Cambridge University Press 978-1-107-09261-7 - Active Radar Cross Section Reduction: Theory and Applications Hema Singh and Rakesh Mohan Jha Frontmatter <u>More information</u>

Active Radar Cross Section Reduction

Theory and Applications

Hema Singh

Rakesh Mohan Jha

CAMBRIDGE UNIVERSITY PRESS

Cambridge House, 4381/4 Ansari Road, Daryaganj, Delhi 110002, India

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107092617

© Hema Singh and Rakesh Mohan Jha 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in India

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-09261-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-09261-7 - Active Radar Cross Section Reduction: Theory and Applications Hema Singh and Rakesh Mohan Jha Frontmatter More information

> To Professor R. Narasimha

Cambridge University Press 978-1-107-09261-7 - Active Radar Cross Section Reduction: Theory and Applications Hema Singh and Rakesh Mohan Jha Frontmatter More information

CONTENTS

List of Tables List of Figures List of Abbreviations Preface Acknowledgements			ix xi xxiii xxv xxvii
1.	Intro	oduction to Radar Cross Section Reduction	1
	1.1	Introduction	1
	1.2	The concept of target signatures	3
	1.3	Radar cross section of an aircraft	4
		1.3.1 Ray-tracing techniques	5
	1.4	RCS reduction	7
		1.4.1 RCS reduction by shaping	8
		1.4.2 RCS reduction by RAM	9
		1.4.3 Active RCS reduction	9
	1.5	Organisation of the book	11
	1.6	Conclusion	13
		References	13
2.	RAM	A Analysis for Low-Observable Platforms	15
	2.1	Introduction	15
	2.2	EM propagation in classical multilayered media	16
		2.2.1 Semi-infinite media	18
		2.2.2 Plane dielectric layer	22
		2.2.3 Multiple reflections/transmissions at the boundaries	26
		2.2.4 Lossy dielectric layer	31
		2.2.5 Arbitrary number of dielectric layers	34

vi Contents

	2.3	EM propagation in multilayered dielectric-metamaterial media	39
		2.3.1 Reflection behaviour for dielectric-metamaterial layers	41
		2.3.2 RF simulation inside a closed rectangular cavity	46
	2.4	Antireflection and high-reflection dielectric/metamaterial coatings	48
		2.4.1 EM propagation in a single slab	48
		2.4.2 EM propagation in a multilayered structure	49
		2.4.3 Antireflection coatings consisting of dielectrics	51
		2.4.4 Antireflection coatings consisting of metamaterials	54
		2.4.5 High-reflection coatings using dielectric and metamaterial	61
	2.5	Conclusion	62
		References	63
3.	Rad	ar Cross Section of Phased Antenna Arrays	65
	3.1	Introduction	65
	3.2	Theoretical background	66
		3.2.1 Antenna scattering	68
		3.2.2 Formulation for antenna RCS	70
	3.3	A phased array with a series feed network	76
		3.3.1 RCS formulation with isotropic array elements	77
		3.3.2 RCS pattern analysis	87
	3.4	Phased array with parallel feed network	95
		3.4.1 RCS formulation with isotropic array elements	96
		3.4.2 RCS pattern analysis	109
	3.5	Conclusion	122
		References	124
4 .	Acti	ve RCS Reduction in Phased Arrays	126
	4.1	Introduction	126
	4.2	Adaptive algorithms	128
		4.2.1 Least mean square algorithm	131
		4.2.2 Recursive least square algorithm	135
		4.2.3 Standard matrix inversion algorithm	136
		4.2.4 Weighted least square algorithm	139
		4.2.5 Linearly constrained least square algorithm	153
	4.3	Probe suppression in phased arrays	158
		4.3.1 Theoretical background	159
		4.3.2 Probe suppression with single desired source	162
		4.3.3 Probe suppression in the presence of simultaneous multiple desired signa	
	, .	4.3.4 Probe suppression in the presence of correlated signals	168
	4.4	Conclusion	171
		References	172

		Contents	vii
5	۰. ۸۸۱۱	ual Coupling Effects in Phased Arrays	177
0.	5.1	Introduction	177
	5.2	Theoretical background for mutual impedance	178
	5.3	Steady-state performance of dipole array with mutual coupling	182
		5.3.1 Side-by-side dipole array	185
		5.3.2 Parallel-in-echelon array	194
	5.4	Conclusion	213
	<i>J</i> .1	References	214
6.	RCS	of Dipole Array Including Mutual Coupling Effects	216
	6.1	Introduction	216
	6.2	Formulation for the RCS of series-fed dipole array	217
	6.3	Impedance at different levels of the feed network	220
		6.3.1 Impedance at the terminals of the dipole antenna	220
		6.3.2 Impedance at the terminals of the phase-shifters	222
		6.3.3 Impedance at the coupler terminals	222
	6.4	Scattering contributions from different components	
		of the feed network	222
		6.4.1 RCS component due to scattering from dipoles	223
		6.4.2 RCS component due to scattering from the phase-shifters	224
		6.4.3 RCS component due to scattering from the coupling port of the couplers	226
		6.4.4 RCS component due to scattering beyond the coupling port of couplers	226
	6.5	Conclusion	242
		References	243
7.	Perf	ormance of Sidelobe Cancellers in Active RCSR	245
	7.1	Introduction	245
	7.2	Generalised sidelobe canceller (GSC)	246
	7.3	Decision feedback-generalised sidelobe canceller (DF–GSC)	250
	7.4	Performance analysis	251
	7.5	Direction of arrival (DOA) mismatch	254
		7.5.1 Mismatch signal model	254
		7.5.2 DOA mismatch with GSC	254
	_	7.5.3 DOA mismatch with DF–GSC	255
	7.6	Constraints in adaptive array processing	255
		7.6.1 Point constraints	256
		7.6.2 Derivative constraints	256
		7.6.3 Directional constraints	256
		7.6.4 Simulation results	257

viii	Contents
------	----------

	7.7	Blind equalisation in sidelobe cancellers	259
		7.7.1 Theoretical background	259
		7.7.2 Steps of algorithm	259
	7.8	Conclusion	265
		References	266
8.	Eme	erging RCSR Techniques	268
	8.1	Introduction	268
	8.2	Embedded antennas	269
	8.3	Conformal load-bearing antenna	272
	8.4	FSS-based RCSR	274
	8.5	Metamaterial-based RCSR	275
	8.6	Plasma-based RCSR	277
	8.7	Conclusion	278
		References	278
Epi	ilogu	le	283
Ар	pene	dices	285
•	App	endix A: Calculation of self and mutual impedance between two antennas	285
		endix B: Calculation of mutual impedance between two	
		antennas of unequal lengths	290
	Арр	endix C: Self and mutual impedance of dipole array	295
	App	endix D: Coupling and transmission coefficients: Formulation	297
Lis	t of S	Symbols	299
Su	gges	tions for Further Reading	305
		Index	311
		Index	319

List of Tables

2.1	Classification of materials based on $arepsilon$ and μ	39
3.1	Typical RCS Values	67
3.2	Symbols used in the plots and their significance	109
4.1	Effect of number of array elements on the pattern	138
4.2	Position of non-uniform array elements with	147
	respect to the centre of the array	
4.3	Observations made from comparison of radiation pattern	149
	of 16-element linear phased array with uniform and non-uniform spacing	
5.1	Variation of output SINR with ξ_d for a 6-element	188
	array of half-wavelength dipoles	
5.2	Variation of output SINR for <i>N</i> -element array	189
	of half-wavelength dipoles; $\xi_d = 10 \text{ dB}$	
5.3	Variation of output SINR with inter-element spacing	189
	for a 16-element array of half-wavelength dipoles; $\xi_d = 10 \text{ dB}$	
5.4	Variation of output SINR with ξ_d and number of	191
	elements for half-wavelength dipoles	

Cambridge University Press 978-1-107-09261-7 - Active Radar Cross Section Reduction: Theory and Applications Hema Singh and Rakesh Mohan Jha Frontmatter More information

List of Figures

1.1	The concept of active RCS reduction and control	10
2.1	Reflection and refraction of a plane electromagnetic	17
	wave at a plane interface	
2.2	A plane EM wave incident on an interface between two semi-infinite	19
	media of different material constants	
2.3	Variation of reflection coefficient with respect to the angle of	21
	incidence at an interface between two semi-infinite lossless media	
2.4	Variation of transmission coefficient with respect to the angle of	21
	incidence at an interface between two semi-infinite lossless media	
2.5	Wave propagation in a dielectric layer of thickness d	22
2.6a	Wave reflection diagram (schematic) for the front surface of a	26
	dielectric layer	
2.6b	Wave reflection-refraction diagram (schematic) for the front surface	27
	of a finite-thickness dielectric layer	
2.6c	Multiple reflection–refraction diagram (schematic) for the front	27
	surface of a finite-thickness dielectric layer	
2.7	Percentage reflection of an EM wave due to dielectric layer between	30
	air and water	
2.8	Power reflection coefficient of an EM wave from a dielectric layer	30
2.9	Power reflection and transmission coefficient of an EM wave from a	31
	dielectric layer	
2.10	Reflection of an electromagnetic wave (λ = 10 cm) from a layer of	34
	water	
2.11	Schematic of multiply reflected–refracted ray diagram for a plane	35
	wave from a multilayered dielectric media	
2.12	Schematic of a multilayered dielectric media	36
2.13	Reflection coefficient of a multilayered medium. Normal incidence;	37
	f = 10 GHz. Case 1: Three-layered medium: air, plywood (\mathcal{E}_r = 3	
	+ j0.2) and iron ($\mathcal{E}_r = 1 + j2 \times 10^7$, $\mu_r = 480$). Case 2: Four-layered	
	medium: free space, lossy dielectric ($\varepsilon_r = 1.6 + j2.6$; thickness = 1	
	mm), plywood, iron	

xii List of Figures

2.14a	Reflections within a three-layered medium	38
2.14b	Reflections within a four-layered medium	38
2.15	Reflection coefficient of a three-layered medium for different	38
	dielectric layers placed between the air and the iron; $f = 10 \text{ GHz}$	
2.16	(E,H,k) triplet in (a) right-handed material (b) left-handed	39
	material	
2.17	Wave propagation across the boundary between two media (a)	40
	Medium 1 and 2 are RHM (b) Medium 1 is RHM while Medium 2	
	is LHM	
2.18	Classification of materials based on material parameters (i) DPS, (ii)	40
	MNG, (iii) ENG and (iv) DNG	
2.19a	Reflection and transmission of a plane wave (i) multilayered	42
	metamaterial media (ii) multilayered dielectric-metamaterial media	
2.19b	Four quadrants of the $\varepsilon - \mu$ diagram	43
2.20	Wave propagation in a metamaterial-coated PEC	43
2.21	Reflection coefficient of a metal-backed metamaterial layer for a	43
	normal incidence; thickness of metamaterial layer = 1 mm	
2.22	Reflectance of a PEC plane with a thick layer (3 cm) of coating	44
2.23	Wave propagation in a two-layered DPS structure	45
2.24	Wave propagation in two-layered DNG structure	45
2.25	Reflection coefficient of a two-layer structure. Thickness: 6 mm and 7	46
	mm. First case: DPS materials with $\varepsilon_1 = 6 - j0.2$, $\mu_1 = 1 - j0.1$, $\varepsilon_2 = 4 - j0.1$	
	$j0.1, \mu_2 = 5 - j0.5$. Second case: DNG materials with $\varepsilon_1 = -6 - j0.2, \mu_1$	
	$= -1 - j0.1, \ \varepsilon_2 = -4 - j0.1, \ \mu_2 = -5 - j0.5$	
2.26	RF field build-up inside a rectangular box up to 20 bounces.	47
	Frequency = 15 GHz; metallic walls; $\sigma = 10^4$ S/m; metamaterial-	
	coated walls; thickness=30 mm (a) perpendicular polarisation (b)	
	parallel polarisation	
2.27	EM wave propagation in a metamaterial slab within semi-infinite	49
	dielectric media	
2.28	Dielectric slabs having same thickness, embedded in air	50
2.29	Dielectric slabs of different thicknesses, embedded in air	50
2.30	(a) Air-glass media, (b) air-glass media with a dielectric layer	51
	inserted in between	
2.31	Reflection coefficient for an antireflection coating on glass	51
2.32	Schematic of four-layer dielectric media with dielectric coating	52
2.33	Percentage reflected power of antireflection coatings comprising two	53
	dielectric slabs on glass	
2.34	Schematic of four-layer dielectric media with $\lambda/4 - \lambda/2 - \lambda/4$ coatings	53
2.35	Percentage power reflection of antireflection coatings comprising	54
	three dielectric slabs on glass	

	List of Figures	I	xiii
2.36	Dielectric-metamaterial slabs embedded in semi-infinite media		54
2.37	Reflection and transmission coefficients of a pair of dielectric-		55
	metamaterial slabs embedded in air versus frequency (normal incidence)		
2.38	Reflection coefficient of two-layer dielectric (DPS)–metamaterial (DNG) slab for different thicknesses of dielectric layer (DPS) (normal incidence)		56
2.39	Transmission coefficient of two-layer dielectric (DPS)–metamaterial (DNG) slab for different thicknesses of dielectric layer (DPS) (normal incidence)		56
2.40	Reflection and transmission coefficients of a pair of dielectric and metamaterial slabs embedded in air versus angle of incidence (for perpendicular polarisation)		57
2.41	EM propagation through two-layer dielectric (DPS)–metamaterial (DNG) slab for different angles of incidence (for perpendicular polarisation). (a) Transmission coefficient (b) Reflection coefficient		58
.42	EM propagation through two-layer dielectric (DPS)–metamaterial (DNG) slab for different angles of incidence (for parallel polarisation). (a) Transmission coefficient (b) Reflection coefficient		59
2.43	Coefficients of two-layer dielectric (DPS)–metamaterial (DNG) slab at normal incidence. DPS: $\varepsilon_r = 2.4$, $\mu_r = 1$; $d = 0.1$ m, DNG: $\varepsilon_r = -4$, $\mu_r = -1$; $d = 0.1$ m		60
2.44	Coefficients of two-layer dielectric (DPS)–metamaterial (DNG) slab. DPS: $\varepsilon_r = 2.4$, $\mu_r = 1$; $d = 0.12$ m, DNG: $\varepsilon_r = -4$, $\mu_r = -1$; $d = 0.1$ m. (a) Perpendicular polarisation (b) Parallel polarisation		61
2.45	Pair of dielectric-metamaterial slab with opposite refractive indices		61
2.46	Reflection and transmission coefficients of a pair of dielectric and metamaterial slabs embedded in air		62
3.1	Frequency regions for RCS estimation		68
3.2	Planar array geometry		71
3.3	Series feed for a phased array of N antenna elements		75
3.4a	Coupling and transmission paths for a four-port coupler		79
3.4b	A schematic of lossless power feed line		79
3.5	Travelling waves in a series-fed phased array		81
3.6	Forward travelling wave towards N th antenna		81
3.7	Backward travelling wave		85
3.8	RCS of linear array with series feed, $N = 16$, $d = 0.4$, $\lambda \theta_s = 0^\circ$, $\psi = \pi/4$, and $l = 0.5\lambda$ with uniform amplitude distribution (unit amplitude)		88
3.9	RCS of a linear array of $N = 64$, $\theta_s = 0^\circ$, $\psi = \pi/4$, $d = 0.4\lambda$ and $l = 0.5\lambda$ with unit amplitude uniform distribution and series feed network		88

xiv List of Figures

3.10	RCS of a series-fed linear array of $N = 50$, $\theta_s = 0^\circ$, $\psi = \pi/4$, $d = 0.4\lambda$	89
	and $l = 0.5\lambda$ with uniform amplitude distribution (unit amplitude)	
3.11	RCS of a series-fed linear array of $N = 50$, $\theta_s = 0^\circ$, $\psi = \pi/4$, $d = 0.5\lambda$	89
	and $l = 0.5\lambda$ with uniform amplitude distribution (unit amplitude)	
3.12	RCS of a series-fed linear array of $N = 50$, $\theta_s = 0^\circ$, $\psi = \pi/4$, $d = 0.4\lambda$	90
	and $l = 0.5\lambda$ with the coupling coefficient being 0.25	
3.13	RCS of a series-fed linear array of $N = 50$, $\theta_s = 45^\circ$, $\psi = \pi/4$, $d =$	91
	0.4 λ , $l = 0.5\lambda$ with coupling coefficients being 0.25	
3.14	RCS of a series-fed linear array of $N = 64$, $\theta_s = 0^\circ$, $\psi = \pi/4$, $d = 0.4\lambda$	91
	and $l = 0.5\lambda$ with uniform amplitude distribution (unit amplitude)	
3.15	RCS of a series-fed linear array of $N = 64$, $\theta_s = 0^\circ$, $\psi = \pi/2$, $d = 0.4\lambda$,	92
5.17	$l = 0.5\lambda$ with uniform amplitude distribution (unit amplitude))2
3.16	RCS of a series-fed linear array of $N = 50$, $\theta_s = 0^\circ$, $\psi = \pi/2$, $d = 0.4\lambda$,	93
5.10	$l = 0.5\lambda$ with uniform distribution (coupling coefficient = 0.25)))
3 17		93
3.17	RCS of a series-fed linear array of $N = 50$, $\theta_s = 0^\circ$, $\psi = \pi/2$, $d = 0.4\lambda$,	95
2 10	$l = 0.5\lambda$ with uniform amplitude distribution (unit amplitude)	0.4
3.18	RCS of a series-fed linear array of $N = 50$, $\theta_s = 0^\circ$, $\psi = \pi/2$, $d = 0.4\lambda$	94
2.10	and $l = 0.5\lambda$ with cosine squared on a pedestal amplitude distribution	0.6
3.19	Parallel feed for a phased array	96
3.20	Schematic of magic tee with its difference port connected to the	101
	load	
3.21	RCS of a parallel-fed linear array with $N_x = 16$, $d_x = 0.5\lambda$, $h = 0.5\lambda$,	110
	$\theta_{s} = \phi_{s} = \phi = 0^{\circ}$, and level of couplers, $q = 1$	
3.22	RCS of a parallel-fed linear array with $N_x = 128$, $d_x = 0.5\lambda$, $h = 0.5\lambda$,	111
	$\theta_{s} = \phi_{s} = \phi = 0^{\circ}$, and level of couplers, $q = 1$	
3.23	RCS of a parallel-fed linear array with $N_x = 128$, $d_x = 0.5\lambda$, $h = 0.5\lambda$,	111
	$\theta_s = \phi_s = \phi = 0^\circ$, and level of couplers, $q = 3$	
3.24	RCS of a parallel-fed linear array with $N_x = 128$, $h = 0.5\lambda$, $\theta_s = \phi_s = \phi$	112
	= 0°, and level of couplers, $q = 2$ (a) $d_x = 0.5\lambda$, (b) $d_x = \lambda$	
3.25	RCS of a parallel-fed linear array with $N_x = 64$, $d_x = 0.5\lambda$, $h = 0.5\lambda$,	113
	$\phi_s = \phi = 0^\circ$, and level of couplers, $q = 2$ (a) $\theta_s = 0^\circ$, (b) $\theta_s = 45^\circ$	
3.26	RCS of a parallel-fed linear array with $N_x = 64$, $d_x = 0.5\lambda$, $h = \lambda$, $\theta = 0.5\lambda$	114
	$\phi_s = \phi = 0^\circ$, and level of couplers, $q = 1$	
3.27	RCS of a parallel-fed linear array with $N_x = 64$, $d_x = 0.5\lambda$, $h = \lambda$, $\theta_z = 0.5\lambda$	115
	$\phi_s = \phi = 0^\circ$, and level of couplers, $q = 2$	
3.28	RCS of a parallel-fed linear array with $N_x = 64$, $d_x = 0.5\lambda$, $h = \lambda$, $\theta_s =$	115
0.20	$\phi_s = \phi = 0^\circ$, and level of couplers, $q = 3$	-
3.29	RCS of a parallel-fed linear array with $N_y = 128$, $d_y = 0.5\lambda$, $h = 0.5\lambda$,	116
5.2)	$\theta_s = 45^\circ, \ \phi_s = \phi = 0^\circ, \ \text{and level of couplers}, \ q = 2$	
	$\varphi_s = 12^\circ$, $\varphi_s = \varphi = 0^\circ$, and level of couplets, $q = 2^\circ$	

		5 1
3.30	RCS of a parallel-fed linear array with $N_x = 128$, $d_x = 0.5\lambda$, $h = \lambda$, $\theta_s = 45^\circ$, $\phi_s = \phi = 0^\circ$, and level of couplers, $q = 2$	117
3.31	RCS of a parallel-fed planar array with $N_x = 16$, $N_y = 16$, $d_x = d_y = 0.5\lambda$, $\theta_s = \phi_s = 0^\circ$, and level of couplers, $q = 3$	117
3.32	RCS of a parallel-fed planar array with $N_x = 16$, $N_y = 10$, $d_x = d_y = 0.5\lambda$, $\theta_y = \phi_y = 0^\circ$, and level of couplers, $q = 3$	118
3.33	RCS of a parallel-fed planar array with $N_x = 64$, $N_y = 64$, $d_x = d_y = 0.5\lambda$, $\theta_y = \phi_y = 0^\circ$, and level of couplers, $q = 3$	119
3.34	RCS of a parallel-fed planar array with $N_x = N_y = 16$, $d_x = 0.5\lambda$, $d_y = 0.5\lambda$, $\theta_s = \phi_s = 0^\circ$, and level of couplers, $q = 2$	119
3.35	RCS of a parallel-fed planar array with $N_x = 16$, $N_y = 16$, $d_x = 1\lambda$, $d_y = 0.5\lambda$, $\theta_s = \phi_s = 0^\circ$, and level of couplers, $q = 2$	120
3.36	RCS of a parallel-fed planar array with $N_x = 16$, $N_y = 16$, $d_x = 0.5\lambda$, $d_y = 1\lambda$, $\theta_s = \phi_s = 0^\circ$, and level of couplers, $q = 2$	120
3.37	RCS of a parallel-fed planar array with $N_x = 16$, $N_y = 16$, $d_x = d_y = 0.5\lambda$, and level of couplers, $q = 1$. (a) $\theta_s = \phi_s = 0^\circ$, (b) $\theta_s = \phi_s = 45^\circ$	121
3.38	RCS of a parallel-fed planar array with $N_x = 16$, $N_y = 16$, $d_x = d_y = 0.5\lambda$, $\theta_s = \phi_s = 45^\circ$: (a) $q = 2$ (b) $q = 3$	122
4.1	Adaptive antenna array system	130
4.2	Mean output noise power of a 10-element uniform linear array, $\lambda/2$ spacing, $\phi = 90^{\circ}$; 2 jammers: 70°, 100; 100°, 1	134
4.3	Steady-state performance of 10-element linear array in different SNR environments	135
4.4	Radiation pattern of uniform linear array using SMI algorithm, (a) $N = 8$ (b) $N = 10$ (c) $N = 16$ (d) $N = 32$	139
4.5	Broadside antenna pattern for a 16-element linear array (Main lobe: -2° to $+2^{\circ}$)	141
4.6	Broadside antenna pattern for a 16-element array with flat top (–10° to +10°)	142
4.7	Radiation pattern for a 16-element linear array with notch from $+20^{\circ}$ to $+35^{\circ}$	143
4.8	Radiation pattern for a 16-element uniform linear array with notches from -40° to -20° and $+20^{\circ}$ to $+35^{\circ}$	143
4.9	Radiation pattern of 16 × 10 planar array with uniform spacing of 0.5λ in both x and y directions and main beam steered at 10°	144
4.10	Radiation pattern of 16 × 10 array with uniform spacing of 0.5 λ in both x and y directions and a notch in region -30° to -25°	144
4.11	Radiation pattern of 16 × 10 array with uniform spacing of 0.5λ . Main beam steered at 10°; notch in region -30° to -25°	145
4.12	Schematic of a non-uniform array	146

List of Figures xv

xvi List of Figures

4.13	Radiation pattern of 16-element non-uniform linear array (NU1), main lobe = -5° to $+5^{\circ}$	148
4.14	Radiation pattern of 16-element non-uniform linear array (NU1), main lobe = -8° to $+8^{\circ}$	148
4.15	Radiation pattern of 16-element non-uniform linear array (NU1), main lobe = -10° to $+10^{\circ}$	149
4.16	Comparison of radiation pattern of 16-element array for uniform and non-uniform inter-element spacing, main lobe = -5° to $+5^{\circ}$	150
4.17	Comparison of radiation patterns of non-uniform and uniform linear array, $N = 16$, main lobe = -8° to $+8^{\circ}$	150
4.18	Comparison of radiation patterns of non-uniform and uniform linear array, $N = 16$, main lobe = -10° to $+10^{\circ}$	151
4.19	Comparison of radiation patterns of non-uniform linear array with uniform linear array, $N = 16$, main lobe = -5° to $+5^{\circ}$, length of array = 8 λ	151
4.20	Radiation pattern of NU3 non-uniform array, $N = 16$, main lobe region = -5° to $+5^{\circ}$	152
4.21	Radiation pattern of 16-element non-uniform array (NU3) with notch in the region from $+20^{\circ}$ to $+50^{\circ}$	153
4.22	A typical specification of a desired antenna array pattern	155
4.23	Pattern of 20-element linear array with half-wavelength inter- element spacing using linearly constrained least square algorithm (main lobe = 35° to 55°)	157
4.24	Radiation pattern of 32-element uniform array with 0.4λ inter- element spacing (main lobe = 35° to 55°)	158
4.25	Probe suppression in non-uniform 10-element linear array. The probing sources impinge at 20° and 120°. The desired source is shown as a solid arrow, whereas probing sources are shown as dashed arrows along the x-axis	163
4.26	Probe suppression in 16×10 uniform planar array. The probing sources impinge at 20° and -20° . The desired source is shown as a solid arrow, whereas probing sources are shown as dashed arrows along the <i>x</i> -axis	163
4.27	Suppression of three continuously distributed wideband probing sources (42°, 50° and 70° with 26%, 21% and 19% BW; Power ratio = 5, 10 and 100) in 16-element uniform linear array. The desired source is shown as a solid arrow, whereas probing sources are shown as dashed arrows along the <i>x</i> -axis	164
4.28	Adapted pattern of 16×10 antenna array. Two desired signals (20°, -20° ; 1, 1) and one probing source (60°; 100). The desired source is shown as a solid arrow, while probing sources are shown as dashed arrows along the <i>x</i> -axis	165

CAMBRIDGE

Cambridge University Press 978-1-107-09261-7 - Active Radar Cross Section Reduction: Theory and Applications Hema Singh and Rakesh Mohan Jha Frontmatter More information

	List of Figures	xvii
4.29	Adapted pattern of 16×10 array for two desired signals at (20°, -10° , power ratio of 1 each) and four probing sources at (-30°, 40°, 55°, 75°; 1000, 100, 100, 100). The desired source is shown as a solid arrow, while probing sources are marked as dashed arrows along the x-axis	165
4.30	Adapted beam pattern of 16×10 array for a signal scenario of four desired signals at $(20^\circ, -20^\circ, 60^\circ, -60^\circ; \text{ power ratio of 1 each})$ and 3 probing sources at $(40^\circ, -40^\circ, 0^\circ; 1000, 1000, 1000)$. The desired source is shown as a solid arrow, while probing sources are marked as dashed arrows along the x-axis	166
4.31	Suppression of one wideband source (-30° , 5%, 6 spectral lines) in the presence of three desired signals at (-50° , -10° , 30°) by a 16-element linear array. The desired source is shown as a solid arrow while probing sources are shown as dashed arrows along the <i>x</i> -axis	167
4.32	Adapted pattern of 16×10 planar array. Three desired signals at $(-60^\circ, 10^\circ, 30^\circ)$ and 3 wideband hostile sources at $(-25^\circ, 5\%, 6$ spectral lines; -35° , 2%, 3 spectral lines; -20° , 10% and 5 spectral lines). The desired source is shown as solid arrow, while probing sources are marked as dashed arrows along the x-axis	168
.33	Adapted beam pattern of a 10-element phased array with two desired $(-30^\circ, 0^\circ)$ and two probing sources $(30^\circ, 50^\circ)$. Signal probing at 30° is correlated to the desired signal impinging at -30° . Probing signal at 50° is wideband (5%, 6 spectral lines). $c = [1 \ 1 \ 0]$; the desired source is shown as a solid arrow, while probing sources are marked as dashed arrows along the x-axis	169
4.34	Adapted pattern of a 10-element array with two coherent desired signals (-20°, 20°) and one probing source (60°). Hostile source probing at 60° is wideband (15%, 9 lines; 5% and 6 lines), $c = [1 1 0]$; the desired source is shown as a solid arrow, while probing sources are marked as dashed arrows along the <i>x</i> -axis	170
.35	Adapted pattern of a 10-element array with four coherent desired signals (-20° , 20° , -40° , 40°) and two probing sources (-60° , 50°). Two probing sources (-60° and 50°) are uncorrelated and wideband (2%, 3 lines each), c = [1 1 0 0]. The desired source is shown as a solid arrow, while probing sources are marked as dashed arrows along the x-axis	170
4.36	Adapted beam pattern of a 10-element array with four coherent desired signals (-20°, 20°, -40°, 40°) and two wideband probing signals (-60°, 2%, 3 lines; 50°, 11%, 6 lines), $c = [1 \ 1 \ 0 \ 0]$; the desired source is shown as a solid arrow, while probing sources are marked as dashed arrows along the x-axis	171

xviii List of Figures

5.1	An <i>N</i> -element adaptive array	179
5.2	Representation of a phased array of N elements as a linear network	
	with $N + 1$ ports	
5.3	An array of N half-wavelength, centre-fed dipoles	182
5.4	Dependence of mutual impedance between two centre-fed $\lambda/2$	186
	dipoles on the dipole spacing	
5.5a	Magnitude of mutual impedance between half-wavelength, centre-	186
	fed dipoles in 6-element array	
5.5b	Phase of mutual impedance between half-wavelength, centre-fed	187
	dipoles in 6-element array. (i) Phase of Z_{12} , Z_{13} and Z_{14} (ii) Phase of	
	Z_{15} and Z_{16}	
5.6	Output SINR of a 6-element array of half-wavelength, centre-fed	188
	dipoles. $\xi_d = 5 \text{ dB}, d = 0.5\lambda$	
5.7	Effect of ratio of desired signal power to thermal noise power,	190
	ξ_d on output SINR of a 6-element array of half-wavelength,	
	centre-fed dipoles. (a) $\xi_d = 5 \text{ dB}$, (b) $\xi_d = 10 \text{ dB}$, (c) $\xi_d = 20 \text{ dB}$ (d)	
	Characteristic curves	
5.8a	Effect of number of antenna elements on output SINR of an array of	190
	$\lambda/2$, centre-fed dipoles; $\xi_d = 10 \text{ dB}$, $d = 0.5 \lambda$, $\theta_d = 90^{\circ}$	
5.8b	Effect of the ratio of desired signal power to thermal noise power on	191
	output SINR of centre-fed $\lambda/2$ dipole array; $d = 0.5 \lambda$, $\theta_d = 90^\circ$ (i) ξ_d	
	= 20 dB(ii) ξ_d = 40 dB	
5.9	Effect of inter-element spacing on output SINR of a 16-element	192
	array of half-wavelength, centre-fed dipoles; $\xi_d = 10 \text{ dB}$, $\theta_d = 90^{\circ}$	
5.10	Output SINR of a 32-element array of half-wavelength dipole.	192
	$(\theta_{,\prime}\phi_{,\prime}) = (90^{\circ},0^{\circ})$	
5.11	Output SINR of a 6-element array of half-wavelength, centre-fed	193
	dipoles of fixed aperture	
5.12	Non-unity eigenvalues of a 6-element array of half-wavelength,	194
	centre-fed dipoles. One desired signal and two probing signals. (10	
	dB, 0°; 20 dB, 30°; 30 dB, -45°)	
5.13	Schematic of parallel-in-echelon configuration of a dipole array	194
5.14	Schematic of parallel-in-echelon configuration for three different	196
	cases. (a) non-staggered ($h = -\lambda/4$), (b) staggered by $h = 0$, (c)	
	staggered by $h = \lambda/4$	
5.15	Mutual coupling resistance, reactance and impedance for two	197
	parallel half-wavelength dipole antennas, non-staggered	
5.16	Mutual coupling resistance, reactance and impedance for two	197
	parallel half-wavelength antennas, staggered by $h = 0$	
5.17	Mutual coupling resistance, reactance and impedance for two	198
	parallel half-wavelength antennas, staggered by $h = \lambda/4$	

		List of Figures	Ι	xix
5.18	Output SINR of a 10-element echelon array of half-wavelength, centre-fed dipoles. $\sigma_d = 10 \text{ dB}$, $\theta_d = 90^\circ$, $d = 0.5\lambda$ (a) non-staggered, (b) staggered by $h = 0$, (c) staggered by $h = \lambda/4$			198
5.19	Mutual resistance, reactance and impedance between half- wavelength, centre-fed dipoles in 6-element echelon array. (a) Z_{12} , (Z_{13} , (c) Z_{14} , (d) Z_{15} , (e) Z_{16} , (f) $ Z $	b)		199
5.20	Mutual resistance, reactance and impedance between half- wavelength, centre-fed dipoles in 6-element echelon array. (a) $h = 0.25\lambda$, (b) $h = 0.5\lambda$, (c) $h = \lambda$			200
5.21	Mutual resistance, mutual reactance and mutual impedance betwee half-wavelength, centre-fed dipoles in 2-element echelon array for λ = 0.5 λ			201
5.22	Output SINR of a 10-element $\lambda/2$ centre-fed equal-length dipole array			202
5.23	Effect of σ_d on output SINR of a 10-element echelon array of half- wavelength, centre-fed dipoles. (a) $\sigma_d = 10 \text{ dB}$, (b) $\sigma_d = 20 \text{ dB}$, (c) $\sigma_d = 40 \text{ dB}$. d		202
5.24	Effect of number of antenna elements on output SINR of a 10-element equal-length echelon array of half-wavelength, centre-fe dipoles; $\sigma_d = 10 \text{ dB}$, $d = 0.5 \lambda$, $\theta_d = 90^\circ$. (a) $N = 10$, (b) $N = 64$, (c) $R = 256$, (d) $N = 512$			203
5.25	Effect of inter-element spacing on output SINR of a 10-element echelon array of half-wavelength, centre-fed dipoles; $\sigma_d = 10 \text{ dB}$, $\theta_d = 90^\circ$			204
5.26	Effect of height <i>h</i> on output SINR of a 10-element echelon array half-wavelength, centre-fed dipoles; $\sigma_d = 10 \text{ dB}$, $\theta_d = 90^\circ$	of		204
5.27	Effect of number of elements on output SINR for different number of elements in echelon array of half-wavelength, centre-fed dipoles; $\sigma_d = 10 \text{ dB}, (\theta_a, \Phi_d) = (90^\circ, 0^\circ).$ (a) $N = 10$, (b) $N = 64$, (c) $N = 256$			205
5.28))		206
5.29a	Effect of σ_d on output SINR of a 10-element echelon array of half- wavelength, centre-fed dipoles; $\sigma_d = 10 \text{ dB}$, $(\theta_d, \Phi_d) = (90^\circ, 0^\circ)$. (i) $\sigma_d = 10 \text{ dB}$, (ii) $\sigma_d = 40 \text{ dB}$	- d		207
5.29b	Effect of the number of elements on output SINR in echelon array of half-wavelength, centre-fed dipoles; $\sigma_d = 10 \text{ dB}$, $(\theta_d, \Phi_d) = (90^\circ, 0^\circ, 0^\circ, 0^\circ, 0^\circ, 0^\circ, 0^\circ, 0^\circ, $	').		207
5.30	Effect of the number of elements on output SINR of an echelon array of half-wavelength, centre-fed dipoles; $\sigma_{d} = 10$ dB, aperture = 2 λ	у		208

xx List of Figures

5.31	Mutual coupling resistance, reactance and impedance for two parallel unequal-length antennas of length $\lambda/2$ and $\lambda/3$. (a) non-	209
	staggered (b) staggered by $h = 0$ (c) staggered by $h = \lambda/4$	
5.32	Output SINR for a 10-element echelon array having an alternate	210
	length of $\lambda/2$ and $\lambda/3$ (a) non staggered (b) staggered by $h = 0$, (c) staggered by $h = \lambda/4$	
5.33	Effect of desired signal direction on output SINR for different	211
	number of elements in echelon array having an alternate length of	
	$\lambda/2$ and $\lambda/3$ (a) non-staggered (b) staggered by $h = 0$, (c) staggered	
	by $h = \lambda/4$	
5.34	Effect of the number of elements on output SINR for an echelon	212
	array having an alternate length of $\lambda/2$ and $\lambda/3$ (a) non-staggered (b)	
	staggered by $h = 0$, (c) staggered by $h = \lambda/4$	
5.35	Effect of desired signal direction on the output SINR for a 10-element	213
,,	quarter-wavelength echelon array; $\sigma_d = 10 \text{ dB}$, $(\theta_a, \Phi_d) = (90^\circ, 0^\circ)$, $d =$	
	quarter wavelength centron analy, $\delta_d = 10$ dB, $(\delta_d + \delta_d) = (00, 0)$, $\alpha = \lambda/2$, (a) $h = \lambda/4$, (b) $h = \lambda/2$	
6.1	Typical series-fed network of phased array	218
6.2	Impedances at different stages in a series-fed network	221
6.3	Schematic of dipole array (a) Side-by-side configuration, (b)	221
0.0	Collinear configuration, (c) Parallel-in-echelon configuration	
6.4	A four-port coupler with the transmission coefficient, $\tau_{c_{\rm c}}$, and the	223
0.1	coupling, j_{κ_n} , coefficient	
6.5	Signal reflection from the radiating element	224
6.6	Signal reflection at the phase-shifter	225
6.7	Signal reflection at the coupling port of the coupler	225
6.8	Path of the signal travelling towards the n^{th} antenna element	227
6.9	Path of the signal travelling towards the n^{th} element from the previous	229
	(n-1) elements	
6.10	Path of the signal travelling towards the load terminating its own	229
	coupler	
6.11	Path of the signal travelling towards the load terminating the input	230
	port	
6.12	RCS pattern of a 50-element series-fed phased array. $\theta_{e} = 0^{\circ}, \psi =$	232
	$\pi/2$, $d = 0.4\lambda$, $l = 0.5\lambda$ and $\rho_r = \rho_p = \rho_c = \rho_l = 0.2$; uniform unit	
	amplitude distribution	
6.13	RCS of series-fed linear dipole array. $N = 50$, $\theta_c = 0^\circ$, $\psi = \pi/2$, d	233
	= 0.4 λ and l = 0.003 λ and $\rho_r = \rho_\rho = \rho_c = \rho_l = 0.2$; uniform unit	
	amplitude distribution	
6.14	Effect of spacing between antenna elements on RCS of 50-element	234
	linear dipole array with series-fed network. $\theta_s = 0^\circ$, $\psi = \pi/2$, $l = 0.488\lambda$	
	and $\rho_r = \rho_\rho = \rho_c = \rho_l = 0.2$; uniform unit amplitude distribution	

	List of Fig	lures	xxi
6.15	RCS of series-fed linear dipole array. $N = 30$, $\theta_s = 0^\circ$, $d = 0.4\lambda$, $l = 0.5\lambda$ and $\rho = 0.2$		235
6.16	RCS of series-fed 30-element linear dipole array. $\theta_s = 0^\circ$, $d = 0.4\lambda$, $l = 0.5\lambda$ and $\rho = 0.2$		236
6.17	RCS of 20-element series-fed linear dipole array in side-by-side configuration		236
6.18	RCS of series-fed linear collinear dipole array of $N = 30$, $\psi = \pi/2$, $d = 0.1\lambda$, $l = 0.5\lambda$, $a = 10^{-5}\lambda$, $Z_0=75 \Omega$ and $Z_l=150 \Omega$; unit amplitude uniform distribution		237
6.19	RCS of series-fed linear parallel-in-echelon dipole array of $N = 30$, $\psi = \pi/2$, $d = 0.1\lambda$, $l = 0.5\lambda$, $a = 10^{-5}\lambda$, $Z_0 = 125 \Omega$ and $Z_l = 235 \Omega$; unit amplitude uniform distribution		238
6.20	-		239
6.21	Effect of dipole length on RCS of 30-element series-fed linear parallel-in- echelon dipole array		240
6.22	Effect of amplitude distribution on RCS of 30-element series-fed dipole array		241
6.23	Effect of terminating impedance on RCS of 30-element series-fed linear dipole array at $\theta_{i} = 0^{\circ}$		242
6.24	Effect of terminating impedance on RCS of 30-element series-fed linear array at $\theta = 50^{\circ}$		242
7.1	Direction of arrival (DOA) mismatch in adaptive arrays		246
7.2	Generalised sidelobe canceller (GSC)		247
7.3	Schematic of decision feedback-generalised sidelobe canceller (DF–GSC)		250
7.4	Output SINR of GSC and DF–GSC in signal environment consisting of three probing sources (30°, 60°, –25°; 20 dB each)		252
7.5	Adapted pattern for GSC and DF–GSC with one desired source $(0^\circ, 0 \text{ dB})$ and three probing sources $(30^\circ, 60^\circ, -25^\circ; 20 \text{ dB} \text{ each})$. The desired source is marked as a solid arrow, while probing sources are shown as dashed arrows along the x-axis		252
7.6	Learning curves for GSC and DF–GSC for the same SINR		253
7.7	Steady-state SINR performance in different SNR environments		253
7.8	Learning curves for GSC in the presence of DOA mismatch utilising point and first-order derivative constraint		257
7.9	Learning curves for DF–GSC with DOA mismatch. (a) Point constraint only (b) First-order derivative constraint		258
7.10	Blind adaptation scheme		259
7.11	Steps in blind adaptation in sidelobe canceller		260

xxii List of Figures

7.12	Algorithm for Blind DF–GSC	260
7.13	Output noise power of Blind DF–GSC	262
7.14	Adapted pattern of Blind DF–GSC for three probing signals (50°,	262
	20°, –35°). The desired source is shown as a solid arrow, while	
	probing sources are marked as dashed arrows along the <i>x</i> -axis	
7.15	Adapted pattern of Blind DF–GSC for three closely spaced probing	263
	signals (35°, 48°, 65°). The desired source is shown as a solid arrow,	
	while probing sources are marked as dashed arrows along the <i>x</i> -axis	
7.16	Output noise power of Semi-blind DF–GSC	263
7.17	Adapted pattern of Semi-blind DF–GSC for three probing signals	264
	(-35°, 20°, 50°; 20 dB). The desired source is shown as a solid arrow,	
	while probing sources are marked as dashed arrows along the <i>x</i> -axis	
7.18	Comparison of performance of Semi-blind DF-GSC and Blind DF-	264
	GSC for single desired signal (0°) and three probing sources(-35°,	
	20°, 50°; 20 dB)	
7.19	Comparison of suppression capabilities of Semi-blind DF–GSC and	265
	Blind DF-GSC. The desired source is shown as a solid arrow, while	
	probing sources are marked as dashed arrows along the <i>x</i> -axis	
A.1	Network equivalent of an array of two identical antenna elements	285
A.2	Schematic of an array of two identical elements	286
A.3	Side-by-side configuration of two identical dipole antennas of length <i>l</i>	289
B.1	Schematic of echelon dipole array	291
D.1	Coupling and transmission coefficients of the couplers	297

List of Abbreviations

AMC Artificial magnetic conductors frequency physics and ra	
AWGN Additive white gaussian noise techniques	
CFRP Carbon fibre reinforced polymer FPGA Field programmable gate array	r
CLAS Conformal load-bearing antenna FSS Frequency selective surface	
structure GA Genetic algorithm	
CNT Carbon nanotube GA-CG Genetic algorithm and conjug	gate
DC Direct current gradient	
DDD Direct data domain GFRP Glass fibre reinforced polymer	
DF-GSC Decision feedback sidelobe GO Geometrical optics	
canceller GSC Generalised sidelobe canceller	
DNG Double negative GTD Geometrical theory of diffract	ion
DOA Direction-of-arrival HF High frequency	
DOF Degree of freedom INR Interference to noise ratio	
DPS Double positive LCMP Linearly constrained minim	um
EBG Electronic band gap power	
ECM Equivalent currents method LCMV Linearly constrained minim	um
EM Electromagnetic variance	
EMC Electromagnetic compatibility LHM Left handed material	
EMI Electromagnetic interference LMS Least mean square	
ENG Epsilon negative LP Linear programming	
ERAKO Electronic radar with conformal LS Least squares	
array antenna MMSE Minimum mean square error	
ESPRIT Estimation of signal parameters MNG Mu negative	
via rotational invariance MoM Method of moments	
techniques MSE Mean square error	
FDMA Frequency division multiple access MUSIC Multiple signal classification	
FDTD Finite difference time domain NLMS Normalised least mean square	
FEM Finite element method NU Non-uniform	
FHC Filled-hole-compression NURBS Non-uniform rational B-splin	e

xxiv List of Abbreviations

OHC	Open-hole-compression	RLS	Recursive least square
OML	Outer mould line	RMIM	Receiving-mutual impedance
PEC	Perfect electric conductor		method
PMC	Perfect magnetic conductor	SINR	Signal-to-noise-interference-ratio
PO	Physical optics	SLL	Sidelobe level
PSLL	Peak sidelobe level	SMI	Sample matrix inversion
PSO	Particle swarm optimisation	SMILE	Scheme for spatial multiplexing of
QFRP	Quartz fibre reinforced polymer		local elements
QPSK	Quadrature phase-shift keying	SNR	Signal to noise ratio
QRD	QR decomposition	TDMA	Time division multiple access
RAM	Radar absorbing material	TE	Transverse electric
RAS	Radar absorbing structure	ТМ	Transverse magnetic
RCS	Radar cross section	UAV	Unmanned aerial vehicle
RCSR	Radar cross section reduction	UHF	Ultra high frequency
RF	Radio frequency	UTD	Uniform theory of diffraction
RHM	Right handed material	UWB	Ultra wideband

Preface

Logic will get you from A to Z; imagination will take you everywhere.

- Anonymous

Evading detection by radar has been one of the fascinating topics in aerospace engineering. Initial intuitive attempts towards achieving low-observable platforms, such as fighter aircraft, unmanned aircraft, missiles and even battle ships, came from the application of radar absorbing materials (RAM) and shaping to reduce the radar cross section (RCS) of the platform.

These efforts on RAM design have continued since 1940s. Likewise, the efforts on shaping have run parallel to the developments in the theory of electromagnetic (EM) scattering and diffraction. The edge-diffraction EM formulations of 1960s resulted in the ongoing efforts in 1970s towards eventual realisation of the Lockheed F-117 *Nighthawk*; this fighter aircraft was characterised by the faceted planar exterior for RCS reduction. Likewise, the subsequent standardisation of the EM curved surface-diffraction formulations reflected in the blended Northrop Grumman B-2 *Spirit* bomber aircraft structure in 1980s.

However, it must be understood that both the shaping and RAM were in the domain of passive RCS reduction (RCSR). Once these concepts were formalised, it became apparent that these essentially catered to the narrowband RCSR. The radar had to merely switch or scan over a wider frequency range to overcome the stealth strategies of the low observables.

Thus there is a need for broadbanding the electromagnetic design for airborne and naval structures. The desire is to evade detection for any incoming radar frequency, polarisation and direction of arrival. Indeed, the fervent wish list is to "some-how" sense and generate an anti-wave for cancellation. This is the essence of active radar cross section reduction (RCSR).

Active RCSR towards realisation of low-observable platforms hinges on the integration of (i) active antenna elements, (ii) onboard/airborne antenna analysis, and (iii) conformal EM analysis.

The onboard/ airborne antenna analysis formulations have matured over the last three decades. The conformal antennas provide the advantage of least obscuration and conflict with competing aerodynamic requirements. Conformal antenna studies have been actively carried out for last four decades. However, over the last ten years, the modern conformal antenna theory appears to have been systematised.

The active antenna elements have been extensively studied over the last two decades. Indeed the phased antenna arrays provide one, albeit not the only, route to generate adaptive patterns xxvi Preface

towards active RCSR. Thus, it is our contention that active RCSR is an idea whose time has come!

The Centre for Electromagnetics (CEM), to which these authors are affiliated, has an active commitment towards RCS studies. Since RAM was once considered as a "highly classified area", we at the CEM took the initiative to demystify this topic in the form of a book:

Vinoy, K.J. and R.M. Jha, *Radar Absorbing Materials: From Theory to Design and Characterisation*. Kluwer Academic Publishers, Norwell, Boston, USA, ISBN: 0792 397 533, 209 p., 1996.

The book in your hand is the second in this trilogy.

For the reasons discussed above, the emphasis in this book is on the phased antenna array analysis and algorithms as applied to active RCSR. All aspects, including mutual coupling, which takes one towards viable technological realisation of active RCSR, are discussed in details.

However, the end goal of this book is the low-observable platforms. Hence apart for the phased antenna arrays, advancement in the RAM design, plasma stealth, active FSS elements and metamaterial designs are also discussed as a parallel stream of concept.

Hema Singh Rakesh Mohan Jha

Acknowledgements

We would like to sincerely thank Mr Shyam Chetty, Director, CSIR-National Aerospace Laboratories (NAL), Bangalore for his continued support for the various activities of the Centre for Electromagnetics, and for the formal permission to write this book.

Thanks are also due to Dr U. N. Sinha, Distinguished Scientist, CSIR, for his constant encouragement to take up this endeavour and complete the manuscript at the earliest.

The authors are also affiliated to the Academy of Scientific and Innovative Research (AcSIR), New Delhi, a deemed university. It is a pleasu re to acknowledge the numerous interactions with Prof. Nagesh Iyer, Acting Director, AcSIR, who has often stressed that lateral thinking and innovation should be the corner stone for CSIR scientists and academicians.

The cautionary notes, not necessarily pessimistic, were often rung by Prof. P. R. Mahapatra (radar signal processing) and Prof. Dipankar Banerjee (advanced material technologies), two of the stalwarts from Indian Institute of Science (IISc) Bangalore. We assure them that every suggestion they made was considered carefully while developing this novel idea of active RCSR.

The Centre for Electromagnetics (CEM) has been fortunate to have several scientists with varied expertise. We take particular pleasure in acknowledging constant professional interactions and technical discussions with Dr R. U. Nair (radomes & EM material characterisation), Dr Shiv Narayan (FSS and metamaterials) and Dr Balamati Choudhury (metamaterials and EM soft computing).We would also like to mention the experimental support received from Mr K. S. Venu, Technical Officer, CEM.

We also take this opportunity to thank our CEM collaborator Mr Jason P. Bommer, Manager, Boeing R&T Seattle, WA, USA. Our collaborative work on aircraft RF simulations, which has been extensively published, finds a perspective in this book in the context of absorbers and metamaterials. We would also like to thank Mr Jason Bommer for facilitating interesting and stimulating discussions with some of the pioneers in metamaterials at Boeing R&T, Seattle.

Writing a voluminous book is never easy. We would like to thank Ms Arya Menon, currently at the CEM, CSIR-NAL for going through parts of the manuscript to help us reduce the syntax errors.

It is a pleasure to acknowledge the encouragement and support received from Mr Manish Choudhary, Commissioning Editor, Cambridge University Press, India.

Hema Singh would like to thank her daughter Ishita and parents for their constant cooperation and encouragement during the preparation of the book. She would also like to acknowledge her xxviii Acknowledgements

brothers Rajeev, Sanjeev, Sandeep, and their spouses for their immense support and belief in completing this book.

R. M. Jha would like to thank his wife Renu and daughter Vishnupriya for their constant understanding and support during the writing of this book. He would also like to acknowledge his daughter Kanupriya Vazandar and her spouse Vishal Vazandar for the sheer excitement and enthusiasm that they exuded towards this endeavour.

> Hema Singh Rakesh Mohan Jha