Cambridge University Press 978-1-107-09473-4 — Radiative Transfer in the Atmosphere and Ocean Knut Stamnes , Gary E. Thomas , Jakob J. Stamnes Frontmatter

<u>More Information</u>

| 2 | Basic | State Variables and the Radiative Transfer Equation          | 37 |
|---|-------|--------------------------------------------------------------|----|
|   | 2.1   | Introduction                                                 | 37 |
|   | 2.2   | Geometrical Optics                                           | 38 |
|   | 2.3   | Radiative Flux or Irradiance                                 | 39 |
|   | 2.4   | Spectral Radiance and Its Angular Moments                    | 41 |
|   |       | 2.4.1 Relationship between Irradiance and Radiance           | 42 |
|   |       | 2.4.2 Average (Mean) Radiance and Energy Density             | 43 |
|   | 2.5   | Some Theorems on Radiance                                    | 46 |
|   |       | 2.5.1 Radiance and Irradiance from an Extended Source        | 48 |
|   | 2.6   | Perception of Brightness: Analogy with Radiance              | 49 |
|   | 2.7   | The Extinction Law                                           | 50 |
|   |       | 2.7.1 Extinction = Scattering Plus Absorption                | 53 |
|   | 2.8   | The Differential Equation of Radiative Transfer              | 56 |
|   | 2.9   | Summary                                                      | 58 |
|   | Exerc | vises                                                        | 58 |
| 3 | Basic | Scattering Processes                                         | 59 |
|   | 3.1   | Introduction                                                 | 59 |
|   | 3.2   | Lorentz Theory for Radiation–Matter Interactions             | 61 |
|   |       | 3.2.1 Scattering and Collective Effects in a Uniform Medium  | 62 |
|   |       | 3.2.2 Scattering from Density Irregularities                 | 65 |
|   |       | 3.2.3 Scattering in Random Media                             | 66 |
|   |       | 3.2.4 First-Order and Multiple Scattering                    | 68 |
|   | 3.3   | Scattering from a Damped Simple Harmonic Oscillator          | 69 |
|   |       | 3.3.1 Case (1): Resonance Scattering and the Lorentz Profile | 70 |
|   |       | 3.3.2 Conservative and Nonconservative Scattering            | 72 |
|   |       | 3.3.3 Natural Broadening                                     | 73 |
|   |       | 3.3.4 Pressure Broadening                                    | 74 |
|   |       | 3.3.5 Doppler Broadening                                     | 75 |
|   |       | 3.3.6 Realistic Line-Broadening Processes                    | 77 |
|   |       | 3.3.7 Case (2): Rayleigh Scattering                          | 78 |
|   | 3.4   | The Scattering Phase Function                                | 80 |
|   |       | 3.4.1 Rayleigh Scattering Phase Function                     | 81 |
|   | 3.5   | Mie–Debye Scattering                                         | 84 |
|   | 3.6   | Summary                                                      | 86 |
|   | Exerc | tises                                                        | 87 |
| 4 | Abso  | rption by Solid, Aqueous, and Gaseous Media                  | 89 |
|   | 4.1   | Introduction                                                 | 89 |
|   | 4.2   | Absorption on Surfaces, Aerosols, and within Aqueous Media   | 91 |
|   |       | 4.2.1 Condensed Matter                                       | 91 |

Contents



|   |       |          | Contents                                                 | Vii |
|---|-------|----------|----------------------------------------------------------|-----|
|   |       | 4.2.2    | Aerosols                                                 | 93  |
|   |       | 4.2.3    | Liquids                                                  | 94  |
|   | 4.3   | Molec    | cular Absorption in Gases                                | 95  |
|   |       | 4.3.1    | _                                                        | 97  |
|   |       | 4.3.2    | Planck's Spectral Distribution Law                       | 100 |
|   |       | 4.3.3    | Radiative Excitation Processes in Molecules              | 102 |
|   |       | 4.3.4    | Inelastic Collisional Processes                          | 103 |
|   |       | 4.3.5    | Maintenance of Thermal Equilibrium Distributions         | 107 |
|   | 4.4   | The T    | wo-Level Atom                                            | 108 |
|   |       | 4.4.1    | Microscopic Radiative Transfer Equation                  | 108 |
|   |       | 4.4.2    | Effects of Collisions on State Populations               | 112 |
|   | 4.5   | Absor    | ption in Molecular Lines and Bands                       | 114 |
|   |       | 4.5.1    | Molecular Rotation: The Rigid Rotator                    | 116 |
|   |       | 4.5.2    | Molecular Vibration and Rotation: The Vibrating Rotator  | 117 |
|   |       | 4.5.3    | Line Strengths                                           | 119 |
|   | 4.6   | Absor    | ption Processes in the UV/Visible                        | 121 |
|   | 4.7   | Transı   | mission in Spectrally Complex Media                      | 125 |
|   |       | 4.7.1    | Transmission in an Isolated Line                         | 126 |
|   |       | 4.7.2    | Isolated Lorentz Line                                    | 128 |
|   |       | 4.7.3    | Band Models                                              | 129 |
|   |       | 4.7.4    | Random Band Model                                        | 132 |
|   |       | 4.7.5    | MODTRAN: A Moderate Resolution Band Model                | 133 |
|   |       | 4.7.6    | Spectral Mapping Transformations for Homogeneous         |     |
|   |       |          | Media                                                    | 136 |
|   | 4.8   | Summ     | nary                                                     | 141 |
|   | Exerc | cises    |                                                          | 143 |
| 5 | Princ | iples of | Radiative Transfer                                       | 147 |
|   | 5.1   | Introd   | uction                                                   | 147 |
|   | 5.2   | Bound    | lary Properties of Planetary Media                       | 147 |
|   |       | 5.2.1    | Thermal Emission from a Surface                          | 148 |
|   |       | 5.2.2    | Absorption by a Surface                                  | 149 |
|   |       | 5.2.3    | Kirchhoff's Law for Surfaces                             | 150 |
|   |       | 5.2.4    | Surface Reflection: The BRDF                             | 151 |
|   |       | 5.2.5    | Albedo for Collimated Incidence                          | 154 |
|   |       | 5.2.6    | The Irradiance Reflectance, or Albedo: Diffuse Incidence | 156 |
|   |       | 5.2.7    | Analytic Reflectance Expressions                         | 158 |
|   |       | 5.2.8    | The Opposition Effect                                    | 160 |
|   |       | 5.2.9    | Specular Reflection from the Surface of a Water Body     | 162 |



| viii |                                            |          | Contents                                                  |     |
|------|--------------------------------------------|----------|-----------------------------------------------------------|-----|
|      |                                            | 5.2.10   | Transmission through a Slab Medium                        | 163 |
|      |                                            |          | Spherical or Bond Albedo                                  | 165 |
|      | 5.3                                        | Absor    | ption and Scattering in Planetary Media                   | 167 |
|      |                                            | 5.3.1    | Kirchhoff's Law for Volume Absorption and Emission        | 167 |
|      |                                            | 5.3.2    | Differential Equation of Radiative Transfer               | 168 |
|      | 5.4                                        | Solution | on of the Radiative Transfer Equation for Zero Scattering | 170 |
|      |                                            | 5.4.1    | Solution with Zero Scattering in Slab Geometry            | 173 |
|      |                                            | 5.4.2    | Half-Range Quantities in a Slab Geometry                  | 174 |
|      |                                            | 5.4.3    | Formal Solution in a Slab Geometry                        | 175 |
|      | 5.5                                        | Gray S   | Slab Medium in Local Thermodynamic Equilibrium            | 176 |
|      | 5.6                                        | Forma    | al Solution Including Scattering and Emission             | 177 |
|      | 5.7                                        | Radiat   | tive Heating Rate                                         | 179 |
|      |                                            | 5.7.1    | Generalized Gershun's Law                                 | 180 |
|      |                                            | 5.7.2    | Warming Rate, or the Temperature Tendency                 | 181 |
|      |                                            | 5.7.3    | Actinic Radiation, Photolysis Rate, and Dose Rate         | 182 |
|      | 5.8                                        | Summ     | ary                                                       | 183 |
|      | Exercises 1                                |          |                                                           |     |
| 6    | Formulation of Radiative Transfer Problems |          |                                                           | 186 |
|      | 6.1                                        | Introd   | uction                                                    | 186 |
|      | 6.2                                        | Separa   | ation into Diffuse and Direct (Solar) Components          | 186 |
|      |                                            | 6.2.1    | Lower Boundary Conditions                                 | 188 |
|      |                                            | 6.2.2    | Multiple Scattering                                       | 189 |
|      |                                            | 6.2.3    | Azimuth Independence of Irradiance and Mean Radiance      | 190 |
|      |                                            | 6.2.4    | Azimuthal Dependence of the Radiation Field               | 191 |
|      |                                            | 6.2.5    | Spherical Shell Geometry                                  | 196 |
|      | 6.3                                        | Nonst    | ratified Media                                            | 196 |
|      | 6.4                                        | Radiat   | tive Transfer in an Atmosphere–Water System               | 197 |
|      |                                            | 6.4.1    | Two Stratified Media with Different Refractive Indices    | 199 |
|      | 6.5                                        | Examp    | ples of Scattering Phase Functions                        | 201 |
|      |                                            | 6.5.1    | Rayleigh Scattering Phase Function                        | 202 |
|      |                                            | 6.5.2    | The Mie Scattering Phase Function                         | 204 |
|      |                                            | 6.5.3    | The Fournier–Forand Scattering Phase Function             | 205 |
|      |                                            | 6.5.4    | The Petzold Scattering Phase Function                     | 206 |
|      | 6.6                                        | Scalin   | g Transformations Useful for Anisotropic Scattering       | 206 |
|      |                                            | 6.6.1    | The $\delta$ -Isotropic Approximation                     | 208 |
|      |                                            | 6.6.2    | Remarks on Low-Order Scaling Approximations               | 211 |
|      |                                            | 6.6.3    | The $\delta$ -M Approximation: Arbitrary $M$              | 212 |
|      |                                            | 6.6.4    | Mathematical and Physical Meaning of the Scaling          | 213 |



|   |       | Contents                                   |                        | ix  |
|---|-------|--------------------------------------------|------------------------|-----|
|   | 6.7   | Prototype Problems in Radiative Transfer   | Theory                 | 214 |
|   |       | 6.7.1 Prototype Problem 1: Uniform Illu    | mination               | 215 |
|   |       | 6.7.2 Prototype Problem 2: Constant Im     | bedded Source          | 216 |
|   |       | 6.7.3 Prototype Problem 3: Diffuse Refle   | ection Problem         | 216 |
|   |       | 6.7.4 Boundary Conditions: Reflecting a    | and Emitting Surface   | 217 |
|   | 6.8   | Reciprocity, Duality, and Inhomogeneous    | Media                  | 218 |
|   | 6.9   | Effects of Surface Reflection on the Radia | tion Field             | 219 |
|   | 6.10  | Integral Equation Formulation of Radiativ  | e Transfer             | 222 |
|   | 6.11  | Summary                                    |                        | 223 |
|   | Exerc | rises                                      |                        | 224 |
| 7 | Appro | oximate Solutions of Prototype Problems    |                        | 227 |
|   | 7.1   | Introduction                               |                        | 227 |
|   | 7.2   | Separation of the Radiation Field into Ord | lers of Scattering     | 228 |
|   |       | 7.2.1 The Single-Scattering Approximat     | ion                    | 229 |
|   |       | 7.2.2 Lambda Iteration: The Multiple-So    | cattering Series       | 230 |
|   |       | 7.2.3 Single-Scattering Contribution from  | om Ground              |     |
|   |       | Reflection: The Planetary Problem          | l                      | 232 |
|   |       | 7.2.4 Successive Orders of Scattering (S   | OS)                    | 233 |
|   | 7.3   | The Two-Stream Approximation: Isotropic    | c Scattering           | 234 |
|   |       | 7.3.1 Approximate Differential Equation    | ns                     | 234 |
|   |       | 7.3.2 The Mean Inclination: Possible Ch    | noices for $\bar{\mu}$ | 236 |
|   |       | 7.3.3 Prototype Problem 1: Differential    | Equation Approach      | 237 |
|   |       | 7.3.4 Imbedded Source: Prototype Probl     | lem 2                  | 243 |
|   |       | 7.3.5 Beam Incidence: Prototype Proble     | m 3                    | 248 |
|   | 7.4   | Conservative Scattering in a Finite Slab   |                        | 251 |
|   | 7.5   | Anisotropic Scattering                     |                        | 252 |
|   |       | 7.5.1 Two-Stream versus Eddington App      | proximations           | 252 |
|   |       | 7.5.2 The Backscattering Ratios            |                        | 255 |
|   |       | 7.5.3 Two-Stream Solutions for Anisotro    | opic Scattering        | 260 |
|   |       | 7.5.4 Scaling Approximations for Aniso     | tropic Scattering      | 262 |
|   |       | 7.5.5 Generalized Two-Stream Equation      | IS                     | 263 |
|   | 7.6   | Accuracy of the Two-Stream Method          |                        | 265 |
|   | 7.7   | Final Comments on the Two-Stream Meth      | lod                    | 266 |
|   | 7.8   | Summary                                    |                        | 269 |
|   | Exerc | rises                                      |                        | 270 |
| 8 | The R | Role of Radiation in Climate               |                        | 278 |
|   | 8.1   | Introduction                               |                        | 278 |
|   | 8.2   | Irradiance and Heating Rate: Clear-Sky Co  | onditions              | 280 |
|   |       | 8.2.1 Monochromatic Irradiances            |                        | 281 |



Contents X 8.2.2 Wideband Emittance Models 283 8.2.3 Narrowband Absorption Model 288 8.2.4 Band Overlap 289 8.2.5 The Diffusivity Approximation 289 8.2.6 Equations for the Heating Rate 290 8.2.7 Clear-Sky Radiative Cooling: Nonisothermal Medium 293 8.2.8 Computations of Terrestrial Cooling Rates 294 8.3 The IR Radiative Impact of Clouds and Aerosols 295 8.3.1 Heating Rate in an Idealized Cloud 296 8.3.2 Detailed Longwave Radiative Effects of Clouds 298 8.3.3 Accurate Treatment of Longwave RT Including Scattering 300 8.4 Radiative Equilibrium with Zero Visible Opacity 302 8.5 Radiative Equilibrium with Finite Visible Optical Depth 309 Radiative-Convective Equilibrium 8.6 312 The Concept of the Emission Height 8.7 315 8.8 Effects of a Spectral Window 318 8.9 Radiative Forcing 319 8.10 Climate Impact of Clouds 322 8.10.1 Longwave Effects of Water Clouds 323 8.10.2 Shortwave Effects of Water Clouds 325 328 8.10.3 Combined Shortwave and Longwave Effects of Clouds 8.11 Climate Impact of Cloud Height 331 8.12 Cloud and Aerosol Forcing 333 8.12.1 Aerosol Forcing 335 8.13 Water-Vapor Feedback 337 Effects of Carbon Dioxide Changes 8.14 338 Greenhouse Effect from Individual Gas Species 339 8.15 8.16 Summary 340 342 **Exercises** 9 Accurate Numerical Solutions of Prototype Problems 347 9.1 Introduction 347 9.2 Discrete-Ordinate Method – Isotropic Scattering 347 9.2.1 Quadrature Formulas 347 9.3 Anisotropic Scattering 350 9.3.1 **General Considerations** 350 9.3.2 Quadrature Rule 351 9.4 Matrix Formulation of the Discrete-Ordinate Method 352 Two- and Four-Stream Approximations 352

Multistream Approximation (*N* Arbitrary)

9.4.2

353



|       |        | Contents                                            | xi         |
|-------|--------|-----------------------------------------------------|------------|
| 9.5   | Matrix | Eigensolutions                                      | 355        |
|       |        | Two-Stream Solutions $(N = 1)$                      | 355        |
|       |        | Multistream Solutions (N Arbitrary)                 | 356        |
|       |        | Inhomogeneous Solution                              | 357        |
|       |        | General Solution                                    | 358        |
| 9.6   | Source | e Function and Angular Distributions                | 359        |
| 9.7   |        | ary Conditions – Removal of Ill Conditioning        | 360        |
| 9.8   | Inhom  | ogeneous Multilayered Media                         | 362        |
|       | 9.8.1  | General Solution – Boundary and Layer Interface     |            |
|       |        | Conditions                                          | 362        |
|       | 9.8.2  | Source Functions and Angular Distributions          | 365        |
| 9.9   | Correc | tion of the Truncated Radiance Field                | 366        |
|       | 9.9.1  | The Nakajima-Tanaka Correction Procedure            | 367        |
|       | 9.9.2  | Computed Radiance Distributions for the Standard    |            |
|       |        | Problem                                             | 369        |
| 9.10  | Couple | ed Atmosphere–Ocean Problem                         | 370        |
|       | 9.10.1 | Discrete-Ordinate Equations for the Atmosphere-     |            |
|       |        | Ocean System                                        | 370        |
|       | 9.10.2 | Quadrature and General Solution                     | 371        |
|       | 9.10.3 | Boundary, Continuity, and Atmosphere-Ocean          |            |
|       |        | Interface Conditions                                | 373        |
| 9.11  | The D  | oubling-Adding and the Matrix Operator Methods      | 376        |
|       | 9.11.1 | Matrix-Exponential Solution – Formal Derivation of  |            |
|       |        | Doubling Rules                                      | 377        |
|       | 9.11.2 | Connection between Doubling and Discrete Ordinate   |            |
|       |        | Methods                                             | 378        |
|       | 9.11.3 | Intuitive Derivation of the Doubling Rules – Adding |            |
|       |        | of Dissimilar Layers                                | 379        |
| 9.12  |        | Accurate Methods                                    | 381        |
|       |        | The Spherical Harmonic Method                       | 381        |
|       |        | Invariant Imbedding                                 | 381        |
|       |        | Iteration Methods                                   | 382        |
|       |        | The Feautrier Method                                | 382        |
|       |        | Integral Equation Approach                          | 382        |
|       |        | Monte Carlo Markov Chain Methods                    | 383        |
| 9.13  |        | Comments                                            | 384        |
| 9.14  | Summ   | ary                                                 | 385<br>387 |
| Exerc | rcises |                                                     |            |



xii Contents

| 10 |      | wave Radiative Transfer in the Atmosphere and Ocean          | 389 |
|----|------|--------------------------------------------------------------|-----|
|    | 10.1 | Introduction                                                 | 389 |
|    | 10.2 | Solar Radiation                                              | 391 |
|    |      | 10.2.1 Modeling UV Transmission into the Ocean               | 392 |
|    |      | 10.2.2 Measured and Computed UV Irradiance in the Ocean      | 393 |
|    |      | 10.2.3 Impact of Ozone Depletion on Primary Production in    |     |
|    |      | the Ocean                                                    | 395 |
|    |      | 10.2.4 Interaction of Solar Radiation with Snow and Ice      | 395 |
|    | 10.3 | Modeling of Shortwave Radiative Effects in the Atmosphere    | 397 |
|    |      | 10.3.1 Gaseous Absorption and Penetration Depth              | 397 |
|    |      | 10.3.2 Solar Warming Rates Due to Ozone, Aerosols, and       |     |
|    |      | Clouds                                                       | 402 |
|    |      | 10.3.3 Computation of Photolysis Rates                       | 404 |
|    |      | 10.3.4 UV Transmission: Relation to Ozone Abundance          | 405 |
|    |      | 10.3.5 UV Transmission and Dose Rates at the Earth's Surface | 407 |
|    |      | 10.3.6 Measured and Computed UV Irradiance – Derivation      |     |
|    |      | of Ozone Abundance and Cloud Effects                         | 409 |
|    | 10.4 | Modeling of Shortwave Radiation in the Ocean                 | 411 |
|    |      | 10.4.1 Attenuation in the Ocean: Apparent Optical Properties |     |
|    |      | (AOPs)                                                       | 411 |
|    |      | 10.4.2 Two-Stream Model Appropriate for Deep Water           | 411 |
|    | 10.5 | AccuRT: An RT Model for Coupled Atmosphere–Water Systems     | 413 |
|    |      | 10.5.1 Introduction                                          | 413 |
|    |      | 10.5.2 Notation                                              | 415 |
|    |      | 10.5.3 User Interface – Input/Output                         | 415 |
|    |      | 10.5.4 Inherent Optical Properties (IOPs)                    | 417 |
|    |      | 10.5.5 Spectral Averaging of Absorption Coefficients         | 430 |
|    |      | 10.5.6 Solving the Radiative Transfer Problem                | 430 |
|    |      | 10.5.7 Summary of AccuRT                                     | 434 |
|    | 10.6 | Ocean Color - Simultaneous Marine and Aerosol Retrieval      | 434 |
|    |      | 10.6.1 Introduction                                          | 434 |
|    |      | 10.6.2 Methodology                                           | 435 |
|    |      | 10.6.3 Neural Network Training                               | 437 |
|    |      | 10.6.4 Retrieved Atmospheric and Marine Parameters           | 438 |
|    |      | 10.6.5 Summary of OC-SMART Algorithm                         | 439 |
|    | 10.7 | Bidirectional Dependence of the Water-Leaving Radiance       | 441 |
|    |      | 10.7.1 Importance of the Anisotropy                          | 441 |
|    |      | 10.7.2 Configuration of BRDF Measurements                    | 441 |
|    |      | 10.7.3 Computation of the Anisotropy Factor                  | 443 |
|    |      | 10.7.4 Radiance Anisotropy – the $Q$ Factor                  | 444 |



|            | Contents                                                                   | xiii |
|------------|----------------------------------------------------------------------------|------|
|            | 10.7.5 Radiative Transfer Simulations of the <i>Q</i> Factor               | 445  |
|            | 10.7.6 Summary of Water BRDF Issues                                        | 450  |
| 10.8       | Retrieving Water IOP Profiles from Measured AOP Profiles                   | 451  |
|            | 10.8.1 Background and Status of Knowledge                                  | 451  |
|            | 10.8.2 Inverting IOPs from AOPs                                            | 452  |
|            | 10.8.3 IOP Inversion Algorithm                                             | 453  |
|            | 10.8.4 Summary of Water AOP → IOP Inversion Algorithm                      | 456  |
| 10.9       | Modeled versus Measured BRDFs: The Sunglint Problem                        | 456  |
|            | 10.9.1 Description of the Sunglint Problem                                 | 456  |
|            | 10.9.2 Solution of the Sunglint Problem                                    | 458  |
|            | 10.9.3 Retrieval of Slope Variances, Wind Direction, and                   |      |
|            | Aerosol Optical Depth                                                      | 461  |
|            | 10.9.4 Summary of Sunglint Study                                           | 462  |
| 10.10      | Overall Summary                                                            | 463  |
| Exerci     | ses                                                                        | 465  |
| Appendix A | Nomenclature: Glossary of Symbols                                          | 473  |
| Appendix B | Physical Constants                                                         | 481  |
| Appendix C | C Ocean Optics Nomenclature                                                | 482  |
| Appendix L | Reflectance and Transmittance at an Interface                              | 485  |
|            | s E through U can be downloaded from www.cambridge.org/stanw.rtatmocn.com. | mnes |
| Refere     | nces                                                                       | 491  |
| Index      |                                                                            | 509  |



## Illustrations

| 1.1  | Extraterrestrial solar irradiance.                          | page 3 |
|------|-------------------------------------------------------------|--------|
| 1.2  | Earth's energy budget.                                      | 5      |
| 1.3  | Thermal emission spectra of Earth.                          | 7      |
| 1.4  | Standard empirical model temperature profiles.              | 14     |
| 1.5  | Biological effects of solar radiation.                      | 16     |
| 1.6  | Geometry of the slant-column number.                        | 17     |
| 1.7  | Profiles of radiatively significant atmospheric species.    | 19     |
| 1.8  | Radiative forcing by greenhouse gases.                      | 25     |
| 1.9  | Typical mean temperature/depth profiles for the open ocean. | 28     |
| 1.10 | Growth and decay of the seasonal thermocline.               | 29     |
| 1.11 | Apparent attenuation coefficient of the ocean.              | 30     |
| 1.12 | Ocean color dependence on biological activity.              | 33     |
| 2.1  | Radiative energy carried by a beam.                         | 40     |
| 2.2  | Illustration for Theorem I.                                 | 47     |
| 2.3  | Successive images of lady in white dress.                   | 49     |
| 2.4  | Illustration of extinction.                                 | 51     |
| 2.5  | Leaf shadows.                                               | 54     |
| 3.1  | Destructive interference inside a uniform medium.           | 64     |
| 3.2  | Cartesian and spherical coordinates.                        | 81     |
| 3.3  | Rayleigh scattered light.                                   | 82     |
| 3.4  | Rayleigh scattering phase function.                         | 84     |
| 4.1  | Low-resolution transmittance.                               | 90     |
| 4.2  | Spectral variation of the diffuse transmittance.            | 95     |
| 4.3  | Synthetic spectral radiance.                                | 96     |
| 4.4  | High-resolution transmittance spectrum.                     | 98     |
| 4.5  | Ultra-high resolution measurement of absorption line.       | 99     |
| 4.6  | The blackbody radiance versus wavelength.                   | 101    |
| 4.7  | Radiative and collisional processes.                        | 109    |
|      |                                                             |        |

xiv



|      | Illustrations                                                                                          | XV  |
|------|--------------------------------------------------------------------------------------------------------|-----|
| 4.8  | Normal modes of vibration.                                                                             | 115 |
| 4.9  | Rotational energy levels.                                                                              | 120 |
| 4.10 | Absorption cross sections.                                                                             | 123 |
| 4.11 | Beam transmittance of a homogeneous medium.                                                            | 127 |
| 4.12 | Mean beam absorptance versus absorber amounts.                                                         | 130 |
| 4.13 | Absorption coefficient for the 1510–1520 cm <sup>-1</sup> portion of the 6.3 $\mu$ m water vapor band. | 139 |
| 5.1  | Geometry for the definition of the BRDF.                                                               | 152 |
| 5.2  | Law of reflection.                                                                                     | 153 |
| 5.3  | Bidirectional reflectance and transmittance.                                                           | 155 |
| 5.4  | BRDF for Minneart's formula.                                                                           | 159 |
| 5.5  | Measured bidirectional reflectance functions.                                                          | 160 |
| 5.6  | Upward radiance just above the ocean surface.                                                          | 163 |
| 5.7  | Spherical albedo.                                                                                      | 166 |
| 5.8  | Solar and terrestrial radiation.                                                                       | 169 |
| 5.9  | Beam of radiation.                                                                                     | 171 |
| 5.10 | Half-range radiances.                                                                                  | 175 |
| 6.1  | Legendre polynomial fits to phase function.                                                            | 193 |
| 6.2  | Two adjacent media with a flat interface.                                                              | 199 |
| 6.3  | Scattering phase functions.                                                                            | 203 |
| 6.4  | Scattering phase functions.                                                                            | 207 |
| 6.5  | Actual and $\delta$ -M scaled scattering phase functions.                                              | 209 |
| 6.6  | Prototype problems in radiative transfer.                                                              | 215 |
| 6.7  | Binomial series.                                                                                       | 220 |
| 7.1  | Angular backscattering ratio.                                                                          | 258 |
| 7.2  | Approximate angular backscattering ratios.                                                             | 259 |
| 8.1  | Broadband irradiance absorptance.                                                                      | 285 |
| 8.2  | Blackbody curves and absorption spectra.                                                               | 287 |
| 8.3  | Cooling-rate function.                                                                                 | 292 |
| 8.4  | Clear-sky cooling rates.                                                                               | 295 |
| 8.5  | Longwave cloud forcing.                                                                                | 300 |
| 8.6  | Longwave cloud optical properties.                                                                     | 301 |
| 8.7  | Pure-radiative and radiative-convective equilibrium temperature profiles.                              | 308 |
| 8.8  | Greenhouse factor.                                                                                     | 311 |
| 8.9  | Net irradiances of incoming solar and outgoing IR radiation.                                           | 315 |
| 8.10 | Surface temperature and tropopause height versus optical depth.                                        | 316 |
| 8.11 | Greenhouse factor versus precipitable water.                                                           | 317 |
| 8.12 | Emission from the surface and TOA IR irradiance.                                                       | 320 |
| 8.13 | Zonally and annually averaged radiative forcing, and meridional energy irradiance.                     | 322 |



<u>More Information</u>

| XV1   | Illustrations                                                                               |     |
|-------|---------------------------------------------------------------------------------------------|-----|
| 8.14  | Greenhouse factor versus liquid water path.                                                 | 325 |
| 8.15  | Plane albedo of a cloud versus liquid water path.                                           | 327 |
| 8.16  | Albedo versus liquid water path of clouds.                                                  | 330 |
| 8.17  | Surface temperature versus cloud fraction.                                                  | 332 |
| 8.18  | Spectral variation of longwave cloud forcing.                                               | 335 |
| 8.19  | Longwave and shortwave forcing due to aerosols.                                             | 336 |
| 9.1   | Multilayered, inhomogeneous medium.                                                         | 363 |
| 9.2   | Quadrature for a coupled atmosphere-ocean system.                                           | 372 |
| 9.3   | The doubling concept.                                                                       | 379 |
| 9.4   | The adding concept.                                                                         | 380 |
| 10.1  | Measured and computed ratios of UV-B to total irradiance inside and outside the ozone hole. | 394 |
| 10.2  | Spectral distribution of solar irradiance in sea ice.                                       | 397 |
| 10.3  | Annual variation of total ozone and temperature over Antarctica.                            | 398 |
| 10.4  | Ozone vertical distribution, and OClO-ozone anticorrelation over                            |     |
|       | Antarctica.                                                                                 | 399 |
| 10.5  | Atmospheric penetration depth versus wavelength.                                            | 400 |
| 10.6  | Atmospheric warming rates due to solar illumination.                                        | 402 |
| 10.7  | Molecular and ozone optical depths and corresponding transmittances.                        | 406 |
| 10.8  | Effect of solar elevation on direct/diffuse irradiances.                                    | 406 |
| 10.9  | Action spectra for various biological responses.                                            | 407 |
| 10.10 | Annual UV dose versus the ozone depletion.                                                  | 408 |
| 10.11 | Measured versus computed diffuse/direct irradiance ratios.                                  | 410 |
| 10.12 | Schematic illustration of the AccuRT tool.                                                  | 414 |
| 10.13 | Optical properties of stratospheric aerosols.                                               | 422 |
| 10.14 | Schematic illustration of cloud models.                                                     | 423 |
| 10.15 | Optical properties of liquid water and ice clouds.                                          | 425 |
| 10.16 | Comparison between OC-SMART and SeaDAS retrievals.                                          | 439 |
| 10.17 | Comparison of retrieved chlorophyll concentrations.                                         | 440 |
| 10.18 | SeaPRISM measurement configuration.                                                         | 442 |
| 10.19 | Comparison of retrieved and measured IOPs.                                                  | 455 |
| 10.20 | Simulated reflectances using 1D versus 2D BRDF models.                                      | 462 |
| 10.21 | Comparison between simulated and measured reflectances.                                     | 463 |
| D.1   | Vectors in the plane of incidence.                                                          | 486 |



## **Tables**

| 1.1  | Subregions of the solar spectrum.                                                                                                                        | page 2 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 8.1  | Vibrational and rotational transitions for the important radiatively significant gases in the Earth's atmosphere.                                        | 286    |
| 10.1 |                                                                                                                                                          | 200    |
| 10.1 | Computed values of $Q^{\infty}(g)$ , $f(\tau, \tau_b, g)$ , and $Q(\tau, \tau_b, g)$ using Eqs. 10.79 and 10.80 for $\tau_b = 0.1$ and $\tau = 0.05$ .   | 448    |
| 10.2 | Computed values of $Q^{\infty}(g)$ , $f(\tau, \tau_b, g)$ , and $Q(\tau, \tau_b, g)$ using Eqs. 10.79 and 10.80 for $\tau_b = 0.05$ and $\tau = 0.025$ . | 449    |
| 10.3 | Computed values of $Q^{\infty}(g)$ , $f(\tau, \tau_b, g)$ , and $Q(\tau, \tau_b, g)$ using Eqs. 10.79                                                    |        |
|      | and 10.80 for $\tau_b = 0.001$ and $\tau = 0.0005$ .                                                                                                     | 450    |
| A.1  | Glossary of symbols.                                                                                                                                     | 475    |
| B.1  | Physical constants.                                                                                                                                      | 481    |
| C.1  | Ocean optics nomenclature.                                                                                                                               | 483    |

xvii