

ATMOSPHERIC BOUNDARY LAYER Integrating Air Chemistry and Land Interactions

Based on more than 20 years of research and lecturing, Jordi Vilà-Guerau de Arellano and his team's textbook provides an excellent introduction to the interactions between the atmosphere and the land for advanced undergraduate and graduate students and a reference text for researchers in atmospheric physics and chemistry, hydrology, and plant physiology. The combination of the book, which provides the essential theoretical concepts, and the associated interactive Chemistry Land-surface Atmosphere Soil Slab (CLASS) software, which provides hands-on practical exercises and allows students to design their own numerical experiments, will prove invaluable for learning about many aspects of the soil-vegetation-atmosphere system. This book has a modular and flexible structure, allowing instructors to accommodate it to their own learning-outcome needs.

JORDI VILÀ-GUERAU DE ARELLANO, CHIEL C. VAN HEERWAARDEN, BART J. H. VAN STRATUM, AND KEES VAN DEN DRIES were all members of the Meteorology and Air Quality Section at Wageningen University in the Netherlands at the time of the major development of this book and software. The level of integration achieved in this book and software has only been possible because of the complementary backgrounds and expertise of the authors. Jordi Vilà-Guerau de Arellano has more than 20 years of research and teaching experience in the fields of atmospheric modeling and the atmospheric boundary layer. He has written more than 80 papers, placing special emphasis on cross-disciplinary activities in land and atmospheric science. Chiel van Heerwaarden has made fundamental contributions to integrating our understanding of land and atmospheric processes, with special emphasis on the development of conceptual and numerical models. Bart van Stratum is currently researching several aspects of shallow convection. Kees van den Dries is a specialist in atmospheric chemistry and computer systems.

ATMOSPHERIC BOUNDARY LAYER

Integrating Air Chemistry and Land Interactions

JORDI VILÀ-GUERAU DE ARELLANO

Wageningen University, The Netherlands

CHIEL C. VAN HEERWAARDEN

Max Planck Institute for Meteorology, Germany

BART J. H. VAN STRATUM

Max Planck Institute for Meteorology, Germany

KEES VAN DEN DRIES

Wageningen University, The Netherlands

More information

CAMBRIDGEUNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107090941

© Jordi Vilà-Guerau de Arellano, Chiel C. van Heerwaarden, Bart J. H. van Stratum, and Kees van den Dries 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data Vilà-Guerau de Arellano, Jordi, 1962– author.

Atmospheric boundary layer : integrating air chemistry and land interactions / Jordi Vilà-Guerau de Arellano [and three others].

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-09094-1 (hardback)

1. Boundary layer (Meteorology) 2. Boundary layer (Meteorology)–Observations.

 $\begin{array}{ccc} \text{3. Atmospheric chemistry.} & \text{I. Title.} \\ & \text{QC880.4.B65V55} & 2015 \end{array}$

551.51′5–dc23 2015003106

ISBN 978-1-107-09094-1 Hardback

Additional resources for this publication at www.cambridge.org/vila.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

			page xi	
	Disc	laimer		X
	eface			xiii
Ac	knowl	ledgmei	nts	XV
Pa	rt I	The L	Land-Atmospheric Boundary Layer System	
1	Seek	ing Int	erdisciplinary Connections	3
	1.1	Which Fields Are We Crossing?		5
		1.1.1	Atmospheric Dynamics	5
		1.1.2	Atmospheric Chemistry and Air Pollution	7
		1.1.3	Land Processes	7
		1.1.4	Biogeochemical Cycles in the Land Processes	9
	1.2	Which	h Variables Do We Study?	9
	1.3	Select	ting and Combining Themes	12
		1.3.1	Clear to Cloudy Atmospheres	13
		1.3.2	Evaporation: From Bare Soil to Fully Vegetated Surfaces	13
		1.3.3	From Pristine to Polluted Atmospheres	14
		1.3.4	Designing and Conducting Your Own Research	15
	1.4	Stand	ing on the Shoulders	16
Pa	rt II	The U	Incoupled System	
2	Atm	ospheri	ic Boundary Layer Dynamics	21
	2.1	•	cal Description	21
	2.2	Physic	cal Representation: Mixed-Layer Theory	24
	2.3	Suppo	ortive Reading	32
3	Atmospheric Boundary Layer Chemistry			33
	3.1	_	ical Description	33
	3.2		istry Representation: Mixed-Layer Theory	35

vi

Cambridge University Press 978-1-107-09094-1 - Atmospheric Boundary Layer: Integrating Air Chemistry and Land Interactions Jordi Vilà-guerau De Arellano, Chiel C. Van Heerwaarden, Bart J. H. Van Stratum and Kees Van Den Dries Frontmatter More information

Contents

	3.3	Atmospheric Turbulent Transport versus Chemical			
	2.4	Transformation	39		
	3.4	Supportive Reading	41		
4	Pote	Potential Temperature Budget: Diurnal Variation of Temperature			
	4.1	Governing Equations for Potential Temperature	43		
	4.2	Hands-On: What Controls the Daily Maximum Temperature?	45		
	4.3	Supportive Reading	52		
5	Moisture Budget: Diurnal Variation of Specific				
	Moi	sture	53		
	5.1	Governing Equations for Moisture	53		
	5.2	Determination of the Lifting Condensation Level	55		
	5.3		57		
	5.4	Supportive Literature	61		
6	Mon	Momentum Budget: Diurnal Variation of Wind			
	6.1	Fundamental Concepts	63		
		6.1.1 Wind Shear	63		
		6.1.2 Turbulent Kinetic Energy	64		
		6.1.3 Atmospheric Surface Layer	66		
		6.1.4 Quantifying Stability Effects	67		
		6.1.5 Parameterization of the Surface Fluxes	68		
	6.2	Governing Equations for Momentum	69		
		6.2.1 Mixed-Layer Equations for Momentum	69		
		6.2.2 The Influence of Shear on ABL Growth	73		
	6.3	Wind Inertial Oscillation	73		
		6.3.1 Physical Interpretation of the Forces: Equilibrium States	73		
		6.3.2 ABL Wind as a Harmonic Oscillator	75		
	6.4	Hands-On: Understanding the Wind Budget Equations	78		
	6.5	Supportive Literature	84		
7	Scalar and CO ₂ Budget: Contributions of Surface, Entrainment, and				
	Adv	ection	85		
	7.1	Governing Equations for the Scalar	85		
	7.2	Contributions to the Scalar Budget: Surface, Entrainment, and			
		Advection	86		
	7.3	1 1			
	7.4				
	7.5	Supportive Literature	91		
8	Reactant Budget: Diurnal Variation of Ozone				
	8.1	Governing Equation for Ozone	93		
	8.2	The Photostationary State	97		

More information

		Contents	vii
	8.3	Hands-On: How and Why Does Ozone Evolve during the Day?	98
		8.3.1 Boundary Layer Dynamic Effects	100
		8.3.2 Chemistry Effects	104
		8.3.3 Land Effects on Dynamics and Chemistry	106
	8.4	Supportive Literature	110
Pa	rt III	The Coupled System	
9	Atmo	osphere-Vegetation-Soil Interaction	113
	9.1	Radiation and Energy Balance	113
	9.2	Land Surface Representation	115
		9.2.1 Radiation Components	115
		9.2.2 Surface Turbulent Fluxes	117
		9.2.3 Turbulence and Soil/Vegetation Effects	121
		9.2.4 Soil Representation: Force-Restore Soil Model	124
	9.3	Supportive Literature	125
10	Num	nerical Experiments: Atmosphere-Vegetation-Soil	
	Inter	action	126
	10.1	Hands-On: What Controls Surface Evaporation?	126
	10.2	Surface Conditions Influencing the Atmosphere	128
	10.3	Atmosphere Conditions Influence the Surface	132
	10.4	When and Where Do Clouds Form? The Role of Free	
		Tropospheric Conditions	133
		Bare Soil versus Vegetated Surfaces	135
		Sensitivity to the Soil Types	135
		Water on Leaves: Influence of Water Interception	137
	10.8	Supportive Literature	137
11	-	ynamic Representation of Carbon Dioxide Exchange from	
		Vegetation and Soil	138
		Carbon Dioxide Exchange by Vegetation	141
	11.2 CO ₂ Respiration by Soil		145
		Relating the Fluxes of Carbon Dioxide and Water Vapour	146
		Atmosphere-Vegetation-Soil System: Budget Analysis	146
		Supportive Literature	147
12		itivity of the Atmosphere-Vegetation-Soil System to Climate	148
	Perturbations		
	12.1	Hands-On: How Do Climate Modifications Influence CO ₂ Exchange?	149
		12.1.1 Effect of a Warmer Climate	149
		12.1.2 Effect of Drought Events	151
		12.1.3 Effect of High CO ₂ Concentration Levels	153

viii		Contents	
		12.1.4 Effect of Global Dimming	154
		12.1.5 C3 versus C4 Plants	154
	12.2	Supportive Literature	155
13		Studies of More Complex Situations Sea-Breeze Interaction with Surface Fluxes and	156
	10.1	Boundary Layer Dynamics	157
		13.1.1 Heat and Moisture Advection Constant in Time	158
		13.1.2 Heat and Moisture Advection Varying in Time	160
		13.1.3 Development of a Thermal Internal Boundary Layer	161
	13.2	Multi-day Drought Event	162
		13.2.1 Soil Moisture in Equilibrium	163
		13.2.2 Soil Moisture Decrease Day by Day	166
		13.2.3 Linking the Land Water Balance to the Surface Energy Balance	170
			170
	13 3	13.2.4 Responses of Forest and Grassland to Drought Multi-Day Air Pollution Event	172
		Supportive Literature	175
Pa		Processes Related to Boundary Layer Clouds	1,0
		• •	179
14		d-Topped Boundary Layer: Stratocumulus The Influence of Longwave Radiative Cooling: Dry	1/9
	17.1	Stratocumulus	179
	14.2	The Longwave Radiation Term in the Mixed-Layer Equations	183
		Sea Surface Fluxes	186
	14.4	Hands-On: Does Longwave Radiation Influence Cloud	
		Formation?	187
	14.5	Supportive Literature	189
15	The	Partially Cloud-Topped Boundary Layer: Shallow Cumulus	190
	15.1	The Influence of Condensation on the ABL Dynamics	190
		15.1.1 Vertical Structure of the Cloudy CBL	191
		15.1.2 Conditional Instability in the Cloud Layer	193
	15.2	Hands-On: Uplifting Process in a Moist Parcel	196
	15.3	Introducing the Effect of Clouds in the Mixed-Layer Equations	199
		15.3.1 Mass Flux and Cloud Core Fraction	199
		15.3.2 The Mixed-Layer Equation in the Sub-Cloud Layer	202
		Cloud Base, Sub-Cloud Layer Top Height, and Cloud Top	203
		Hands-On: Thermodynamics in the Sub-Cloud Layer over Land	204
		Hands-On: Shallow Cumulus Interaction with Surface Properties	206
		Hands-On: Chemistry in the Presence of Shallow Cumulus	208
	13.8	Supportive Literature	210

		Contents	ix
Pa	rt V	User's Guide: CLASS Modules and Variables	
16	CLA	SS Modules	215
	16.1	Putting in Practice the Research Plan: The Numerical Experiment	215
	16.2	BASIC	216
	16.3	Wind/Scalar/CO ₂	218
	16.4	Radiation and Geography	219
	16.5	Surface	220
		Species	222
		Reactions	222
		Advanced Surface	222
	16.9	Which Variables Can We Plot?	222
Ap	pend	ices	229
A	Derivation of the Mixed-Layer Governing Equations		231
	A.1	The Potential Temperature Equation in the Entire Mixed Layer	231
	A.2	The Potential Temperature Equation in the Entrainment Zone	233
	A.3	The Equation for the Potential Temperature Jump	236
	A.4	Summary of the Mixed-Layer Variables and Equations:	
		Closure Assumption	236
В	Scali	ng the Turbulent Kinetic Energy Equation	239
C	Chen	nical Reaction Rates	243
D	Deriv	vation of the Penman-Monteith Equation	245
Е	Plant	Physiological Model Formulation	247
	E.1	Model Formulation	247
	E.2	Variable Definition of the Plant Physiological Model	253
F	Repr	esentation of the Carbon Dioxide Soil Respiration	255
G	Conv	version Factors and Constants	257
Bib	liogra	<i>uphy</i>	259
Ind	ex -		263

CLASS Software

The open-source Chemistry Land-surface Atmosphere Soil Slab (CLASS) model can be downloaded free of charge from [www.cambridge.org/vila]. The software runs on default installations of Microsoft Windows (XP, 7 and 8) and Mac OS X (10.6–10.10), and can be compiled on Linux distributions supporting Qt (versions 4 and 5). The source code is hosted by GitHub (http://classmodel.github.io/), where incremental updates to the code can be found. Major bug fixes and updates will always be made available through updates on the Cambridge website.

Disclaimer

We make no warranties, express or implied, that the programs supplied with this book are free from error, or are consistent with any particular standard of merchantability, or that they will meet your requirements for any particular application. They should not be relied on to solve a problem whose incorrect solution could result in injury to a person or loss of property. Your use of the programs in such a manner is at your own risk. The authors and publisher disclaim all liability for direct or consequential damages resulting from your use of the programs. All the hands-on exercises have been tested, and any new exercises created by the reader are the sole responsibility of the reader.

Preface

Buffering the free atmospheric conditions from the soil-vegetation properties, the atmospheric boundary layer (ABL) is the region in which the wind, temperature, moisture, and atmospheric constituents change from the large atmospheric scales to the biosphere conditions. Over land, the ABL is characterized by a strong diurnal variability (daylight hours) that presents a challenge to modelling studies and observational interpretation. The first purpose of this book is to introduce the reader systematically to the most important biogeochemical and physical processes that take place in the ABL. A flexible user-friendly model of these processes called Chemistry Land-surface Atmosphere Soil Slab (CLASS) was developed to enable the reader interactively and independently to investigate the behaviour of the diurnal ABL over land. Our second aim is to enable the reader to discover freely the interactions and couplings that occur between the atmosphere and land, and to determine their impact on cloud formation, changes in greenhouse gas concentrations, and atmospheric chemistry. To this end, we decided to represent the main fundamental processes in the atmosphere-biosphere system, while retaining the essential components of the physical and biogeochemical processes involved. We have therefore attempted to move beyond individual disciplines to investigate their mutual interrelationships and feedback, laying special emphasis on the conceptualization of the problem. Finally, the interactivity and modular character of the book will make it very useful as a means of interpreting measurements made during experimental campaigns and deepening our understanding of more complex large-scale biogeochemical atmospheric models.

Acknowledgments

Wageningen University has financially supported the software development and the systematic and extensive testing of the numerical experiments. This support was provided via the bonuses given to the Meteorology and Air Quality (MAQ) section for high quality of the performance of the MAQ section in BSc and MSc courses. Louise Nuijens, David Pino, and Marina Sterk contributed to early versions of the course Clouds and Climate (starting in 2005). This course provided the pioneering concept of this book and of the CLASS software, and thanks to them, the course started on the right track from the very beginning. Chapter 6 greatly benefited from the input provided by Joel Schröter. Critical reviews and input of different chapters by Huug Ouwersloot, Eduardo Barbaro, Marie Combe, and Jisk Attema helped to improve and sharpen the concepts and numerical experiments. Peter Duynkerke, Harm Jonker, Maarten Krol, Wouter Peters, Ryan Teuling, Bert Holtslag, Cor Jacobs, Reinder Ronda, Arnold Moene, and David Fitzjarrald also provided input and ideas through discussion of some of the concepts and experiments. We also thank Hugh M. Allen of AMC for his language and editing skills. Since 2005, large numbers of BSc and MSc students have provided very useful suggestions for improving the syllabus, the course, and the lectures and have suggested improvements to the book and the CLASS software. These students are from different backgrounds and specialties, and took the following courses: Clouds and Climate, Atmospheric Modelling, Interdisciplinary Topics in Earth and Environment, optional tailor-made courses, and international PhD summer schools. By using CLASS in their research projects BSc, MSc, and PhD students have extensively tested it, greatly improving the quality of the book and design of the numerical experiments. Thanks to all for your feedback!