

Applied Choice Analysis

The second edition of this popular book brings students fully up to date with the latest methods and techniques in choice analysis. Comprehensive yet accessible, it offers a unique introduction to anyone interested in understanding how to model and forecast the range of choices made by individuals and groups. In addition to a complete rewrite of several chapters, new topics covered include ordered choice, scaled MNL, generalized mixed logit, latent class models, group decision making, heuristics and attribute processing strategies, expected utility theory, and prospect theoretic applications. Many additional case studies are used to illustrate the applications of choice analysis with extensive command syntax provided for all Nlogit applications and datasets available online. With its unique blend of theory, estimation, and application, this book has broad appeal to all those interested in choice modeling methods and will be a valuable resource for students as well as researchers, professionals, and consultants.

David A. Hensher is Professor of Management, and Founding Director of the Institute of Transport and Logistics Studies (ITLS) at The University of Sydney Business School.

John M. Rose was previously Professor of Transport and Logistics Modelling at the Institute of Transport and Logistics Studies (ITLS) at The University of Sydney Business School and moved to The University of South Australia as co-director of the Institute for Choice in early March 2014.

William H. Greene is the Robert Stansky Professor of Economics at the Stern School of Business, New York University.

Applied Choice Analysis

Second Edition

David A. Hensher

The University of Sydney Business School

John M. Rose

The University of Sydney Business School*

William H. Greene

Stern School of Business, New York University

* John Rose completed his contribution to the second edition while at The University of Sydney. He has since relocated to The University of South Australia

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107465923

© David A. Hensher, John M. Rose and William H. Greene 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005 Second edition 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Hensher, David A., 1947-

Applied choice analysis / David A. Hensher, The University of Sydney Business School, John M. Rose,

The University of Sydney Business School, William H. Greene, Stern School of Business, New York University. – 2nd edition.

pages cm

John M. Rose now at University of South Australia.

Includes bibliographical references and index.

ISBN 978-1-107-09264-8

1. Decision making - Mathematical models. 2. Probabilities - Mathematical

models. 3. Choice. I. Rose,

John M. II. Greene, William H., 1951- III. Title.

QA279.4.H46 2015

519.5'42-dc23

2014043411

ISBN 978-1-107-09264-8 Hardback ISBN 978-1-107-46592-3 Paperback

Additional resources for this publication at www.cambridge.org/9781107465923

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

		List of figures List of tables Preface	page xvi xxi xxix
Par	t I	Getting started	1
1	1.1 1.2 1.3	In the beginning Choosing as a common event A brief history of choice modeling The journey ahead	3 6 11
2	2.1 2.2 2.3	Choosing Introduction Individuals have preferences and they count Using knowledge of preferences and constraints in choice analy	16 16 17 sis 27
3	3.1 3.2 3.3 3.4	Choice and utility Introduction Some background before getting started Introduction to utility The observed component of utility 3.4.1 Generic versus alternative-specific parameter estimates 3.4.2 Alternative-specific constants 3.4.3 Status quo and no choice alternatives 3.4.4 Characteristics of respondents and contextual effects in discrete choice models 3.4.5 Attribute transformations and non-linear attributes 3.4.6 Non-linear parameter utility specifications 3.4.7 Taste heterogeneity	30 30 32 45 48 49 51 53 54 57 71

vi		Contents	
	3.5	C	76
		Appendix 3A: Simulated data	76
		Appendix 3B: Nlogit syntax	78
4		Families of discrete choice models	80
	4.1	Introduction	80
		Modeling utility	81
	4.3	The unobserved component of utility	83
	4.4	Random utility models	86
		4.4.1 Probit models based on the multivariate normal	
		distribution	87
		4.4.2 Logit models based on the multivariate Extreme value	
		distribution	93
		4.4.3 Probit versus logit	98
	4.5	Extensions of the basic logit model	98
		4.5.1 Heteroskedasticity	100
		4.5.2 A multiplicative errors model	101
	4.6	The nested logit model	102
		4.6.1 Correlation and the nested logit model	104
		4.6.2 The covariance heterogeneity logit model	105
	4.7	Mixed (random parameters) logit model	106
		4.7.1 Cross-sectional and panel mixed multinomial logit models	108
		4.7.2 Error components model	109
	4.8	Generalized mixed logit	110
		4.8.1 Models estimated in willingness to pay space	112
	4.9	The latent class model	114
	4.10	Concluding remarks	116
5		Estimating discrete choice models	117
	5.1	Introduction	117
	5.2	Maximum likelihood estimation	117
	5.3	Simulated maximum likelihood	126
	5.4	Drawing from densities	133
		5.4.1 Pseudo-random Monte Carlo simulation	136
		5.4.2 Halton sequences	138
		5.4.3 Random Halton sequences	145
		5.4.4 Shuffled Halton sequences	147
		5.4.5 Modified Latin Hypercube sampling	148
		5.4.6 Sobol sequences	150

vii		Contents				
		5.4.7	Antithetic sequences	153		
			PMC and QMC rates of convergence	155		
	5.5		lation and drawing from densities	157		
	5.6		lating choice probabilities for models without a closed			
		analyt	tical form	166		
		5.6.1	Probit choice probabilities	166		
	5.7	Estim	ation algorithms	176		
		5.7.1	Gradient, Hessian and Information matrices	176		
		5.7.2	Direction, step-length and model convergence	180		
		5.7.3	Newton-Raphson algorithm	183		
		5.7.4	BHHH algorithm	184		
		5.7.5	DFP and BFGS Algorithms	186		
	5.8	Concl	uding comment	186		
		Apper	ndix 5A: Cholesky factorization example	187		
6		Experimental design and choice experiments		189		
	6.1	Introd	luction	189		
	6.2	What	is an experimental design?	191		
		6.2.1	Stage 1: problem definition refinement	194		
		6.2.2	Stage 2: stimuli refinement	195		
		6.2.3	Stage 3: experimental design considerations	201		
		6.2.4	Stage 4: generating experimental designs	223		
		6.2.5	Stage 5: allocating attributes to design columns	228		
		6.2.6	Generating efficient designs	247		
	6.3	Some	more details on choice experiments	255		
		6.3.1	Constrained designs	255		
		6.3.2	Pivot designs	256		
		6.3.3	Designs with covariates	258		
	6.4	Best-	worst designs	259		
	6.5	More	on sample size and stated choice designs	264		
		6.5.1	D-efficient, orthogonal, and S-efficient designs	266		
		6.5.2	Effect of number of choice tasks, attribute levels, and attribute			
			level range	270		
		6.5.3	Effect of wrong priors on the efficiency of the design	275		
	6.6	Ngene	e syntax for a number of designs	276		
		6.6.1	Design 1: standard choice set up	276		

6.6.3

6.7 Conclusions

6.6.2 Design 2: pivot design set up

Design 3: *D*-efficient choice design

279

281

287

viii

Contents

		Apper	ndix 6A: Best-worst experiment	290
		Apper	ndix 6B: Best-worst designs and Ngene syntax	290
		6B.1	Best-worst case 1	291
		6B.2	Best-worst case 2	294
		6B.3	Best-worst case 3	297
		Apper	ndix 6C: An historical overview	301
		6C.1	Louviere and Hensher (1983), Louviere and Woodworth	
			(1983), and others	301
		6C.2	Fowkes, Toner, Wardman <i>et al.</i> (Institute of Transport, Leeds, 1988–2000)	304
		6C.3	Bunch, Louviere and Anderson (1996)	305
		6C.4	Huber and Zwerina (1996)	306
		6C.5	Sándor and Wedel (2001, 2002, 2005)	308
		6C.6	Street and Burgess (2001 to current)	309
		6C.7	Kanninen (2002, 2005)	312
		6C.8	Bliemer, Rose, and Scarpa (2005 to current)	313
		6C.9	Kessels, Goos, Vandebroek, and Yu (2006 to current)	318
7		Statis	tical inference	320
	7.1	Intro	duction	320
	7.2	Нуро	thesis tests	320
		7.2.1	Tests of nested models	321
		7.2.2	Tests of non-nested models	327
		7.2.3	Specification tests	330
	7.3	Varia	nce estimation	333
		7.3.1	Conventional estimation	334
		7.3.2	Robust estimation	335
		7.3.3	Bootstrapping of standard errors and confidence intervals	336
	7.4	Varia	nces of functions and willingness to pay	340
		7.4.1	Delta method	346
		7.4.2	Krinsky-Robb method	351
8		Other	r matters that analysts often inquire about	360
	8.1		onstrating that the average of the conditional distributions	
			gate to the unconditional distribution	360
		8.1.1	Observationally equivalent respondents with different	
			unobserved influences	360
		8.1.2	Observationally different respondents with different	
			unobserved influences	362
	8.2	Rando	om regret instead of random utility maximization	363

ix		Contents	
		Endogeneity	370
	8.4	Useful behavioral outputs	371
		8.4.1 Elasticities of choice	371
		8.4.2 Partial or marginal effects8.4.3 Willingness to pay	374 378
		- The Trimingheed to pur	370
Pa	rt II	Software and data	385
9		Nlogit for applied choice analysis	387
	9.1	Introduction	387
	9.2	About the software	387
		9.2.1 About Nlogit	387
		9.2.2 Installing Nlogit	388
	9.3	Starting Nlogit and exiting after a session	388
		9.3.1 Starting the program	388
		9.3.2 Reading the data	388
		9.3.3 Input the data	390
		9.3.4 The project file	390
		9.3.5 Leaving your session	391
	9.4	Using Nlogit	391
	9.5	How to Get Nlogit to do what you want	392
		9.5.1 Using the Text Editor	392
		9.5.2 Command format	393
		9.5.3 Commands	395
		9.5.4 Using the project file box	396
	9.6	Useful hints and tips	397
		9.6.1 Limitations in Nlogit	398
	9.7	Nlogit software	398
10	10.1	Data set up for Nlogit	400
	10.1	Reading in and setting up data	400
		10.1.1 The basic data set up	401
		10.1.2 Entering multiple data sets: stacking and melding	405
	10.2	10.1.3 Handling data on the non-chosen alternative in RP data	405
	10.2	Combining sources of data	408
	10.3	Weighting on an exogenous variable	41(
	10.4	Handling rejection: the no option	411
	10.5	Entering data into Nlogit	414

X	Contents	
10.6	Importing data from a file	415
	10.6.1 Importing a small data set from the Text Editor	418
10.7	Entering data in the Data Editor	421
10.8	Saving and reloading the data set	422
10.9	Writing a data file to export	424
10.10	Choice data entered on a single line	424
10.11	Data cleaning	427
	Appendix 10A: Converting single line data commands	431
	Appendix 10B: Diagnostic and error messages	432
Part III	The suite of choice models	435
11	Getting started modeling: the workhorse – multinomial logit	437
11.1	Introduction	43′
11.2	Modeling choice in Nlogit: the MNL command	437
11.3	Interpreting the MNL model output	444
	11.3.1 Determining the sample size and weighting criteria used	445
	11.3.2 Interpreting the number of iterations to model convergence	445
	11.3.3 Determining overall model significance	446
	11.3.4 Comparing two models	453
	11.3.5 Determining model fit: the pseudo-R ²	455
	11.3.6 Type of response and bad data	456
	11.3.7 Obtaining estimates of the indirect utility functions	45
11.4	Handling interactions in choice models	46
11.5	Measures of willingness to pay	463
11.6	Obtaining utility and choice probabilities for the sample	465
	Appendix 11A: The labeled choice data set used in the chapter	466
12	Handling unlabeled discrete choice data	472
12.1	Introduction	472
12.2	Introducing unlabeled data	472
12.3	The basics of modeling unlabeled choice data	473
12.4	Moving beyond design attributes when using unlabeled choice data Appendix 12A: Unlabeled discrete choice data Nlogit syntax and	478
	output	483
13	Getting more from your model	492
13.1	Introduction	492

xi	Contents	
12.2		40.4
13.2	Adding to our understanding of the data	494
	13.2.1 Descriptive output (Dstats)	494
	13.2.2 ;Show	496
	13.2.3 ;Descriptives	499
	13.2.4 ;Crosstab	501
13.3	Adding to our understanding of the model parameters	502
	13.3.1 Starting values	503
	13.3.2 ;effect: elasticities	504
	13.3.3 Elasticities: direct and cross – extended format	507
	13.3.4 Calculating arc elasticities	512
	13.3.5 Partial or marginal effects	513
	13.3.6 Partial or marginal effects for binary choice	515
13.4		518
	13.4.1 The binary choice application	522
	13.4.2 Arc elasticities obtained using ;simulation	524
13.5	8 8	527
	13.5.1 Endogenous weighting	527
	13.5.2 Weighting on an exogenous variable	535
13.6	Willingness to pay	543
	13.6.1 Calculating change in consumer surplus associated with an	
	attribute change	546
13.7		547
13.8	Application of random regret model versus random utility model	547
	13.8.1 Nlogit syntax for random regret model	553
13.9	The Maximize command	554
13.10	Calibrating a model	555
14	Nested logit estimation	560
14.1		560
14.2	The nested logit model commands	561
	14.2.1 Normalizing and constraining IV parameters	565
	14.2.2 Specifying IV start values for the NL model	567
14.3	Estimating a NL model and interpreting the output	567
	14.3.1 Estimating the probabilities of a two-level NL model	575
14.4	Specifying utility functions at higher levels of the NL tree	577
14.5	Handling degenerate branches in NL models	583
14.6	Three-level NL models	587
14.7	Elasticities and partial effects	590
14.8	Covariance nested logit	593

xii		Contents				
	14.9	8	597			
	14.10	Additional commands	600			
15		Mixed logit estimation	601			
	15.1	Introduction	601			
	15.2	The mixed logit model basic commands	601			
	15.3	Nlogit output: interpreting the ML model	608			
		15.3.1 Model 2: mixed logit with unconstrained distributions	611			
		15.3.2 Model 3: restricting the sign and range of a random				
		parameter	621			
		15.3.3 Model 4: heterogeneity in the mean of random parameters	626			
		15.3.4 Model 5: heterogeneity in the mean of selective random				
		parameters	629			
		15.3.5 Model 6: heteroskedasticity and heterogeneity in the				
		variances	633			
		15.3.6 Model 7: allowing for correlated random parameters	636			
	15.4	How can we use random parameter estimates?	643			
		15.4.1 Starting values for random parameter estimation	645			
	15.5	Individual-specific parameter estimates: conditional parameters	646			
	15.6	Conditional confidence limits for random parameters	651			
	15.7	Willingness to pay issues	652			
		15.7.1 WTP based on conditional estimates	652			
		15.7.2 WTP based on unconditional estimates	658			
	15.8	Error components in mixed logit models	660			
	15.9	Generalized mixed logit: accounting for scale and taste				
		heterogeneity	672			
	15.10	GMX model in utility and WTP space	676			
	15.11	SMNL and GMX models in utility space	697			
	15.12	Recognizing scale heterogeneity between pooled data sets	704			
16		Latent class models	706			
	16.1	Introduction	706			
	16.2	The standard latent class model	707			
	16.3	Random parameter latent class model	711			
	16.4	A case study	714			
		16.4.1 Results	715			
		16.4.2 Conclusions	722			
	16.5	Nlogit commands	724			
		16.5.1 Standard command structure	724			

xiii		Contents		
		16.5.2 16.5.3	Command structure for the models in Table 16.2 Other useful latent class model forms	725 733
17			choice models	742
1/	17.1	Introdu		742
	17.1		inary choice	742
	17.2	17.2.1	•	745
		17.2.2	Functional form for binary choice	747
			Estimation of binary choice models	750
			Inference-hypothesis tests	752
		17.2.5	Fit measures	753
		17.2.6	Interpretation: partial effects and simulations	754
		17.2.7	-	756
	17.3	Binary	choice modeling with panel data	767
		17.3.1	Heterogeneity and conventional estimation: the cluster	
			correction	768
		17.3.2	Fixed effects	769
		17.3.3	Random effects and correlated random effects	771
		17.3.4	Parameter heterogeneity	772
	17.4	Bivaria	te probit models	775
		17.4.1	Simultaneous equations	777
		17.4.2	Sample selection	782
		17.4.3	Application I: model formulation of the ex ante link between	
			acceptability and voting intentions for a road pricing scheme	784
		17.4.4	Application II: partial effects and scenarios for bivariate	
			probit	800
18		Ordere	ed choices	804
	18.1	Introdu	action	804
	18.2	The tra	ditional ordered choice model	805
	18.3	A gener	ralized ordered choice model	807
		18.3.1	Modeling observed and unobserved heterogeneity	810
		18.3.2	Random thresholds and heterogeneity in the ordered choice	
			model	812
	18.4	Case st	udy	817
		18.4.1	Empirical analysis	820
	18.5	Nlogit (commands	830
19		Combi	ning sources of data	836
	19.1	Introdu	action	836

xiv		Contents				
1.0	2	T1 (11 ', ", ' 1 ")	0.4			
	9.2	The nested logit "trick"	844			
	9.3 9.4	, 8	848 853			
15	9.4	Case study 19.4.1 Nlogit command syntax for Table 19.2 models	858			
10	9.5	·	860			
	9.5 9.6	Hypothetical bias	868			
15	9. 0	19.6.1 Key themes	871			
		19.6.2 Evidence from contingent valuation to guide choice	07.			
		experiments	874			
		19.6.3 Some background evidence in transportation studies	880			
		19.6.4 Pivot designs: elements of RP and CE	886			
		19.6.5 Conclusions	893			
Part I	IV	Advanced topics	897			
	. v	— Auvanceu topics	09			
20		Frontiers of choice analysis	899			
	0.1	Introduction	899			
		A mixed multinomial logit model with non-linear utility functions				
20	0.3	1 , , 1 1 ,	905			
		20.3.1 Risk or uncertainty?	900			
		20.3.2 The appeal of prospect theory	908			
20	0.4	Case study: travel time variability and the value of expected travel time				
		savings	912			
		20.4.1 Empirical application	914			
		20.4.2 Empirical analysis: mixed multinomial logit model with	014			
20	o =	non-linear utility functions	917			
	0.5	NLRPLogit commands for Table 20.6 model	923			
20	0.6	Hybrid choice models	927			
		20.6.1 An overview of hybrid choice models	927			
		20.6.2 The main elements of a hybrid choice model	93			
21		Attribute processing, heuristics, and preference construction	931			
	1.1	Introduction	931			
	1.2	A review of common decision processes	943			
21	1.3	Embedding decision processes in choice models	940			
		21.3.1 Two-stage models	940			
		21.3.2 Models with "fuzzy" constraints	94′			
		21.3.3 Other approaches	952			

V	Contents		
21.4	Relatio	nal heuristics	955
	21.4.1	Within choice set heuristics	955
	21.4.2	Between choice set dependence	958
21.5			963
		Motivation for process data collection	963
	21.5.2	Monitoring information acquisition	963
21.6	Synthe	sis so far	966
21.7	Case st	udy I: incorporating attribute processing heuristics through	
	non-lin	near processing	968
	21.7.1	Common-metric attribute aggregation	970
	21.7.2	Latent class specification: non-attendance and dual	
		processing of common-metric attributes in choice analysis	977
	21.7.3	Evidence on marginal willingness to pay: value of travel time	
		savings	979
	21.7.4	Evidence from self-stated processing response for	
		common-metric addition	981
21.8		udy II: the influence of choice response certainty, alternative	
	-	bility, and attribute thresholds	987
	21.8.1	Accounting for response certainty, acceptability of	
		alternatives, and attribute thresholds	989
	21.8.2	The choice experiment and survey process	993
	21.8.3	1	997
		Conclusions	1008
21.9		udy III: interrogation of responses to stated choice	
	_	nents – is there sense in what respondents tell us?	1009
		The data setting	1013
		Investigating candidate evidential rules	1015
		Derivative willingness to pay	1023
	21.9.4	1	1025
		Influences of non-trading	1029
	21.9.6	Dimensional versus holistic processing strategies	1035
	21.9.7	Influence of the relative attribute levels	1051
	21.9.8	Revision of the reference alternative as value learning	1052
	21.9.9	A revised model for future stated choice model estimation	1054
	21.9.10	Conclusions	1057
21.10		ble of multiple heuristics in representing attribute processing as	
	•	of conditioning modal choices	1058
	Appen	dix 21A: Nlogit command syntax for NLWLR and RAM	
		heuristics	1062

xvi		Contents	;	
			dix 21B: Experimental design in Table 21.15 dix 21C: Data associated with Table 21.15	1066 1066
22		Group	decision making	1072
	22.1	Introdu	action	1072
	22.2	Interac	tive agency choice experiments	1073
	22.3	Case st	udy data on automobile purchases	1079
	22.4	Case st	udy results	1082
	22.5	Nlogit (commands and outputs	1091
		22.5.1	Estimating a model with power weights	1091
		22.5.2	Pass 1, round 1 (agent 1) and round 2 (agent 2) ML model	1091
		22.5.3	Pass 1, round 1 (agent 1) and round 2 (agent 2) agree model	1093
		22.5.4	Sorting probabilities for two agents into a single row	1094
		22.5.5	Creating cooperation and non-cooperation probabilities for	
			the pairs	1094
		22.5.6	Removing all but line 1 of the four choice sets per person	
			in pair	1094
		22.5.7	Getting utilities on 1 line (note: focusing only on overall	
			utilities at this stage)	1095
		22.5.8	Writing out new file for power weight application	1096
		22.5.9	Reading new data file	1096
		22.5.10	Estimating OLS power weight model (weights sum to 1.0)	1096
		22.5.11	Pass #2 (repeating same process as for pass#1)	1098
		22.5.12	Pass #3 (same set up as pass#1)	1103
		22.5.13	Group equilibrium	1108
		22.5.14	Joint estimation of power weights and preference parameters	1113
		Select g		1116
		Referen	nces	1128
		Index		1163

Figures

2.1	identification of an individual's preferences for bus use	page 20
2.2	The budget or resource constraint	22
2.3	Changes to the budget or resource constraint	23
2.4	Individual preferences subject to a budget constraint	23
2.5	Indifference curves with budget constraints	24
2.6	Demand curve construction	26
2.7	Changes in demand and changes in quantity demanded	27
3.1	Example: log versus linear relationship	33
3.2	Plot of Congressional party affiliation against proportion of minority	•
	groups in voting districts	35
3.3	Linear regression model of Congressional party affiliation against	
	proportion of minority groups in voting districts	36
3.4	PDF and CDFs for Normal distribution: 1	38
3.5	PDF and CDFs for Normal distribution: 2	39
3.6	Probit model of Congressional party affiliation against proportion of	:
	minority groups in voting districts	41
3.7	Sigmoid curve examples of alternative probit models	42
3.8	Logit and probit models of Congressional party affiliation against	
	proportion of minority groups in voting districts	44
3.9	Marginal utility for season (linear coding)	61
3.10	Marginal utility for season (dummy and effects coding)	66
3.11	Plots of orthogonal polynomial coding example results	72
4.1	Multivariate Normal distribution for two alternatives	87
4.2	GEV distribution for two alternatives	95
4.3	EV1 distributions under different scale assumptions	96
5.1	Log-likelihood function surfaces	125
5.2	Example for drawing from two different PDFs	135
5.3	Example for drawing from two different CDFs	135
5.4	Example of PMC draws	137
5.5	Coverage of Halton sequences using different Primes ($R = 1,000$)	143

xvii

xviii

List of figures

5.6	Multivariate Normal distributions for 100 Halton sequences based on different Primes	144
5.7	Multivariate Normal distributions for 1,000 Halton sequences based	111
	on different Primes	144
5.8	Multivariate Normal distribution for 5,000 Halton draws based on Primes 61 and 67	145
5.9	Example of randomized Halton draws based on Primes 61 and 67	147
5.10	Example of 1,000 shuffled Halton draws based on Primes 61 and 67	148
5.11	Example of 5,000 shuffled Halton draws based on Primes 61 and 67	149
5.12	Example of generating MLHS draws in Microsoft Excel	149
5.13	Randomization of MLHS draws in Microsoft Excel	150
5.14	Coverage of Sobol sequences	153
5.15	Multivariate Normal distributions for 250 Sobol draws based on	
	different dimensions	154
5.16	Draw <i>R</i> uniformly distributed random numbers on the interval [0,1]	162
5.17	Transforming random draws to standard normal draws	163
5.18	Correlating the random draws	165
5.19	Correlated random draws	165
5.20	Correlated uniform draws	166
6.1	Experimental design process	192
6.2	Mapping part-worth utility	200
6.3	Stages in deriving fractional factorial designs	209
6.4	Estimation of linear versus quadratic effects	216
6.5	Generating designs using SPSS	225
6.6	Specifying the number of attribute levels per attribute	226
6.7	Specifying the minimum number of treatment combinations to	
	generate	227
6.8	Calculating interaction design codes using Microsoft Excel	230
6.9	Microsoft Excel commands to generate correlations	231
6.10	Microsoft Excel Data Analysis and Correlation dialog boxes	231
6.11	Modified Federov algorithm	252
6.12	RSC algorithm	253
6.13	Example best-worst scenario for design statements	262
6.14	Asymptotic <i>t</i> -ratios for different sample sizes for the (a) <i>D</i> -efficient	
	design, (b) orthogonal design, and (c) S-efficient design	270
6.15	Impact of prior misspecification on the sample size for the (a) D-	
	efficient design, (b) orthogonal design, and (c) S-efficient design	275
6.16	Implications of prior parameter misspecification and loss of efficiency	288
6B.1	Example best-worst case 1 task	291

6B.2	Example best-worst case 2 task	294
6B.3	Example best-worst case 3 task	299
6C.1	Locally optimal parameter priors and parameter prior	
	misspecification	304
6C.2	Different definitions of attribute level balance	307
6C.3	Bayesian versus locally optimal designs	309
6C.4	Comparison of investing in larger sample sizes versus more efficient	
	designs	315
7.1	Kernel plot of the WTP distribution using Krinsky-Robb derived	
	standard errors	358
7.2	Kernel plot of the inverse of a cost parameter	359
8.1	Visualization of attribute level regret (for $\beta_m = 1$)	368
8.2	Marginal effects as the slopes of the Tangent lines to the cumulative	
	probability curve	378
8.3	Marginal effects for a categorical (dummy coded) variable	378
8.4	WTP as a trade-off between attributes	379
9.1	Initial Nlogit desktop	389
9.2	File Menu on Main Desktop and Open Project Explorer	389
9.3	Nlogit desktop after Project File Input	390
9.4	Dialog for Exiting Nlogit and Saving the Project File	391
9.5	Dialog for Opening the Text Editor	393
9.6	Text Editor Ready for Command Entry	394
9.7	Commands in the Text Editor	395
10.1	Choice set with the no travel alternative	412
10.2	Importing variables	416
10.3	Variables in untitled project	417
10.4	Importing CSV data	417
10.5	Excel data set	419
10.6	Import command	420
10.7	Imported data	420
10.8	Names of variables to be created	421
10.9	View data in Editor	422
10.10	Data Editor button	423
10.11	Saving data	423
10.12	Editing data	426
10.13	Data shown in Data Editor	426
10.14	Data converter	427
10.15	Finalized data	427
10.16	Summary of converted data	428

11.1	The sigmoid curve	448
11.2	-2LL Chi-square test	452
11.3	Mapping the pseudo-R ² to the linear R ²	456
11A.1	Example screen to establish current car mode trip profile	469
11A.2	Example screen to establish new public mode station and access	
	profile	469
11A.3	Example inter-regional stated choice screen	470
11A.4	Example intra-regional stated choice screen	470
12.1	Example of unlabeled choice task screen	474
13.1	Experiment I: simulated scenario with confidence intervals	523
13.2	Experiment II: simulated scenario with confidence intervals	524
13.3	Profile of choice probabilities for RUM and RRM	551
13.4	Profile of petrol choice probabilities for RUM and RRM	551
13.5	Profile of diesel choice probabilities for RUM and RRM	551
13.6	Profile of hybrid choice probabilities for RUM and RRM	552
14.1	Example of an NL tree structure	563
14.2	Example tree structure	563
14.3	Example of a 3-level tree structure	564
14.4	An NL tree structure with a degenerate alternative	583
14.5	An NL tree structure with two degenerate alternatives	584
14.6	A 3-level NL tree structure with degenerate branches	587
15.1	Testing dispersion of the <i>accbusf</i> random parameter	616
15.2	Unconstrained distribution of invehicle time for public transport	
	modes	617
15.3	Constrained distribution of invehicle time for public transport modes	623
15.4	Random parameter distributions allowing for correlated random	
	parameters	644
15.5	Estimates of the marginal utility of invehicle time together with	
	confidence intervals	653
16.1	An illustrative choice scenario	715
16.2	Distribution of VTTS for all models	721
17.1	Model simulation	766
17.2	Illustrative voting and acceptance choice screen	787
17.3	Confidence limits on conditional means of random parameters in	
	Model 3	794
17.4	Confidence limits on conditional means of random parameters in	
	Model 4	795
17.5	Impact of (a) cordon-based and (b) distance-based charging per week	
	given that all revenue is hypothecated to public transport	799

xxi

List of figures

18.1	Example of a stated choice screen	822
18.2	CAPI questions on attribute relevance	823
18.3	Distribution of preference heterogeneity for congested time framing	829
19.1	SP and RP data generation process	837
19.2	Enrichment Paradigm 1	839
19.3	Enrichment Paradigm 2	840
19.4	Two-level, two-nest NMNL model	844
19.5	Combining SP and RP data using the NMNL model	845
19.6	Distribution of scale standard deviation for SP and RP choices	864
19.7	Illustrative stated choice screen from a CAPI	889
20.1	Typical PT value functions over monetary gains and losses	910
20.2	Probability weighting functions for gains (W^+) and losses (W^-) from	
	Tversky and Kahneman (1992)	911
20.3	Illustrative stated choice screen	917
20.4	Individual probability weighting function curves (MMNL)	921
20.5	Distribution of VETTS in MMNL model	921
20.6	Incorporating latent variables in discrete choice models using	
	different methods	929
20.7	The integrated latent variable and discrete choice modeling	
	framework	931
21.1	Graphical illustration of possible transitions in a choice experiment	965
21.2	Typical EBA simulation	966
21.3	Example of a stated choice screen	970
21.4	4 CAPI questions on attribute relevance	982
21.5	Illustrative stated choice screen	996
21.6	Attribute threshold questions (preceding the choice set screens)	997
21.7	Example of a stated choice screen	1014

Tables

3.1	Linear regression results	page 35
3.2	Probit model results	41
3.3	Odds ratios and log-odds	43
3.4	Logit model results	44
3.5	Utility level versus utility scale	46
3.6	Non-linear coding schemes	63
3.7	Dummy and effects coding marginal utilities	65
3.8	Relationship between effects coding and ASC	65
3.9	Dummy and effects coding rescaling	66
3.10	Dummy and effects coding with a status quo alternative: 1	67
3.11	Dummy and effects coding with a status quo alternative: 2	69
3.12	Dummy, effects, and orthogonal polynomial coding correlation	
	comparisons	70
3.13	Orthogonal polynomial coding example results	71
3.14	Example data set up for dummy, effects, and orthogonal polynomial	
	coding	73
4.1	Estimated probit model for voting choices	92
5.1	Example of likelihood estimation: 1	119
5.2	Example of likelihood estimation: 2	120
5.3	Example of log-likelihood estimation	122
5.4	Example of log-likelihood estimation using count data	122
5.5	Example of log-likelihood estimation using proportion data	123
5.6	Binary choice data example	124
5.7	Example of simulated log-likelihood estimation (cross-sectional	
	model)	130
5.8	Example of simulated log-likelihood estimation (panel model)	132
5.9	Conversion of Base numbers for Primes 2 to 37	139
5.10	Converting the Base values to decimals	141
5.11	Halton sequences for Primes 2 to 37	142
5.12	Example of randomized Halton draws process	146

xxii

xxiii

List of tables

5.13	Example primitive polynomials	151
5.14	Example calculations for constructing Sobol draws	152
5.15	Sobol draws	153
5.16	Convergence rates of PMC and QMC simulation methods	156
5.17	Correlation structure of Halton sequences for dimensions 1 to 12 for	
	50 to 1,000 draws	164
6.1	Full factorial design	202
	Full factorial design coding	203
	Comparison of design codes and orthogonal codes	204
6.4	Choice treatment combination	205
6.5	Labeled choice experiment	205
6.6	Attribute levels for expanded number of alternatives	208
6.7	Dummy coding	213
6.8	Effects coding structure	215
6.9	Effects coding formats	215
6.10	Minimum treatment combination requirements for main effects only	
	fractional factorial designs	218
6.11	Enumeration of all two-way interactions	221
	Orthogonal coding of fractional factorial design	229
6.13	Orthogonal codes for main effects plus all two-way interaction	
	columns	232
	Design correlation	236
	Attributes assigned to design columns	239
6.16	Using blocking variables to determine allocation of treatment	
	combinations	241
6.17	Effects coding design of Table 6.15	242
	Correlation matrix for effects coded design	243
	3 ⁴ Fractional factorial design	244
6.20	Randomizing treatment combinations to use for additional design	
	columns	245
	Correlation matrix for randomizing treatment combinations	245
6.22	Using the foldover to generate extra design columns	246
6.23	Correlation matrix for designs using foldovers to generate additional	
	columns	247
6.24	Example dimensions for generating an efficient design	252
6.25	Designs pivoted from a reference alternative	257
6.26	Full list of statements used in construction of a best-worst design	260
6.27	Nlogit syntax for estimating a choice model	262
6 28	The data set up for analysis of best-worst data	263

6.29	Designs	268
6.30	Effect of the number of choice tasks on <i>D</i> -error and <i>S</i> -error	272
6.31	Different number of attribute levels and level ranges	273
6.32	Effect of number of levels and level range on <i>D</i> -error and sample size	273
6.33	End-point designs	274
6.34	Pre-defined attributes and attribute levels for survey design	282
6B.1	Example B/W case 1 task data set up 1	292
6B.2	Example B/W case 1 task data set up 2	293
6B.3	Example B/W case 2 task attribute levels	294
6B.4	Example B/W case 2 task data set up 1	295
6B.5	Example B/W case 2 task data set up 1 with constants	296
6B.6	Example B/W case 2 task data set up 2	298
6B.7	Example B/W case 3 task data set up 1 (best-best-best-best)	300
6B.8	Example B/W case 3 task data set up 3 (best-worst-best-worst-)	301
6C.1	Design codes to orthogonal contrast codes	311
6C.2	Optimal choice probability values for specific designs	314
7.1	Non-linearity implications in defining the covariance structure	352
8.1	Relationship between elasticity of demand, change in price and	
	revenue	375
8.2	WTP indicators for base models	383
8.3	WTP indicators for asymmetrical models	384
10.1	Most general choice data format in Nlogit	402
10.2	Varying the alternatives within choice sets	403
10.3	Varying the number of alternatives within choice sets: 1	403
10.4	Varying the number of alternatives within choice sets: 2	404
10.5	Entering socio-demographic characteristics	406
10.6	Combining SP-RP data	409
10.7	Exogenous weights entered	411
10.8	Adding the no choice or delay choice alternative	413
10.9	Data entered into a single line	425
11A.1	Trip attributes in stated choice design	468
12.1	Attributes and priors used in the case 1 experimental design	473
12.2	Model results from unlabeled choice experiment	476
12.3	Descriptive statistics by alternative for unlabeled choice experiment	476
12.4	Model results from unlabeled choice experiment with socio-	
	demographic characteristics	480
12.5	Model results from unlabeled choice experiment with interaction	
	terms	482
13.1	Attribute levels for stated choice experiment	549

XXV

List of tables

13.2	Summary of model results	550
13.3	Direct elasticity contrasts	552
14.1	Useful outputs stored under the project file (data, variables)	578
14.2	Comparison of findings in Table 14.1 with the NL model with upper	
	level variables	582
15.1	A matrix (BETA_I) with the stored conditional individual-specific	
	mean random parameter estimates for the first 20 observations	648
15.2	A matrix (SDBETA_I) with the stored conditional individual-specific	
	standard deviation random parameter estimates for the	
	first 20 observations	649
15.3	A matrix with the stored conditional individual-specific WTP	
	estimates for the first 20 observations (noting that an observation is a	
	respondent and not a choice set in the absence of recognizing the	
	number of choice sets using :pds = <number>)</number>	655
	Summary of empirical results: commuter trips	666
15.5	Mean and standard deviation of random parameter estimates for	
	entire representation of each attribute from relatively simple	
	to more complex models	668
15.6	Direct elasticities (probability weighted)	670
15.7	ĕ	671
15.8	•	691
15.9	Willingness to pay	694
15.10	Lower and upper WTP estimates	695
15.11	Mean estimates of willingness to pay	696
15.12	Summary of model results	699
15.13	Direct time and cost elasticities	701
15.14	Tests of statistical significance between elasticity estimates	703
16.1	Trip attributes in stated choice design	714
16.2	•	716
16.3	WTP estimates	721
17.1	Panel data sample sizes	756
17.2	Insurance takeup in the GSOEP sample	757
17.3	Descriptive statistics for binary choice analysis	758
17.4	Estimated probit model for add on insurance takeup	758
17.5	Estimated logit model for add on insurance takeup	759
17.6	Fit measures for estimated probit model	760
17.7	Estimated partial effects for logit and probit models	764
17.8	Estimated semi-elasticities	765
17.9	Partial effect on takeup of marital status	765

oxvi	List of tables	
17.10	Effect of change in age on takeup probability	766
17.11	Fixed effects and conventional estimators	769
17.12	Cluster correction of standard erorrs	770
17.13	Estimated random effects probit model	772
17.14	Random effects probit model with Mundlak correction	773
17.15	Estimated random parameters probit model	774
17.16	Cross-tabulation for health care utilization	776
17.17	Estimated bivariate probit model	778
17.18	Partial effects for bivariate probit model	779
17.19	Estimated recursive bivariate probit model	781
17.20	Decomposition of partial effects in recursive model	782
17.21	Sample selection finding	784
17.22	Models of referendum voting and acceptance of road pricing	
	schemes: 1	789
17.23	Models of referendum voting and acceptance of road pricing	
	schemes: 2	791
17.24	Summary of direct elasticities	797
17.25	Summary of bivariate probit model results	801
17.26	Summary of elasticities	802
17.27	Simulated scenario of role of Canberra and age on preference	
	probability	803
18.1	Attribute profiles for the design	821
18.2	Sub-designs of the overall design for five attributes	822
18.3	Ordered logit models	824
18.4	Marginal effects for three choice levels derived from ordered logit	
	models	826
19.1	Commuter mode share population weights	854
19.2	Model results for "nested logit" trick versus panel mixed logit for	
	combined SP and RP choice data	856
19.3	Summary of model results	862
19.4	Summary of illustrative Australian empirical evidence on VTTS:	
	traditional CE versus RP	881
19.5	Empirical evidence on CE-based VTTS for pivot data paradigm,	
	treating time and cost parameters generic across all alternatives	882
19.6	Summary of findings for pivot-based models	889
20.1	Trip attributes in stated choice design	915
20.2	Profile of the attribute range in the stated choice design	916
20.3	Descriptive socio-economic statistics	918
20.4	Descriptive statistics for costs and time, by segment	918

xxvii

List of tables

20.5	Travel times and probabilities of occurrence	918
20.6	Mixed multinomial logit (MMNL) within an EEUT framework	919
20.7	Example of data arrangements for a hybrid choice model	935
21.1	Typology of decision strategies	939
21.2	Classic decision strategies	944
21.3	Worked example for the contextual concavity model	956
21.4	Summary of candidate heuristics and example model forms testable	
	on existing data sets	967
21.5	Profile of attribute range in stated choice design	970
21.6	Summary of WTP estimates	980
21.7	Values of travel time savings	981
21.8	Influence of self-stated APS on VTTS	983
21.9	Attribute levels for choice experiment	994
21.10	Descriptive overview of key data items	999
21.11	Summary of model results	1002
21.12	Summary of mean direct elasticity results	1007
21.13	Summary of marginal rates of substitution	1008
21.14	Example of 16 choice scenario responses evaluated by one respondent	1011
21.15	Profile of attribute range in choice experiment	1014
21.16	Influence of choice sequence on choice response	1016
21.17	Influences on choice scenario completion time	1018
21.18	Implications of "plausible choice" test on mean VTTS	1024
21.19	Response dominance in full sample	1027
21.20	Respondent and design influences on choice of reference alternative	1030
21.21	Number of strictly best attributes per alternative	1036
21.22	Influence of majority of confirming dimensions	1037
21.23	Identifying role of MCD: latent class model	1045
21.24	Influence of referencing on choice response	1051
21.25	Identifying the role of value learning	1053
21.26	Revised full model for future applications	1054
21.27	Estimation of weighted LPLA and NLWLR decision rules in utility	1062
22.1	Schematic representation of IASP evaluation	1077
22.2	Stated choice design attributes	1080
22.3	Illustrative stated choice screen	1081
22.4	Pass model results	1083
22.5	Sources of agreement	1086
22.6	Group equilibrium model results	1088
22.7	Probability contrasts	1090
22.8	Sources of agreement: passes 2 and 3 versus pass 1 group equilibrium	1091

Preface

I'm all in favor of keeping dangerous weapons out of the hands of fools. Let's start with typewriters.

(Frank Lloyd Wright 1868-1959)

Almost without exception, everything human beings undertake involves a choice (consciously or subconsciously), including the choice not to choose. Some choices are the result of habit while others are fresh decisions made with great care, based on whatever information is available at the time from past experiences and/or current inquiry.

Over the last forty years, there has been a steadily growing interest in the development and application of quantitative statistical methods to study choices made by individuals (and, to a lesser extent, groups of individuals or organizations). With an emphasis on both understanding how choices are made and on forecasting future choice responses, a healthy literature has evolved. Reference works by Louviere *et al.* (2000) and Train (2003, 2009) synthesize the contributions. However while these sources represent the state of the art (and practice), they are technically advanced and often a challenge for both the beginner and practitioners.

Discussions with colleagues have revealed a gap in the choice analysis literature – a book that assumes very little background and offers an entry point for individuals interested in the study of choice regardless of their starting position. Writing such a book increasingly became a challenge for us. It is often more difficult to explain complex ideas in very simple language than to protect one's knowledge base with complicated deliberations. The first edition published in 2005 was written in response to this gap in the literature in order to serve the needs of practitioners, seasoned researchers, and students.

There are many discussion topics that are ignored in most books on choice analysis, yet are issues which students have pointed out in class, and been noted by researchers in general, as important in giving them a better understanding of what is happening in choice modeling. The lament that too many books on

XXIX

XXX

Preface

discrete choice analysis are written for the well informed is common, and was sufficient incentive to write the first edition of this book and a subsequent need to revise it to include the many new developments since 2004 (when the first edition was completed), as well as to clarify points presented in the first edition on which many readers sought further advice. The new topics, in addition to a complete rewrite of most previous chapters, include ordered choice, generalized mixed logit, latent class models, statistical tests (including partial effects and model output comparisons), group decision making, heuristics, and attribute processing strategies, expected utility theory, prospect theoretic applications, and extensions to allow for non-linearity in parameters. The single case study has been replaced by a number of case studies, each chosen as an example of data that best illustrate the application of one or more choice models.

This book for beginners in particular, but also of value to seasoned researchers, is our attempt to meet the challenge. We agreed to try and write the first draft of the first edition without referring to any of the existing material as a means (hopefully) of encouraging a flow of explanation. Pausing to consult can often lead to terseness in the code (as writers of novels can attest). Further draft versions leading to the final product did, however, cross-reference to the literature to ensure that we had acknowledged appropriate material. This book in both its first and second edition guises, however, is not about ensuring that all contributors to the literature on choice are acknowledged, but rather ensuring that the novice choice analyst is given a fair go in their first journey through this intriguing topic.

We dedicate this book to the beginners, but we also acknowledge our research colleagues who have influenced our thinking as well as co-authored papers over many years. We thank Michiel Bliemer for his substantial input to Chapter 6 as well as Andrew Collins and Chinh Ho for their case studies using NGene. We also thank Waiyan Leong and Andrew Collins for their substantial contribution to Chapter 21. We especially recognize Dan McFadden (2000 Nobel Laureate in Economics), Ken Train, Chandra Bhat, Jordan Louviere, Andrew Daly, Moshe Ben-Akiva, David Brownstone, Michiel Bliemer, Juan de Dios Ortúzar, Joffre Swait, and Stephane Hess. Colleagues and doctoral students at the University of Sydney read earlier versions. In particular, we thank Andrew Collins, Riccardo Scarpa, Sean Puckett, David Layton, Danny Campbell, Matthew Beck, Zheng Li, Waiyan Leong, Chinh Ho, Kwang Kim and Louise Knowles, and the 2004–2013 graduate classes in Choice Analysis as well as participants in the annual short courses on choice analysis and choice experiments at The University of Sydney and various other locations in Europe, Asia, and the United States, who were guinea pigs for the first full use of the book in a teaching environment.