ATOMS AND MOLECULES INTERACTING WITH LIGHT Atomic Physics for the Laser Era

This in-depth textbook with a focus on atom–light interactions prepares students for research in a fast-growing and dynamic field. Intended to accompany the laser-induced revolution in atomic physics, it is a comprehensive text for the emerging era in atomic, molecular, and optical science.

Utilizing an intuitive and physical approach, the text describes two-level atom transitions, including appendices on Ramsey spectroscopy, adiabatic rapid passage, and entanglement. With a unique focus on optical interactions, the authors present multi-level atomic transitions with dipole selection rules, along with M1/E2 and multiphoton transitions. Conventional atomic structure topics are discussed in some detail, beginning with the hydrogen atom, and these are interspersed with material rarely found in textbooks, such as an intuitive description of quantum defects. The final chapters examine modern applications and include many references to current research literature. The numerous exercises and multiple appendices throughout enable advanced undergraduate and graduate students to balance theory with experiment.

PETER VAN DER STRATEN is Professor of Nanophotonics at Utrecht University where his research interests focus on Bose–Einstein condensation and quantum hydrodynamics. He is head of the Teaching Advisory Committee of the Physics Department and a member of the Dutch Physical Society.

HAROLD METCALF is Distinguished Teaching Professor at Stony Brook University. He has been awarded the Humboldt Prize in recognition of his contribution to atomic physics and has received numerous awards for excellence in teaching.

ATOMS AND MOLECULES INTERACTING WITH LIGHT

Atomic Physics for the Laser Era

PETER VAN DER STRATEN Utrecht University

> HAROLD METCALF Stony Brook University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107090149

© Cambridge University Press & Assessment 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2016

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Van der Straten, Peter Atoms and molecules interacting with light : atomic physics for the laser era / Peter van der Straten Utrecht University, Harold Metcalf Stony Brook University. pages cm Includes bibliographical references and index. ISBN 978-1-107-09014-9 1. Physical optics-Textbooks 2. Electromagnetic waves-Textbooks

I. Metcalf, Harold J. II. Title. QC355.3.V36 2016 539.7'5-dc23

2015030337

ISBN 978-1-107-09014-9 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface			<i>page</i> xi
Part	tI A	.tom–light	interaction	1
1	The	classical ph	nysics pathway	3
	1.1	Introduct	ion	3
	1.2	Damped	harmonic oscillator	4
	1.3	The damp	ped driven oscillator	6
	1.4	The Bohr	model	7
	1.5	de Brogli	e waves	9
	Appe	ndix 1.A	Damping force on an accelerating charge	10
	Appe	ndix 1.B	Hanle effect	11
	Appe	endix 1.C	Optical tweezers	12
2	Interaction of two-level atoms and light			16
	2.1	Introduct	ion	16
	2.2 Quantum mechanical view of driven optical transitions			16
	2.3 Rabi oscillations2.4 The dressed atom picture		17	
			sed atom picture	21
	2.5	The Bloch vector and Bloch sphere		23
	Appe	ndix 2.A	Pauli matrices for motion of the Bloch vector	25
	Appe	ndix 2.B	The Ramsey method	26
	Appe	ndix 2.C	Echoes and interferometry	30
	Appendix 2.D		Adiabatic rapid passage	34
	Appe	ndix 2.E	Superposition and entanglement	36
3	The atom–light interaction			40
	3.1 Introduction			40
	3.2	The three	e primary approximations	40

v

vi		Contents	
	3.3 Light fields of finite spectral width		
	3.4 Osci	illator strength	46
	3.5 Selection rules		47
	Appendix 3	A Proof of the oscillator strength theorem	50
	Appendix 3	B.B Electromagnetic fields	50
	Appendix 3	B.C The dipole approximation	55
	Appendix 3	D. Time resolved fluorescence from multilevel atoms	56
4	"Forbidden" transitions		64
	4.1 Intro	oduction	64
	4.2 Exte	ending the electric dipole approximation	65
	4.3 Exte	ending the perturbation approximation	70
	Appendix 4	A Higher-order approximations	78
5	Spontaneo	us emission	80
	5.1 Intro	oduction	80
	5.2 Eins	tein A- and B-coefficients	80
	5.3 Disc	cussion of this semi-classical description	83
	5.4 The	Wigner-Weisskopf model	84
	Appendix 5	5.A The quantum mechanical harmonic oscillator	87
	Appendix 5	*	89
	Appendix 5	C.C. Alternative theories to QED	91
6	The density matrix		93
	6.1 Intro	oduction	93
	6.2 Basi	c concepts	93
	6.3 The	optical Bloch equations	96
	6.4 Pow	er broadening and saturation	98
	Appendix 6	A The Liouville–von Neumann equation	101
Pa	rt II Intern	al structure	105
7	The hydrog	gen atom	107
	7.1 Intro	oduction	107
	7.2 The	Hamiltonian of hydrogen	108
	7.3 Solv	ring the angular part	109
		ring the radial part	110
	7.5 The	scale of atoms	117
	7.6 Opti	cal transitions in hydrogen	118
	Appendix 7	A Center-of-mass motion	122
	Appendix 7	Coordinate systems	123

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-09014-9 — Atoms and Molecules Interacting with Light Peter van der Straten , Harold Metcalf Frontmatter <u>More Information</u>

		Contents	vii
	Appendix 7.C C	Commuting operators	124
	Appendix 7.D M	Matrix elements of the radial wavefunctions	125
8	Fine structure		131
	8.1 Introduction		131
		stic mass term	132
		ucture "spin–orbit" term	133
	8.4 The Darwin		138
	•	of fine structure	138
	8.6 The Dirac equation		138
	8.7 The Lamb s		140
	**	The Sommerfeld fine-structure constant	142
	Appendix 8.B M	Measurements of the fine structure	144
9	Effects of the nuc		149
	9.1 Introduction		149
		e, and shape of the nucleus	149
		gnetism – hyperfine structure	152
	* *	nteracting magnetic dipoles	157
		Hyperfine structure for two spin- $1/_2$ particles	160
	Appendix 9.C 7	The hydrogen maser	161
10	The alkali-metal	atoms	164
	10.1 Introduction		165
	10.2 Quantum d		166
	10.3 Non-penetr	0	168
	10.4 Model pote		170
		nsitions in alkali-metal atoms	171
	**	Quantum defects for the alkalis	175
	Appendix 10.B N	Numerov method	176
11	Atoms in magnetic fields		181
	11.1 Introduction		181
		ionian for the Zeeman effect	182
		ifts in the presence of the spin–orbit interaction	183
	**	The ground state of atomic hydrogen	188
	11	Positronium	190
	**	The non-crossing theorem	192
	~ ~	Passage through an anti-crossing: Landau–Zener	
	transitions		194

viii	Contents		
12	Atoms in electric fields		
	12.1 Introduction	198	
	12.2 Electric field shifts in spherical coordinates	199	
	12.3 Electric field shifts in parabolic coordinates	202	
	12.4 Summary	205	
13	Rydberg atoms	208	
	13.1 Introduction	208	
	13.2 The Bohr model and quantum defects again	209	
	13.3 Rydberg atoms in external fields	211	
	13.4 Experimental description	218	
	13.5 Some results of Rydberg spectroscopy	219	
14	The helium atom	227	
	14.1 Introduction	227	
	14.2 Symmetry	227	
	14.3 The Hamiltonian for helium	230	
	14.4 Variational methods	233	
	14.5 Doubly excited states	237	
	Appendix 14.A Variational calculations	239	
	Appendix 14.B Detail on the variational calculations of the		
	ground state	239	
15	The periodic system of the elements	244	
	15.1 The independent particle model	245	
	15.2 The Pauli symmetrization principle	247	
	15.3 The "Aufbau" principle	248	
	15.4 Coupling of many-electron atoms	249	
	15.5 Hund's rules	254	
	15.6 Hartree–Fock model	256	
	15.7 The Periodic Table	258 261	
	Appendix 15.A Paramagnetism		
	Appendix 15.B The color of gold	264	
16	Molecules		
	16.1 Introduction	272	
	16.2 A heuristic description	274	
	16.3 Quantum description of nuclear motion	276	
	16.4 Bonding in molecules	282	
	16.5 Electronic states of molecules	286	
	16.6 Optical transitions in molecules	290	
	Appendix 16.A Morse potential	299	

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-09014-9 — Atoms and Molecules Interacting with Light Peter van der Straten , Harold Metcalf Frontmatter <u>More Information</u>

		Contents	ix
17	Bind	ing in the hydrogen molecule	303
	17.1	The hydrogen molecular ion	303
	17.2	The molecular orbital approach to H ₂	306
	17.3	The valence bond approach to H ₂	311
	17.4	Improving the methods	312
	17.5	Nature of the H ₂ bond	314
	Appe	ndix 17.A Confocal elliptical coordinates	316
	Appe	ndix 17.B One-electron, two-center integrals	317
	Appe	ndix 17.C Electron–electron interaction in molecular hydrogen	318
18	Ultra-cold chemistry		321
	18.1	Introduction	321
	18.2	Long-range molecular potentials	322
	18.3	LeRoy-Bernstein method	328
	18.4	Scattering theory	331
	18.5	The scattering length	334
	18.6	Feshbach molecules	337
Par	t III	Applications	345
19	Optic	cal forces and laser cooling	347
	19.1	Two kinds of optical forces	347
	19.2	Low-intensity laser light pressure	348
	19.3	Atomic beam slowing and collimation	352
	19.4	Optical molasses	353
	19.5	Temperature limits	355
	19.6	Experiments in three-dimensional optical molasses	356
	19.7	Cooling below the Doppler temperature	359
20	Conf	inement of neutral atoms	367
	20.1	Dipole force optical traps	367
	20.2	Magnetic traps	370
	20.3	Magneto-optical traps	373
	20.4	Optical lattices	376
21	Bose–Einstein condensation		382
	21.1	Introduction	382
	21.2	The road to BEC	384
	21.3	Quantum statistics	385
	21.4	Mean-field description of the condensate	388
	21.5	Interference of two condensates	391
	21.6	Quantum hydrodynamics	394

х	Contents		
	21.7 The superfluid–Mott insulator transition	400	
	Appendix 21.A Distribution functions	405	
	Appendix 21.B Density of states	410	
22	Cold molecules		
	22.1 Slowing, cooling, and trapping molecules	413	
	22.2 Stark slowing of molecules	415	
	22.3 Buffer gas cooling	418	
	22.4 Binding cold atoms into molecules	420	
	22.5 A case study: photo-association spectroscopy	426	
23	Three-level systems	433	
	23.1 Introduction	433	
	23.2 The spontaneous and stimulated Raman effects	435	
	23.3 Coherent population trapping	436	
	23.4 Autler–Townes and EIT	438	
	23.5 Stimulated rapid adiabatic passage	440	
	23.6 Slow light	442	
	23.7 Observations and measurements	444	
	Appendix 23.A General case for $\delta_1 \neq \delta_2$	445	
24	F	448	
	24.1 Precision measurements and QED	449	
	24.2 Variation of the constants	452	
	24.3 Exotic atoms and antimatter	455	
	24.4 Bell inequalities	459	
	24.5 Parity violation and the anapole moment	461	
	24.6 Measuring zero	463	
Par	t IV Appendix	465	
Ap	pendix A Notation and definitions	467	
Apj	pendix B Units and notation	471	
Apj	Appendix C Angular momentum in quantum mechanics		
Apj	pendix D Transition strengths	479	
	References	490	
	Index	508	

Preface

By any measure, atomic physics is among the fastest-growing, most dynamic, and best-recognized areas of physics. The student attendance at conferences devoted to this subject area has burgeoned, and the number of new university tenure track positions in atomic physics is disproportionately high. Recently there have been several documents from national and international science-oriented agencies extolling the growth and importance of atomic physics, with statements such as "Light influences our lives today in ways we could never have imagined a few decades ago," and "AMO science (not only) provides the basis for new technology, it is also a source of the intellectual capital on which science and technology depend for growth and development." The General Assembly of the United Nations and UNESCO declared 2015 as the "International Year of Light", further underscoring its importance to the world. Applications are not restricted to further exploration of our specialized field, but have expanded to include substantial impact on other areas of physics such as condensed matter, quantum information, thermodynamics, and fluid mechanics. For these and other reasons, we have decided to provide an introductory text appropriate to the emerging laser era in atomic, molecular, and optical science.

This book is intended for multiple purposes. First and foremost, we are experimentalists, so the material is presented in an intuitive and very physical tone. Many ideas are developed from the classical physics perspective rather than from mathematical formalism. We try to connect the concepts with measurements where it makes sense to do so, and to motivate each topic by the observations that produced the information about it.

Our intent is to use it as a text for a course in atomic physics. It requires a knowledge of quantum mechanics at the level of the well-known textbooks by Griffiths or Liboff, and of elementary electricity and magnetism. Thus it is suitable for an advanced undergraduate course or a beginning graduate course (certainly for a course that serves both populations together). In addition, we have tried to write

xii

Preface

in a sufficiently familiar style that a student can read and understand the material even without the benefit of a course. That is, the material is presented in a descriptive mode to maximize understanding. Some applications and detailed calculations relevant to a particular chapter are provided as appendices to the specific chapter.

Atomic physics underwent a renaissance with the advent of tunable lasers in the 1970s, and we have taken this revolution to heart. Modern atomic physics is intimately coupled to the interaction of atoms with laser light, and we have chosen to emphasize this aspect. Since almost all students in physics or chemistry have some minimal notions about atomic structure before they undertake a course devoted to this subject, this book begins with several chapters on transitions of two-level systems driven by a single frequency of light. We have chosen this approach because it is most appropriate for the frontiers of research in atomic physics at present. Most of the books currently available emphasize atomic structure first, and the interaction with light is treated as a secondary topic. Thus this book is distinct because its initial approach is based on the interaction of atoms with light as opposed to the elements of atomic structure.

The text begins with a discussion of classical physics as it relates to atomic physics because there are so many striking similarities. The second chapter has a discussion of two-level systems with appendices on Ramsey spectroscopy, adiabatic rapid passage, entanglement, and other topics. Then we generalize to multilevel systems with selection rules, the usual radiative approximations, and a discussion of electromagnetic fields from various sources. In the next chapter we relax these approximations to include M1/E2 transitions and multiphoton processes. The following chapters introduce spontaneous emission, the density matrix, field quantization, and several related topics.

These discussions of electromagnetic radiation at the start are not to suggest that atomic structure is neglected. Beginning with the hydrogen atom in Chapter 7, the conventional topics are discussed in some detail. After chapters on the fine and hyperfine structure of hydrogen including measurements of the Lamb shift and fine structure, there are chapters on helium and heavier atoms, followed by a treatment of external fields (Zeeman and Stark effects). What is important is that they are interspersed with material that is rarely found in textbooks, such as intuitive description of quantum defects. We have found that students rarely understand why the dominant transitions of many atoms are between two states of the same principal quantum number: the Bohr energy formula is often considered sacrosanct. This second part of the book continues with a discussion of the structure of Rydberg atoms, helium, and heavier atoms. These are followed by a chapter on molecular structure and a second one on the paradigm of molecular physics, H₂.

The third part of the book has separate chapters on various applications of the first two parts. These include but are not limited to laser cooling, trapping, BEC,

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-09014-9 — Atoms and Molecules Interacting with Light Peter van der Straten , Harold Metcalf Frontmatter More Information

Preface

applications to fundamental physics such as parity violation, exotic atoms, and three-level systems. References are made to the earlier sections of the book where the underlying science has been introduced. Since the development of these applications are contemporary, there are many more references to the current literature than to the standard textbooks that discuss the topics of the first two parts. These are quite likely to be outdated by further progress, whereas the standard topics in Parts I and II will stand the test of time.

Some of the material in Parts I and II has a small overlap, including a few figures, with the early chapters of our previous work, "*Laser Cooling and Trapping*" [1], where the background needed to understand laser cooling and trapping is summarized. However, this book provides more depth and more complete description of the atomic physics needed for present-day research in this field. By contrast, Chapters 19 and 20 here present a summary of laser cooling and trapping, but much more detailed discussion can be found in Ref. [1]. Students are encouraged to consult that book for further studies.

The chapters are complemented by exercises of two types. Some of these exercises are simply mathematical calculations to derive something in the text that is dismissed with "it can be shown that...". Others are extensions of the text where the students are asked to find something new based on a different approach than that taken in the text. Since most of Part III addresses current progress, it does not lend itself as well to exercises as do Parts I and II, so it contains only around 10% of the approximately 130 exercises in the book.

Although there are many systems of units in use, this book is restricted to SI units. Atomic units are very convenient and are summarized in an appendix, but SI units enable numerical evaluation of formulas needed for laboratory work where experimental parameters must be chosen. We think that the price of the frequent appearance of $4\pi\varepsilon_0$ and other constants is worth it.