Bubble and Foam Chemistry

This indispensable guide will equip you with a thorough understanding of the complete field of bubbles and foaming chemistry. Assuming only basic theoretical background knowledge, the book provides you with

- a straightforward introduction to the principles and properties of bubbles, foams and foaming surfactants underpinning the key ideas about why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved;
- the latest test methods, including laboratory and industry-developed techniques;
- details on a range of differents kinds of foams, from wet detergents and food foams to polymeric, material and metal foams which connect theory with real-world applications and recent developments in foam research.

Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry and applied physics.

Robert J. Pugh is a Visiting Professor at Nottingham Trent University. He is an active member of the foams community and has over 30 years experience in industry and university, having worked as a foam specialist for Dow Chemical and Unilever Research. He has also worked as a Professor at the Institute for Surface Chemistry, Stockholm, and at Luleå University, Sweden, and has acted as a consultant for Akzo Nobel, Nestlé, GlaxoSmithKline, Procter and Gamble, and Arizona Chemicals. Professor Pugh has co-authored and edited two previous books in the field of surface and colloid science and authored several highly cited review papers on the topic of foams and foaming.

Bubble and Foam Chemistry

ROBERT J. PUGH Nottingham Trent University

Cambridge University Press 978-1-107-09057-6 — Bubble and Foam Chemistry Robert J. Pugh Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107090576

© Robert J. Pugh 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Pugh, Robert J., 1942– Bubble and foam chemistry / Robert J. Pugh, Nottingham Trent University. Cambridge : Cambridge University Press, [2016] | Includes bibliographical references and index. LCCN 2016023274 | ISBN 9781107090576 (alk. paper) LCSH: Surface chemistry. | Suspensions (Chemistry) | Foam. | Bubbles. LCC QD506.P844 2016 | DDC 541/.33–dc23 LC record available at http://lccn.loc.gov/2016023274

ISBN 978-1-107-09057-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

Cambridge University Press 978-1-107-09057-6 — Bubble and Foam Chemistry Robert J. Pugh Frontmatter <u>More Information</u>

Contents

Prefa	ce	<i>page</i> xiii
Ackn	owledgments	xvi
List c	f symbols	xvii
Basic	principles and concepts	1
1.1	Introduction	1
1.2	The physics and chemistry of foams and foaming	7
1.3	The wetness and dryness of foams	9
1.4	Capillary pressure and the Laplace-Young equation	11
1.5	Plateau rules and pentagonal dodecahedral structures	12
1.6	Foam structures produced from bubbles with narrow size	
	distributions	16
1.7	Foam structures produced from bubbles with wide size distributions	21
1.8	Surface-active agents are needed to stabilize bubbles and wet foams	23
	1.8.1 The adsorption of chemical surfactants at the air/water	
	interface	23
	1.8.2 The purity of chemical surfactants in foaming	27
	1.8.3 Other types of surface-active materials	28
1.9	Surface tension and surface energy	29
1.10	Gibbs adsorption and Gibbs elasticity	31
1.11	Methods of measuring surface tension	34
	1.11.1 Maximum bubble pressure technique	38
	1.11.2 Overflow cylinder technique	38
	1.11.3 Oscillating jet technique	41
1.12	Foamability and foam stability	41
	1.12.1 Surface tension, foamability and foam stability	45
	1.12.2 Combining foamability with foam stability	47
1.13	Transition from wet to dry foams	48
The n	ature and properties of foaming surfactants	54
2.1	The formation of self-assemblies from pre-micellar surfactant species	54
	2.1.1 Self-association in weakly hydrolysable soaps and fatty acids	56
	2.1.2 Solubility and the Krafft point	59

© in this web service Cambridge University Press

2

vi	Conte	ents	
	2.2	Geometric packing of surfactant molecules in the interface and the critical	(0)
	2.2	packing parameter	60
	2.3	Phase behavior of more concentrated surfactant formulations	62
	2.4	The influence of surfactant solubility on forming	64
	2.5	Anionic surfactants	64
	2.0	Nonionic surfactants	65
	2.7	Weak hydrolysable fatty acids	66
	2.9	Mixed surfactants	68
	2.10	The influence of the CMC on foaming	69
	2.11	Foaming above the CMC: the influence of the stability of the micellar	0,5
		self-assemblies	71
	2.12	Influence of structure on foaming and low-foaming surfactants	75
	2.13	The application of the HLB (hydrophile–lipophile) balance concept to	
		foaming	78
	2.14	Temperature effects on surface tension and foaming	80
3	Soap	bubbles and thin films	84
	3.1	Introduction and early studies	84
	3.2	20th-century studies on thin liquid films	86
	3.3	Experimental techniques for investigating free horizontal circular liquid	
		films	87
		3.3.1 The conventional Scheludko/Exerowa thin film balance	87
		3.3.2 The porous plug film holder to measure disjoining isotherms	
		and surface forces in thin films	89
		3.3.3 The bike wheel microcell film holder	90
		3.3.4 The Nikolov/Wasan film balance for measuring drainage and film	
		thickness of curved foam films	91
	3.4	Drainage of horizontal thin films	92
	3.5	Drainage of vertical thin films	96
	3.6	Disjoining pressure isotherms obtained from porous plug experiments	99
	3.7	Intermolecular forces are the reason that thin films are stable	99
	3.8	The physical chemistry of black films	104
	3.9	Rupture mechanism of free microscopic horizontal foam films	105
	3.10	Rupture of films between bubbles under dynamic conditions	106
	3.11	Importance of fundamental studies on foam films	107
4	Proce	esses in foaming	112
	4.1	Overview of processes	112
	4.2	Ascent of bubbles in liquids	113
		4.2.1 Influence of nonionic surfactants	115
		4.2.2 Influence of ionic surfactant	118
		4.2.3 Bubbles bouncing from the interface	119

		Contents	vii
		4.2.4 Influence of impact velocity at the interface	120
		4.2.5 The detection of surface-active contaminants in water	122
	4.3	Drainage of foams	122
		4.3.1 Forced, free and pulsed drainage	124
		4.3.1.1 Forced drainage	124
		4.3.1.2 Free drainage	127
		4.3.1.3 Pulsed drainage	127
		4.3.2 Influence on interfacial properties	127
		4.3.3 Experimental approaches	128
		4.3.4 Influence of foam film type	128
	4.4	Disproportionation (Ostwald ripening)	130
		4.4.1 Experimental methods with foams	132
		4.4.2 Experimental methods with thin films	133
		4.4.3 Models and theories	134
		4.4.3.1 Diffusion theory	135
		4.4.3.2 Energy barriers (nucleation theory and fluctuation of	
		holes)	136
		4.4.3.3 Freely standing film	137
		4.4.3.4 Density fluctuations and accessible area	138
		4.4.4 Experimental results	138
	4.5	Coupling disproportionation with drainage	144
	4.6	Depiction of surfactant from solution	146
	4./	Humidity and evaporation	14/
5	Gene	eration of bubbles and foams	155
	5.1	Introduction	155
	5.2	The adsorption of surfactant on the freshly generated bubbles	155
	5.3	Bubble size and distribution	156
	5.4	Overview of foam generation techniques	158
	5.5	Mechanical methods	159
		5.5.1 High-intensity agitation (cavitation)	160
		5.5.2 Rotary stirring in food processing	161
		5.5.3 Rotary stirring in mineral processing	165
		5.5.4 Shaking or successive flipping	168
		5.5.5 Pouring and plunging jet methods	170
		5.5.5.1 Static plunging jet	170
		5.5.5.2 Continuous plunging jet	171
	5.6	Growing bubbles from single orifices, frits and gas injection	173
		5.6.1 Detachment of a bubble from single orifices	174
		5.6.2 Growing bubbles using frits	176
		5.6.3 Co-injection	177
		5.6.4 Monodispersed bubbles and microfluidic foams	177
	5.7	Nucleation of gas bubbles	180

viii	Contents			
	5.7.1 Nucleation of bubbles in chan	magne and other beverages	181	
	5.7.2 Dissolved air and column flota	ation	184	
	5.8 In situ generation of foams by chemic	cal reactions	186	
	5.9 Gas generation by electrolysis		188	
6	Coalescence of bubbles in surfactant solution	ons	194	
	6.1 The formation, break-up and coalesce	ence of bubbles in surfactant	104	
	6.2 The role of surface tension gradients	in coalescence	194	
	6.3 Relationship between elasticity and c	ritical transition	190	
	concentration C		198	
	6.4 Experimental studies on bubble coale	scence	190	
	6.4.1 Bubble swarm and single bub	bles	199	
	6.4.2 2D Bubble rafts		199	
	6.4.3 Coalescence at the moment of	bubble creation	200	
	6.4.4 Freely rising single bubble usi	ing a laser detector	202	
	6.4.5 Growing bubbles from adjace	nt nozzles	205	
	6.5 Coalescence in aqueous solution of el	ectrolytes	209	
	6.6 Influence of bubble approach velocity	on bubble coalescence	212	
	6.7 Influence of temperature on coalescer	nce	215	
7	The stability/instability of bubbles and foan	าร	220	
	7.1 Overview		220	
	7.2 Classification of the stability of foan	ns	222	
	7.2.1 Unstable (transient) foams		222	
	7.2.2 Metastable foams		223	
	7.2.3 High-stability foams		223	
	7.2.4 Ultrastable foams		223	
	7.3 Reversing the stability of foams		223	
	7.3.1 pH-responsive foams		224	
	7.3.2 Temperature-responsive foar	ns	225	
	7.3.3 Gas-responsive foams		226	
	7.4 Gibbs–Marangoni effect		227	
	7.5 Interfacial rheology	· •,	227	
	7.5.1 Dilational surface viscoelasti	icity	229	
	752 Theories and models			
	7.5.2 Theories and models	measurement of electicity	231	
	7.5.2 Theories and models7.5.3 Experimental techniques for and surface viscosity	measurement of elasticity	231	
	 7.5.2 Theories and models 7.5.3 Experimental techniques for and surface viscosity 7.5.4 Oscillating hubble methods 	measurement of elasticity	231	
	 7.5.2 Theories and models 7.5.3 Experimental techniques for and surface viscosity 7.5.4 Oscillating bubble methods 7.5.5 Experimental studies of elast 	measurement of elasticity	231 232 233 235	
	 7.5.2 Theories and models 7.5.3 Experimental techniques for and surface viscosity 7.5.4 Oscillating bubble methods 7.5.5 Experimental studies of elast 7.6 Stability control agents 	measurement of elasticity	231 232 233 235 236	
	 7.5.2 Theories and models 7.5.3 Experimental techniques for and surface viscosity 7.5.4 Oscillating bubble methods 7.5.5 Experimental studies of elast 7.6 Stability control agents 7.6.1 Single surfactant systems. pF 	measurement of elasticity ticity and surface viscosity	231 232 233 235 236	

		Contents	i)
		7.6.2 Mixtures of surfactants, foam builders/boosters	238
		7.6.3 Polymer/surfactant mixtures	240
		7.6.4 Condensed shells	244
		7.6.5 Nanopatterning	244
		7.6.6 Hydrophobins	244
		7.6.7 Control of gas diffusion	246
		7.6.7.1 Gas type and foam type	247
	7.7	Interfacial rheology and gas permeability	249
	7.8	Stability by increase in bulk viscosity	252
	7.9	Stability control in aerated food systems	252
	7.10	Stratification	253
		7.10.1 Hole formation and the diffusion osmotic mechanism	254
		7.10.2 Reversible stratification behavior in nonionic surfactants	257
		7.10.3 Stratification in charged surfactant systems	258
		7.10.4 Stratification in polydispersed systems	259
	7.11	Stabilization by liquid crystals	261
	7.12	Stabilization by emulsion and pseudo-emulsion films	263
3	Partic	cle-stabilized foams	269
	8.1	Introduction	269
	8.2	History of particle-stabilized foam systems	271
	8.3	Established processes	271
	8.4	Fundamentals of collision, contact angles, attachment/detachment	273
	8.5	Measurement of attachment time between bubble and particle	275
	8.6	Relationship between attachment force and contact angle	275
	8.7	Detachment of particles from bubbles	277
	8.8	Surface tension of films of attached particles	278
	8.9	Interactions between neighboring particles attached to the interface	280
	8.10	Key parameters influencing the interactions between bubbles and	
		particles	283
	8.11	Steric barriers	284
	8.12	Experimental studies relating contact angle and wetting on particle	
		attachment and stability	286
	8.13	Janus particles	289
	8.14	The influence of concentration, surface charge and state of	
		agglomeration	290
	8.15	Simple models of interactions between droplets (bubbles) coated with	
		particles	291
	8.16	Models of packing, agglomeration and bridging of particles	2.93
	8.17	Particle/surfactant and particle/polymer mixtures	2.94
	0.17	8.17.1 Surface tension measurements of particle/surfactant	
		mixture	296
		8 17 2 Gel films	290
			491

X	Conte	Contents			
	8.18	Diffusive disproportionation and shrinkage of particle-laden foams	298		
	8.19	Drainage with film containing particle/surfactant mixtures	300		
	8.20	Super particle stabilized foams generated by a magnetic field	302		
	8.21	Preparation of stabilized monodispersed bubbles with particles	302		
9	Foami	ng in non-aqueous liquids	307		
	9.1	Introduction	307		
	9.2	Hydrocarbon-type surfactants	308		
	9.3	Polymethylsiloxane and fluoroalkyl-type surfactants	309		
	9.4	Phase separation from partially immiscible liquids	312		
	9.5	Lamellar liquid crystals, surfactant solid particles and lipid phases	314		
	9.6	Bulk viscosity	322		
	9.7	Inorganic electrolytes in non-aqueous liquids	322		
	9.8	Interfacial charge in non-aqueous systems	324		
	9.9	Defoaming in non-aqueous solutions	325		
	9.10	Thin film studies with non-aqueous and ionic liquids	325		
10	Antifo	aming and defoaming	331		
	10.1	Background and types of antifoamers and defoamers	331		
	10.2	Physico-chemical mechanisms	334		
		10.2.1 Droplets and oil lenses: spreading coefficient (S_c) , entry			
		coefficient (E_c) and bridging coefficient (B_c)	334		
		10.2.2 Emulsified droplets and pseudo-emulsion films	338		
		10.2.3 Effects of disjoining pressure on the stability of the			
		pseudo-emulsion film	338		
	10.3	Experimental studies	340		
	10.4	Surface tension gradients, viscosity and drainage	341		
	10.5	Superspreading	342		
	10.6	Influence of the interfacial and micellar aggregates	342		
	10.7	Particles	344		
	10.8	Cloud-point antifoamer: block copolymers	347		
	10.9	Fatty alcohol antifoamers: melting point, gel layers and droplet	2.47		
	10.10	rigidity	347		
	10.10	Precipitation effects	349		
	10.11	Mixtures of particles and oils	351		
	10.12	rasi and slow antifoamers and the film trapping technique	353		
	10.13	Unucal entry pressure for foam film rupture	356		
	10.14	Influence of the max arread ail laws $z = E$	358		
	10.15	A gaing affects with chamical artificances	360		
	10.16	Ageing effects with chemical antifoamers	360		
	10.17	10.17.1 Ultracomics	262		
			303		

		Contents	xi
		10.17.2 Suppression of foam by the adjustment of the vessel wettability	367
11	Bubbl	le size measurements and foam test methods	372
	11.1	Introduction	372
	11.2	Bubble size measurements	374
		11.2.1 Direct 2D imaging	374
		11.2.2 Optical fiber probe analysis	376
		11.2.3 X-ray tomographic imaging	378
		11.2.4 Nuclear magnetic resonance imaging and terahertz	
		spectroscopy	380
		11.2.5 Ultrasonic imaging	380
		11.2.6 Multiple light scattering and back scattering	381
	11.3	Bubbly liquids and foam test methods	382
		11.3.1 Whipping, shake tests and the Bartsch test method	383
		11.3.2 Rotor mixer tests	383
		11.3.3 Ross–Miles (pour test)	383
		11.3.4 Bikerman test (sparging in a cylindrical column)	385
	11.4	Test methods under controlled pressure	388
		11.4.1 Time of deviation (t_{dev}) and time of transition (t_{tr})	388
		11.4.2 Head space and pressure drop test methods	391
	11.5	Electrical conductivity test method (the Foam Scan apparatus)	392
	11.6	Measurement of bubbles lifetimes and free microscopic films	394
	11.7	Measurement of foam stability in the presence of antifoams/	
		defoamers	397
	11.8	Measurement of antifoaming/defoamer performance in washing	
	1110	machines	399
	11.9	Comparison of different laboratory foaming test methods	401
12	Bubbl	le and foam chemistry – new areas of foam research	405
	12.1	Antibubbles	405
	12.1	Foaming research under microgravity	403
	12.2	Portiale stabilized forms at high temperatures: metal and material	400
	12.5	forms	410
	12.4	Foams in nature and bio-surfactants	410
	Index	c	420
			.20

Preface

The aim of this book is to provide a comprehensive, well-structured insight into the physical chemistry of liquid foams which can be used by both academics and industrialists. Liquid foams may occur naturally or by design and may be desirable or undesirable. Generally, there is a multitude of complex causes of foaming and antifoaming and the text is structured to give clarity to the field by providing an up-to-date, state-of-the-art guide explaining the chemistry of real foam systems. It is hoped that the reader will achieve a reasonably clear understanding of why foaming occurs, how it can be measured and how it can be prevented. As the use of foams spans different disciplines, some introductory aspects of physics, chemical engineering and material science of foams are included but this is relatively easy to follow. This book is orientated toward the descriptive rather than the theoretical and contains many diagrams. It is also a rich source of information and references, arranged in a way which the reader should find useful and also provides an historical prospect to the area of foams and foaming.

The most popular academic books dealing solely with foams include the classics Foams by J. J. Bikerman (1973), published by Springer-Verlag, Berlin and The Physics of Foams by D. Weaire and S. Hutzler (1999), published by Clarendon Press, Oxford. Both of these books ran into several updated editions but considerable advancements in the field have been made since their publication. Other early texts are Foams and Biliquid Foams-Aphrons by F. Sebba (1987), published by Wiley and the two books – Antifoaming (edited by P. Garrett, 1993) and Foams (edited by R. K. Prud'homme and S. A. Kahn, 1996) - published in the Surfactant Science Series (Marcel Dekker). These are fairly well-read books but are essentially a collection of viewpoints which describe many varied aspects of foaming and antifoaming science. Foam and Foam Films by D. Exerowa and P. M. Kriglyako (1997), published by Elsevier in the Studies in Interfacial Science Series, has been well received but presents a strongly fundamental text with the main emphasis on thin films. More recently is the book Foam Engineering, edited by P. Stevenson (2012) and published by Wiley, covers rheology, flow and foam processing and is aimed toward the chemical engineering community. Another recent book, Foams Structure and Dynamics (2013) edited by a group of French scientists and published by Oxford University Press, was directed toward the Physics community.

There are many other books available but they are multi-authored, specialist texts edited by engineers, chemists, chemical engineers or physicists. They usually include an

xiv Preface

ad hoc assortment of specialist research or review papers focused on foams or foaming within specific areas. For example, an early book by Schraum (1994) covered the oil industry and E. Dickenson and coworkers edited several books on the food industry which included chapters on food foams. Another multi-authored book, *Foamspex*, came out as a European Union project and covers the large-scale applications and modeling of foam spreads and extinguishment aspects of firefighting foams. This was published by SP Sweden (the Swedish National Testing and Research and Fire Technology Institutes) in 2001. Other texts on polymer foam systems are more specialized, for example, *Polymer Foam Handbook*, edited by N. J. Mills and published by Elsevier (2007) and *Handbook of Polymeric Foams and Foam Technology*, edited by D. Klemper and coworkers and published by Hanser (2004).

This book is a single-authored, comprehensive text which gives a current and coherent picture of foam chemistry. The book will probably be of most interest to senior undergraduate and graduate students of physical chemistry, chemical engineering, surface and colloid chemistry, life sciences and applied physics. It is also aimed at scientists and engineers in industry who frequently encounter foams under practical conditions. In these cases, the presence, absence and nature of foam can determine the economic and technical success of the process. Although some prerequisite scientific knowledge is expected from the reader, only the bachelor's level in sciences is needed to adequately understand the principles presented. In fact, the book could prove to be of interest to less academic amateur scientists, for example, with interests in the brewing of beer.

The book contains twelve chapters. Chapter 1 outlines the most important properties of foams and their uses in everyday situations. The physical and chemical aspects of foams and foaming are reviewed and the main features of wet and dry foams are described. Surface active agents and the relevant basic thermodynamics are also introduced. Chapter 2 describes the nature and properties of chemical foaming surfactants together with their role in stabilizing bubbles. Chapter 3 is an important chapter from a fundamental viewpoint since it covers soap films, which are the basic structural elements in foams, and it reviews the role of the intermolecular forces which define the stability of thin films. Techniques for measurement of the stability and draining of foam films are also discussed. In Chapter 4, an overview of the different types of processes in foaming is presented. These include the ascent of bubbles in liquids, the drainage of liquids through foams and the diffusion of gas through the foam, humidity and evaporation. Chapter 5 covers the generation of foams and includes a range of methods used both in laboratory and in industry. In Chapter 6, the coalescence of bubbles and techniques for measuring the coalescence process are described. Coalescence of bubbles in solutions of different types of inorganic electrolytes is reviewed in light of recent experiments in which the bubble approach speed is taken into consideration. Chapter 7 discusses the classification of bubble and foam stability and the different types of stabilization mechanisms which can operate. In addition, the various types of additives which can be used in stabilization of foam systems are summarized.

Cambridge University Press 978-1-107-09057-6 — Bubble and Foam Chemistry Robert J. Pugh Frontmatter <u>More Information</u>

Preface

ΧV

In Chapter 8, the historic background of particle stabilized foams is presented together with their use in established processes such as deinking and flotation. The role of contact angle, particle shape, charge, detachment forces, capillary pressure and the influence of the formation of different types of particle networks is discussed. Chapter 9 covers foaming in non-aqueous liquids, which is less commonly encountered in non-aqueous fluids than in water-based media, but it is an important topic to consider. It occurs in a wide range of industrial processes - for example, during the processing of crude oils, drilling fluids, lubricants, solvent (base cleaners), etc. Chapter 10 covers defoaming and antifoaming. Problems are caused by foaming throughout a range of industrial processes - for example, in the production and processing of paper, pharmaceuticals, materials, textiles, coatings, crude oils, washing, leather, paints, adhesives, lubrication, fuels, heat transfer fluids, etc. and in the processing of food and beverages such as sugar beet, orange and tomato juice, beer, wine and mashed potatoes. The different types of antifoaming additives used to prevent formation and destruction of foams are classified and also the physical chemical mechanisms involved. Foam test methods are described in Chapter 11, including both laboratory and industrially developed techniques. Finally, in Chapter 12, several new developments in the area of foam research are reviewed. This includes the growth and stability of foams in microgravity and mechanisms involved in the production of metal foams at high temperature, which have the potential to be used in the automobile and aircraft industries. In addition, foaming in the environment is documented (natural waters, sea waters and polluted waters). Insects, mammals and reptiles produce stable foams from bio-surfactants or surface active proteins which have complex structures.

Acknowledgments

I would like to thank the following people: first of all, my family for their patience and constant love and support during our worldwide travels; secondly, I would like to acknowledge my earlier teachers including Ron Ottewill (Bristol University, UK), Fred Fowkes (Lehigh University, USA) and Joe Kitchener (Imperial College, UK) as well as my students. Special thanks to Maud Norberg, who was deeply involved in creating the beautiful illustrations. Finally, I would like to thank my colleagues at (a) the Max Planck Institute for Colloids and Interfaces, Potsdam/Golm, Germany, (b) Newcastle University, NSW, Australia, (c) the University of Geneva, Switzerland and (d) Nottingham Trent University, UK, for providing me with a refuge during the period from 2010 to 2015, following my retirement from the Institute for Surface Chemistry, YKI, Stockholm, Sweden. Special thanks also to Chris Hamlett (at Nottingham Trent University) and Sheila Brooks for critically reading through these chapters and correcting the text.

R. J. Pugh

Symbols

A	surface area of foam or foam film
$A_{\rm i}$	Initial area of foam film
$A_{\rm s}$	cross-sectional area of foam film
A^{f}	area of liquid film
а	activity of solute
a _h	effective head group area of surfactant
a _c	condensation coefficient
B _c	film breaking coefficient
B, B_1, B_3, B_4	proportionality constants
С	concentration
$C_{\rm s}$	surfactant concentration in solution
C _{el}	electrolyte concentration in solution
$C_{\rm el,cr}$	critical electrolyte concentration
C _b	concentration of black spot formation
$C_{\rm NBF}$	critical surfactant concentration for Newton black film formation
Ce	equilibrium surfactant concentration of Newton black film stability
C _{max}	maximum surfactant concentration (for bubble coalescence)
$C_{\rm PB}$	transitional electrolyte concentration (Prince and Blanch)
D	diffusion coefficient of surfactant molecules in bulk solution
D_{g}	diffusion coefficient of gas from a shrinking bubble
D_{f}	diffusion coefficient of gas
$D_{\rm eff}$	effective diffusion coefficient of gas
$D_{ m w}$	diffusion coefficient of gas through aqueous core of thin film
$D_{\rm s}$	surface diffusion coefficient
D_{v}	coefficient of vacancy diffusion in an amphiphile bilayer
d	bubble diameter
$d_{\rm eq}$	bubble equivalent diameter
$d_{ m v}$	bubble vertical diameter
$d_{ m h}$	bubble horizontal diameter
dx	small change in distance caused by stretching liquid film
Eg	Gibbs coefficient of surface elasticity
Ea	activation energy
Ec	entry coefficient
E_{g}	generalized entry coefficient

xviii	List of symbols	
	E^*	complex dilational visco-elastic modulus
	E'	real part of <i>E</i> * (storage modulus)
	E''	imaginary part of E^* (the loss modulus)
	F	force
	$F_{\rm b}$	buoyancy force
	$F_{\rm s}$	force associated with surface tension
	F_{c}	capillary attachment force during bubble nucleation
	$F_{\rm p}$	foam production under sparging
	F_{p^*}	foam production under agitation
	$G_{ m ad}$	adsorption energy
	G	Gibbs coefficient of elasticity
	H_{i}	initial foam height
	$H_{ m r}$	residual foam height
	$H_{ m f}$	foam height
	H_{equ}	equilibrium foam height (Bikerman test)
	$H_{\rm of}$	immersion depth of orifice tube
	H_{og}	Oswald coefficient of gas solubility
	h	thickness of liquid foam film
	$h_{ m i}$	initial thickness of foam film
	h_{t}	final thickness of foam
	$h_{ m tr}$	transitional thickness of foam film
	$h_{ m F}$	height of foam as defined in test method
	$h_{\rm s}$	height of solution as defined in test method
	$h_{\rm st}$	thickness change due to loss of stability
	$h_{ m m}$	minimum film thickness for bubble coalescence
	$h_{ m w}$	thickness of aqueous thin film core
	$h_{ m ml}$	thickness of adsorbed monolayer adsorbed on thin film
	$h_{ m w}$	equivalent thickness of a liquid film
	$h_{\rm cr}$	critical thickness of film rupture
	$h_{\rm cr.bl}$	critical thickness of film rupture via black spots formation
	J	diffusion and transfer of soluble surfactant to bubble interface
	J_{s}	flow of surfactant along surface of bubble
	K _n	equilibrium constant for dissociation of mono-species into aggregates
	Κ	gas permeability
	K _m	diffusion coefficient
	$K_{ m f}$	electro-conductivity of foam
	Ks	specific conductivity of foam
	$K_{\rm dc}$	ratio of foam drainage time to coarsening time $(t_{\rm dr}/t_{\rm c})$
	$k_{ m f}$	gas permeability of monoatomic and diatomic atoms
	k_{n}^{o}	dimensionless permeability
	ko	coefficient of background permeability
	$k_{\rm ml}$	diffusion coefficient of single surfactant monolayer
	k _s	specific electrical conductivity of bulk solution
	$k_{\rm f}$	electroconductivity of foam

List of symbols	
-----------------	--

K _c	dimensionless number (PB permeability)
<i>k</i> _{eff}	effective coefficient of gas transfer
$L_{\rm pb}$	Poisson border length (foam structure)
L	length of foam train (permeability model)
$l_{\rm t}$	length of foam film
l _c	length of surfactant hydrocarbon chain
$N_{\rm f}$	number of flips in Hele-Shaw cell
п	number of bubbles
$n_{\rm f}$	intervening films in foam train model (standing diffusion model)
Р	pressure
P_1	liquid pressure
$P_{\rm g}$	gas pressure
P _B	Laplace pressure in Plateau borders
P _c	capillary pressure
$P_{\rm c}^{\rm max}$	maximum value of the capillary pressure
P_{f}	packing parameter for solid particles at bubble surface
Q_1	liquid flow rate
$Q_{\rm g}$	gas flow rate (cm^3/s)
R _b	radius of bubble
$R_{\rm pb}$	Poisson Boltzman curvature (foam structure)
R _t	radius of shrinking bubble
$R_{\rm f}$	radius of film curvature
r _b	radius of bubble or a microscopic film
r _{equiv}	equivalent sphere radius
r _o	radius of orifice
$r_{\rm f}$	film radius
R _g	radius of gyration
So	solubility of gas in liquid
S _c	spreading coefficient
Т	absolute temperature
T _c	cycle of period $1/f$
T _d	drainage time of thin liquid film between two discs
$T_{\rm TR}$	Threshold of entry barrier
t	time
<i>t</i> _d	coalescence time (MTR theory)
ts	thin film stability time
t _b	thin film breakage time
t _{in}	thin film inertia time
<i>t</i> _{att}	attachment time (particle and bubble interaction)
t _i	induction time (particle and bubble interaction)
t _r	thin film rupture time (particle and bubble interaction)
t _{tpc}	three-phase contact time (particle and bubble interaction)
t _p	bubble transition or persistence time (coalescence)
$t_{\rm dev}$	time of deviation (foam test methods)

ΧХ

List	of symbols
$t_{ m tr}$	time of transition (foam test methods)
$t_{1/2}$	half-life of foam (foam test methods)
$t_{\rm dr}$	drainage time
$t_{\rm c}$	foam coarsening time
V	volume of gas
$V_{\rm b}$	volume of bubble
Vo	initial foam volume
V _i	initial volume of foam
ΔV^{1}	change if foam volume (foam test methods)
ΔV^{2}	change in volume of drained liquid (foam test methods)
$V_{\rm h}$	volume of hydrocarbon chain
V _{end}	form doorw rate
V _d V	superficial gas flow rate
V sgf V-	liquid drainage velocity
	hubble approach velocity
V ab	Stefan-Reynolds drainage rate between two discs
V _{FD}	forced drainage velocity
K _n	bubble persistence constant
i _a	superficial gas flow (humidity and evaporation)
$K_{\rm H}$	Hilgenfeldt ratio of drainage time to coarsening
v	liquid flow velocity
$V_{\rm av}$	average approach velocity between two bubbles
$V_{\rm brs}$	bubble rise velocity
$V_{\rm ch}$	bubble approach velocity (Chester Hofman)
$V_{\mathbf{k}}$	bubble approach velocity (Klaseboer)
V_{y1} ,	<i>V</i> _{y1} bubble approach velocity (Yaminsky)
$V_{\rm cav}$	critical bubble approach velocity
U	average rate of foam decay
$U_{ m g}$	superficial gas flow rate (m/s)
$U_{\rm tern}$	n terminal velocity of bubble
$U_{\rm ma}$	maximum velocity of bubble
$U_{\rm d}$	toam decay rate
W	WOrk
W _e	weber number
W _{cr}	critical value of weder number
VV IVZ	volume % liquid content of foam (conductivity test methods)
W.	width of liquid inlet channel in microfluidic cell
W	width of gas inlet channel in microfluidic cell
''g rv	coordinates in direction to the interface
л, у 7.	coordinates in direction to the interface
- ß	dynamic contact angle
Γ	adsorption, surface concentration
-	r r

Cambridge University Press 978-1-107-09057-6 — Bubble and Foam Chemistry Robert J. Pugh Frontmatter <u>More Information</u>

List of symbols

Γ_{∞}	maximum adsorption, surface concentration
Г	surface excess (adsorbed)
$\Gamma_{\rm R}$	relative adsorption
$\Gamma_{\rm max}$	maximum amount of coverage of surfactant
γ	surface or interfacial tension
γο	surface or interfacial tension of a pure solvent system
γ _{dyn}	dynamic surface tension
Yequ	equilibrium surface tension
η	dynamic viscosity
$\eta_{ m d}$	surface dilational viscosity
$\eta_{ m sh}$	surface shear viscosity
$\eta_{ m d}$	viscosity of dispersion
η_{o}	viscosity of liquid matrix
$1/\kappa$	Debye screening length
λ	characteristic tube width to bubble radius
П	disjoining pressure
$\Pi_{\rm el}$	electrostatic component of the disjoining pressure
$\Pi_{\rm vw}$	van der Waals component of the disjoining pressure
$\Pi_{\rm st}$	steric component of the disjoining pressure
$\Pi_{\rm osc}$	oscillatory component of the disjoining pressure
$ ho_1$	density of liquid
$ ho_{ m g}$	density of gas
$ ho_{ m R}$	ratio density (wet and dry foam)
Σ	Bikermann unit of foaminess
τ	micellar break-up time
$\tau_{1/2}$	lifetime of a foam film or foam
θ	equilibrium contact angle
$arPsi_{ m l}$	volume fraction of liquid or wetness of foam
$arPhi_{ m g}$	volume fraction of gas fraction
$arPsi_{ m g,critical}$	critical gas fraction
$\varphi_{ m s}$	volume fraction of dispersed solid
χ	bubble shape deformation factor
ω	angular frequency
$\Psi_{\rm o}$	surface potential

Constants

- *A*_R retarded Hamaker constant
- F Faraday constant
- g gravitational constant
- $k_{\rm B}$ Boltzmann constant
- *K*_n dissociation constant

xxii List of symbols

- *N*_A Avogadro number
- $R_{\rm g}$ ideal gas constant
- $R_{\rm e}$ Reynolds number
- *T* absolute temperature

Abbreviations

block copolymer
common black film
critical micelle concentration
critical packing parameter
Derjaguin, Landau, Verwey, Overbeek theory
film trapping technique
hydrophilic/lyphophile balance
Manev-Tsekov-Radoev theory
Newton black film
polyethylene oxide
relative humidity
Weaire-Phelan (foam cell structure)