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Preface

Logic will get you from A to Z; imagination will take you everywhere.
- Anonymous 

Evading detection by radar has been one of the fascinating topics in aerospace engineering. Initial 
intuitive attempts towards achieving low-observable platforms, such as fighter aircraft, unmanned 
aircraft, missiles and even battle ships, came from the application of radar absorbing materials 
(RAM) and shaping to reduce the radar cross section (RCS) of the platform.

These efforts on RAM design have continued since 1940s. Likewise, the efforts on shaping have 
run parallel to the developments in the theory of electromagnetic (EM) scattering and diffraction. 
The edge-diffraction EM formulations of 1960s resulted in the ongoing efforts in 1970s towards 
eventual realisation of the Lockheed F-117 Nighthawk; this fighter aircraft was characterised by 
the faceted planar exterior for RCS reduction. Likewise, the subsequent standardisation of the EM 
curved surface-diffraction formulations reflected in the blended Northrop Grumman B-2 Spirit 
bomber aircraft structure in 1980s.

However, it must be understood that both the shaping and RAM were in the domain of passive 
RCS reduction (RCSR).Once these concepts were formalised, it became apparent that these 
essentially catered to the narrowband RCSR. The radar had to merely switch or scan over a wider 
frequency range to overcome the stealth strategies of the low observables. 

Thus there is a need for broadbanding the electromagnetic design for airborne and naval 
structures. The desire is to evade detection for any incoming radar frequency, polarisation and 
direction of arrival. Indeed, the fervent wish list is to “some-how” sense and generate an anti-wave 
for cancellation. This is the essence of active radar cross section reduction (RCSR).

Active RCSR towards realisation of low-observable platforms hinges on the integration of (i) 
active antenna elements, (ii) onboard/airborne antenna analysis, and (iii) conformal EM analysis. 

The onboard/ airborne antenna analysis formulations have matured over the last three decades. 
The conformal antennas provide the advantage of least obscuration and conflict with competing 
aerodynamic requirements. Conformal antenna studies have been actively carried out for last four 
decades. However, over the last ten years, the modern conformal antenna theory appears to have 
been systematised. 

The active antenna elements have been extensively studied over the last two decades. Indeed 
the phased antenna arrays provide one, albeit not the only, route to generate adaptive patterns 
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xxvi    Preface

towards active RCSR. Thus, it is our contention that active RCSR is an idea whose time has come!
The Centre for Electromagnetics (CEM), to which these authors are affiliated, has an active 

commitment towards RCS studies. Since RAM was once considered as a “highly classified area”, 
we at the CEM took the initiative to demystify this topic in the form of a book:

Vinoy, K.J. and R.M. Jha, Radar Absorbing Materials: From Theory to Design and 
Characterisation. Kluwer Academic Publishers, Norwell, Boston, USA, ISBN: 0792 397 
533, 209 p., 1996.

The book in your hand is the second in this trilogy.
For the reasons discussed above, the emphasis in this book is on the phased antenna array analysis 

and algorithms as applied to active RCSR. All aspects, including mutual coupling, which takes one 
towards viable technological realisation of active RCSR, are discussed in details. 

However, the end goal of this book is the low-observable platforms. Hence apart for the 
phased antenna arrays, advancement in the RAM design, plasma stealth, active FSS elements and 
metamaterial designs are also discussed as a parallel stream of concept.

Hema Singh
Rakesh Mohan Jha 
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