

Optimization in Chemical Engineering

Optimization is used to determine the most appropriate value of variables under given conditions. The primary focus of using optimization techniques is to measure the maximum or minimum value of a function depending on the circumstances. Any engineering discipline involving design, maintenance and manufacturing requires certain technical decisions to be taken at different stages. The primary outcome of taking these decisions is to maximize the profit with minimum utilization of resources.

This book presents a detailed explanation of problem formulation and problem solving with the help of algorithms such as secant method, Quasi-Newton method, linear programming and dynamic programming. It covers important chemical processes such as fluid flow systems, heat exchangers, chemical reactor and distillation systems with the help of solved examples.

It begins by explaining the fundamental concepts followed by an elucidation of various modern techniques including trust-region methods, Levenberg-Marquardt algorithms, stochastic optimization, simulated annealing and statistical optimization. It studies multi-objective optimization technique and its applications in chemical engineering. The knowledge of such a technique is necessary as most chemical processes are multiple input and multiple output systems.

The book also discusses theory and applications of various optimization software tools including LINGO, MATLAB, MINITAB and GAMS. It is designed as a coursebook for undergraduate and postgraduate students of chemical engineering and allied branches including biotechnology, food technology, petroleum engineering and environmental science.

Suman Dutta is Assistant Professor at the Department of Chemical Engineering, Indian School of Mines, Dhanbad. He was a visiting researcher at the Centre for Water Science in Cranfield University, UK. He teaches courses on chemical engineering thermodynamics, chemical reaction engineering, fluid mechanics, process modeling and optimization and process instrumentation and control. His areas of research include wastewater treatment, membrane technology, advanced oxidation process, photocatalysis, process simulation and optimization.

Optimization in Chemical Engineering

Suman Dutta

CAMBRIDGEUNIVERSITY PRESS

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107091238

© Suman Dutta 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in India

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-09123-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To my father Late Sukumar Dutta and God almighty

List of Figures

Cambridge University Press 978-1-107-09123-8 - Optimization in Chemical Engineering Suman Dutta Frontmatter More information

Contents

List	List of Figures			xiii	
List	List of Tables				
Prej	Preface				
1.	A Brie	ef Discu	ssion on Optimization		
	1.1	Introdu	action to Process Optimization	1	
	1.2	Statem	ent of an Optimization Problem	2	
	1.3	Classifi	cation of Optimization Problems	3	
	1.4	Salient	Feature of Optimization	8	
	1.5	Applica	ations of Optimization in Chemical Engineering	9	
	1.6	Comp	nter Application for Optimization Problems	10	
Sun	ımary			10	
Rev	iew Que	estions		10	
References					
2.	Form	ulation	of Optimization Problems in Chemical and Biochemical Engineering		
	2.1	Introdu	action	12	
	2.2	Formu	ation of Optimization Problem	12	
	2.3	Fluid F	low System	13	
		2.3.1	Optimization of liquid storage tank	13	
		2.3.2	Optimization of pump configurations	14	
	2.4	System	s with Chemical Reaction	17	
		2.4.1	Optimization of product concentration during chain reaction	18	
		2.4.2	Optimization of gluconic acid production	20	
	2.5	Optim	zation of Heat Transport System	21	
		2.5.1	Calculation of optimum insulation thickness	21	
		2.5.2	Optimization of simple heat exchanger network	24	
		2.5.3	Maximum temperature for two rotating cylinders	26	
	2.6	Calcula	tion of Optimum Cost of an Alloy using LP Problem	28	

viii	• (Contents		
	2.7	Optin	nization of Biological Wastewater Treatment Plant	30
	2.8	Calcu	lation of Minimum Error in Least Squares Method	31
	2.9	Deter	mination of Chemical Equilibrium	33
Sun	nmary			35
Exe	rcise			35
Refe	erences			39
3.	Sing	le Varial	ble Unconstrained Optimization Methods	
	3.1	Introd	duction	40
	3.2	Optin	nization of Single Variable Function	41
		3.2.1	Criteria for optimization	41
		3.2.2	Classification of unconstrained minimization methods	47
	3.3	Direct	t Search Methods	48
		3.3.1	Finding a bracket for a minimum	48
		3.3.2	Unrestricted search method	49
		3.3.3	Exhaustive search	51
		3.3.4	Dichotomous search	53
		3.3.5	Interval halving method	56
		3.3.6	Fibonacci method	59
		3.3.7	Golden section method	62
	3.4	Direct	t Root Methods	64
		3.4.1	Newton method	65
		3.4.2	Quasi-Newton method	66
		3.4.3	Secant method	67
	3.5	Polyn	omial Approximation Methods	68
		3.5.1	Quadratic interpolation	69
		3.5.2	Cubic interpolation	70
Sun	nmary			72
Exe	rcise			72
Refe	erences			73
4.	Trus	t-Regio	n Methods	
	4.1	Introd	duction	74
	4.2	Basic '	Trust-Region Method	75
		4.2.1	Problem statement	75
		4.2.2	Trust-Region radius	76
		4.2.3	Trust-Region subproblem	78
		4.2.4	Trust-Region fidelity	78

				Contents • i
	4.3	Trust-	Region Methods for Unconstrained Optimization	79
	4.4	Trust-	Region Methods for Constrained Optimization	80
	4.5		ining with Other Techniques	82
	4.6		nation Criteria	83
	4.7	Comp	arison of Trust-Region and Line-Search	83
Sum	ımary		-	84
Exer	cise			84
Refe	rences			84
5.	Opti	nizatio	n of Unconstrained Multivariable Functions	
	5.1	Introd	uction	86
	5.2	Formu	ulation of Unconstrained Optimization	87
	5.3	Direct	Search Method	87
		5.3.1	Random search methods	87
		5.3.2	Grid search method	90
		5.3.3	Univariate method	93
		5.3.4	Pattern search methods	94
	5.4	Gradie	ent Search Method	99
		5.4.1	Steepest descent (Cauchy) method	100
		5.4.2	Conjugate gradient (Fletcher–Reeves) method	102
		5.4.3	Newton's method	104
		5.4.4	Marquardt method	106
		5.4.5	Quasi-Newton method	109
		5.4.6	Broydon-Fletcher-Goldfrab-Shanno method	113
	5.5	Levenl	berg–Marquardt Algorithm	114
Sum	ımary			116
Revi	iew Qu	estions		116
Refe	rences			117
6.	Multi	variabl	e Optimization with Constraints	
	6.1	Formu	lation of Constrained Optimization	119
	6.2	Linear	Programming	122
		6.2.1	Formulation of linear programming problems	122
		6.2.2	Simplex method	127
		6.2.3	Nonsimplex methods	133
		6.2.4	Integer linear programming	139
	6.3	Nonlii	near Programming with Constraints	144
		6.3.1	Problems with equality constraints	144

Х	• Con	ntents		
		6.3.2	Problems with inequality constraints	149
		6.3.3	Convex optimization problems	151
Sun	nmary			154
Rev	iew Qu	estions		154
Refe	erences			156
7.	Optin	nizatio	n of Staged and Discrete Processes	
	7.1	Dynar	nic Programming	157
		7.1.1	Components of dynamic programming	158
		7.1.2	Theory of dynamic programming	159
		7.1.3	Description of a multistage decision process	160
	7.2	Intege	r and Mixed Integer Programming	166
		7.2.1	Formulation of MINLP	167
		7.2.2	Generalized Benders Decomposition	169
Sun	nmary			176
Exe	rcise			176
Refe	erences			178
8.	Some	Advan	ced Topics on Optimization	
	8.1	Stocha	astic Optimization	180
		8.1.1	Uncertainties in process industries	180
		8.1.2	Basic concept of probability theory	182
		8.1.3	Stochastic linear programming	186
		8.1.4	Stochastic nonlinear programming	191
	8.2	Multi-	Objective Optimization	193
		8.2.1	Basic theory of multi-objective optimization	197
		8.2.2	Multi-objective optimization applications in chemical engineering	202
	8.3	Optim	nization in Control Engineering	206
		8.3.1	Real time optimization	206
		8.3.2	Optimal control of a batch reactor	208
		8.3.3	Optimal regulatory control system	212
		8.3.4	Dynamic matrix control	214
Sun	nmary			218
Rev	iew Qu	estions		218
Refe	erences			219
9.	Nont		nal Optimization	
	9.1	Genet	ic Algorithm	222

9.1.1 Working principle of GAs

223

				Contents	•	хi
		9.1.2	Termination		22	28
9	0.2	Particle	Swarm Optimization		22	29
		9.2.1	Working principle		23	30
		9.2.2	Algorithm		23	31
		9.2.3	Initialization		23	31
		9.2.4	Variants of PSO		23	32
		9.2.5	Stopping criteria		23	35
		9.2.6	Swarm communication topology		23	36
9	0.3	Differe	ntial Evolution		24	41
		9.3.1	DE algorithm		24	41
		9.3.2	Initialization		24	42
		9.3.3	Mutation		24	43
		9.3.4	Crossover		24	44
		9.3.5	Selection		24	45
9	0.4	Simula	ted Annealing		24	45
		9.4.1	Procedure		24	46
		9.4.2	Applications of SA in chemical engineering		25	53
Sumn	nary				25	53
Exerci	ise				25	54
Refere	nces				25	55
10. (Optin	nization	of Various Chemical and Biochemical Processes			
1	10.1	Heat E	xchanger Network Optimization		25	58
		10.1.1	Superstructure		25	59
		10.1.2	Problem statement		20	60
		10.1.3	Model formulation		20	60
1	10.2	Distilla	tion System Optimization		20	63
1	10.3	Reactor	Network Optimization		20	67
1	10.4	Parame	ter Estimation in Chemical Engineering		27	71
		10.4.1	Derivation of objective function		27	71
		10.4.2	Parameter estimation of dynamic system		27	73
1	10.5	Enviro	nmental Application		27	76
Sumn	nary				28	81
Reviei	w Que	estions			28	81
Refere	nces				28	82

xii • Contents

11. Sta	tistical Optimization	
11.	1 Design of Experiment	284
	11.1.1 Stages of DOE	285
	11.1.2 Principle of DOE	286
	11.1.3 ANOVA study	289
	11.1.4 Types of experimental design	291
11.	2 Response Surface Methodology	296
	11.2.1 Analysis of a second order response surface	301
	11.2.2 Optimization of multiple response processes	303
Summar	^o y	305
Review (Questions	305
Reference	es	305
12. Sof	ftware Tools for Optimization Processes	
12.	1 LINGO	307
12.	2 MATLAB	316
12.	3 MINITAB®	323
12.	4 GAMS	333
Summar	<i>"</i>	342
Review (Questions	342
Reference	es	342
Multiple	e Choice Questions – 1	343
Multiple	e Choice Questions – 2	349
Multiple	e Choice Questions – 3	355
Index		359

List of Figures

1.1	Convex function	4
1.2	Concave function	5
1.3	Local and global optimum points	6
1.4	Classification of optimization problem	7
1.5	Conversion of $f(x)$ to $-f(x)$	8
1.6	Plot of objective function vs. decision variable	8
2.1	Liquid storage tank	13
2.2	Configuration of an L level pump network	15
2.3	Concentration vs. time plot for a series reaction in PFR	18
2.4	Objectives used during optimization of gluconic acid production	21
2.5	Changes of heat flux with insulation thickness	22
2.6	Heat exchanger network with three heat exchangers	24
2.7	Rotating cylinder (with temperature and velocity profile)	26
2.8	Biological wastewater treatment plant	30
2.9	Least square method	31
3.1	Global and relative optimum points	41
3.2	Undefined derivative at x^*	43
3.3	Inflection or saddle point	44
3.4	Unimodal functions	47
3.5	Work done vs. intermediate pressure graph	51
3.6	Exhaustive search (see Example 3.3)	52
3.7	Interval halving method	57
3.8	Convergence process of Newton method	66
3.9	Convergence process of secant method	67
3.10	Quadratic interpolation	70
4.1	Trust region	77
5.1	Contour representation for random jumping method	88
5.2	Contour representation for grid search method	91
5.3	Contour representation for Cr(VI) removal	92
5.4	Contour for quadratic function	94
5.5	Pattern search method	94
5.6	Gradient search method	99

xiv • List of Figures

5.7	Direction of movement of any point	100
6.1	Graphical representation of feasible region	120
6.2	Constrained optimization problem	120
6.3	Unbounded feasible region	121
6.4	Graphical representation of problem 6.12a–6.12d	127
6.5	Ellipsoid method	135
6.6	Interior point method	136
6.7	Karmarkar's region inversion	137
6.8	Integer linear programming	140
7.1	Single-stage decision process	161
7.2	Multi-stage decision process	161
7.3	The annual net profit vs. time plot	163
7.4	Representation of 5 stage dynamic programming	164
7.5	Generalized Benders Decomposition method	175
8.1	Fluidization column	181
8.2	Multi-objective optimization	195
8.3	Pareto optimal set	195
8.4	Utopia point	196
8.5(a)	Convex objective space	199
8.5(b)	Non-convex objective space	199
8.6	Flowchart for evolutionary algorithm	201
8.7	Utopia-tracking approach	202
8.8	PID controller as MOO problem	205
8.9	Plant decision hierarchy	207
9.1	Parent chromosomes	226
9.2	Single point crossover	226
9.3	Multipoint crossover	226
9.4	Mutation operation	227
9.5	Flowchart of genetic algorithm	228
9.6	Movement of particles in PSO	230
9.7(a)	von Neumann topology	236
9.7(b)	Star topology	236
9.7(c)	Wheel topology	237
9.7(d)	Circle topology	237
9.7e	Pyramid topology	237
9.8	Flowchart for differential algorithm	242
9.9	Flowchart of simulated annealing	247
9.10	Probability of accepting vs temperature plot	253
10.1	HEN superstructure	259
10.2	Continuous distillation column	264
10.3	Reactor network superstructure	269
11.1	Full factorial design with three variables	292
11.2	Fractional factorial design with three variables	292

		List of Figures ● XV
11.3	Central composite design	294
11.4	Box–Behnken design	295
11.5(a)	Response surface formed from Eq. 11.22a	298
11.5(b)	Contour representation of Fig. 11.5a	299
11.6(a)	Response surface formed from Eq. 11.22b	299
11.6(b)	Contour representation of Fig. 11.6a	300
11.7(a)	Response surface formed from Eq. 11.22c	300
11.7(b)	Contour representation of Fig. 11.7a	301
12.1	LINGO main window	308
12.2	Lingo Model-Lingo1 window with a maximization model	309
12.3	Toolbar of LINGO	309
12.4	LINGO error message box	309
12.5	Solver status window	310
12.6	LINGO solution report window	311
12.7	LINGO solver status window	315
12.8	Plot of objective 1 and objective 2	321
12.9	Pareto front for obj1 and obj2	322
12.10	MINITAB main window	324
12.11	MINITAB window for selecting DOE	325
12.12	MINITAB window with B–B design	326
12.13	MINITAB window with data for B-B design	327
12.14	MINITAB window for analyzing the response surface design	328
12.15	MINITAB window for selecting "response"	328
12.16	MINITAB window with results	329
12.17(a)	Response surface of Eq. 12.2 at $pH = 0$	330
12.17(b)	Response surface of Eq. 12.2 at TiO2 = 0	331
12.17(c)	Response surface of Eq. 12.2 at Time = 0	331
12.18(a)	Contour of the response Eq. 12.2 at $pH = 0$	332
12.18(b)	Contour of the response Eq. 12.2 at $TiO2 = 0$	332
12.18(c)	Contour of the response Eq. 12.2 at Time = 0	333
12.19	Main window of GAMS	334

List of Tables

2.1	Composition and cost of copper alloys	29
3.1	Values of stationary points	46
3.2	Values of successive iterations with accelerated step size	50
3.3	The available interval of uncertainty after different trials	52
3.4	Work done with different intermediate pressure (Exhaustive search method)	53
3.5	Final intervals of uncertainty for different pairs of experiments	54
3.6	Final interval of uncertainty by golden section method	63
5.1	Value of objective function at different grid points	92
6.1	Subproblems for branch and bound method	143
6.2	Results of the subproblems in Table 6.1	143
7.1	Values of the decision variables (as per Eq. 7.14)	164
7.2	Values of the decision variables (as per Eq. 7.15)	165
7.3	Values of the decision variables (as per Eq. 7.16)	165
7.4	Values of the decision variables (as per Eq. 7.17)	165
7.5	Values of the decision variables (as per Eq. 7.18)	166
8.1	Number of worker present with probability	185
9.1	Decimal to binary conversion	224
9.2	Single and multiple point crossover	227
9.3	Chromosomes after crossover	227
9.4	Calculated values of different iteration	252
11.1	Single factor experiment with 5 level of the factor and 5 replicates	287
11.2	Arrangement of experimental run after randomization	288
11.3	Reaction rate data at different pH	288
11.4	Three variable B–B design	295
11.5	Values of the coefficient (Anupam et al.)	302
12.1	Widget capacity data	313
12.2	Vendor widget demand	313
12.3	Shipping cost per widget (\$)	313
12.4	Description of MATLAB function used for optimization	317
12.5	Levels of independent variables for B-B design	325
12.6	Matrix of B-B design	326
12.7	ANOVA for percentage dye removal	329

XVIII • List of Tables

12.8	Different variable type and their GAMS keyword	335
12.9	Different relational operator in GAMS	335
12.10	Available solution procedure in GAMS	335
12.11	Availability and cost of petroleum stocks	338
12.12	Specification and selling price	339

Preface

Optimization in the field of chemical engineering is required to utilize the resources in an efficient way as well as to reduce the environmental impact of a process. Application of optimization processes helps us achieve the most favorable operating conditions. Maximum profit is achievable if a process plant runs at optimum conditions. Knowledge of optimization theory as well its practical application is essential for all engineers.

The idea of this book came to my mind long back, perhaps six years ago. Then I started working on it; selecting topics to be included, collecting research papers, and preparing the manuscript. Many people helped me during this process, especially while collecting research articles from different sources: Sudip Banerjee, Arindam Chatterjee, D.K. Sandilya to name a few. I received very useful suggestions from reviewers of this manuscript.

This book contains detailed theory and applications of optimization in chemical engineering and related fields. Prerequisites for this book include some understanding of chemical engineering, biotechnology and mathematics. This book has been divided into twelve chapters. It contains various classical methods for optimization; it also introduces some of the recently developed topics in optimization. Examples from the field of chemical engineering and biochemical engineering are discussed throughout the book.

Chapter 1 discusses the classification and fundamentals of optimization methods. It also includes the salient features of optimization. This chapter also lists different types of objective functions and conditions for optimization. Chapter 2 gives emphasis to different chemical engineering processes and problem formulation procedures for optimization application. This chapter includes objective function formulation of fluid flow system, heat transfer equipments, mass transfer equipments, and reactors. One dimensional unconstrained problem formulation and optimization have been discussed in Chapter 3. This chapter includes different methods like Newton's method, Quasi-Newton method, Secant method etc. Chapter 4 discusses the Trust-Region methods for both constrained and unconstrained optimization problems. An overview of optimization of multivariable unconstrained functions is given in Chapter 5. This chapter comprises various search methods (i.e. random search, grid search), gradient method, Newton's method etc. Chapter 6 discusses the optimization methods for multivariable functions with constraints. This chapter contains both linear programming and non-linear programming. Optimization of staged and discrete processes has been discussed in Chapter 7. This includes dynamic programming, integer and mixed integer programming. Chapter 8 contains some advanced topics on optimization. This chapter discusses stochastic optimization, multiobjective optimization and optimization problems related to control systems. Most chemical process involve highly nonlinear equations that are difficult to optimize using simple and traditional optimization techniques. Chapter 9 discusses some nontraditional optimization methods like Genetic Algorithm (GA), Particle Swarm optimization, Simulated annealing etc. Chapter 10 elucidates the practical application of optimization theory in various chemical and biochemical processes. Chapter 11 describes different statistical optimization methods. This chapter contains response surface methodology with examples from chemical engineering and biotechnology. Chapter 12 gives an overview of different optimization software tools. This chapter elucidates software for optimization such as LINGO, MATLAB, MINITAB and GAMS. A large number of multiple-choice questions are included at the end of this book. I hope this book will be helpful

xx • Praface

for students at undergraduate and graduate levels. Students will benefit if they go through the theories and solved examples side by side.

I am grateful to LINDO Systems Inc., MathWorks Inc., Minitab Inc., and GAMS for giving permission to include material and screenshots in this book. I am thankful to Gauravjeet Singh Reen for his support during the preparation of the manuscript. I must convey my gratitude to all members of Cambridge University Press for their kind cooperation. I am indebted to my family members for their kind cooperation. I am also thankful to all my colleagues, friends, and well-wishers.

Readers of this book are requested to send their comments and suggestions for further improvement.