ATOMS AND MOLECULES INTERACTING WITH LIGHT
Atomic Physics for the Laser Era

This in-depth textbook with a focus on atom–light interactions prepares students for research in a fast-growing and dynamic field. Intended to accompany the laser-induced revolution in atomic physics, it is a comprehensive text for the emerging era in atomic, molecular, and optical science.

Utilizing an intuitive and physical approach, the text describes two-level atom transitions, including appendices on Ramsey spectroscopy, adiabatic rapid passage, and entanglement. With a unique focus on optical interactions, the authors present multi-level atomic transitions with dipole selection rules, along with M1/E2 and multiphoton transitions. Conventional atomic structure topics are discussed in some detail, beginning with the hydrogen atom, and these are interspersed with material rarely found in textbooks, such as an intuitive description of quantum defects. The final chapters examine modern applications and include many references to current research literature. The numerous exercises and multiple appendices throughout enable advanced undergraduate and graduate students to balance theory with experiment.

PETER VAN DER STRATEN is Professor of Nanophotonics at Utrecht University where his research interests focus on Bose–Einstein condensation and quantum hydrodynamics. He is head of the Teaching Advisory Committee of the Physics Department and a member of the Dutch Physical Society.

HAROLD METCALF is Distinguished Teaching Professor at Stony Brook University. He has been awarded the Humboldt Prize in recognition of his contribution to atomic physics and has received numerous awards for excellence in teaching.
ATOMS AND MOLECULES
INTERACTING WITH LIGHT
Atomic Physics for the Laser Era

PETER VAN DER STRATEN
Utrecht University

HAROLD METCALF
Stony Brook University
Contents

Preface
page xi

Part I Atom–light interaction

1 **The classical physics pathway**
 1.1 Introduction
 1.2 Damped harmonic oscillator
 1.3 The damped driven oscillator
 1.4 The Bohr model
 1.5 de Broglie waves
 Appendix 1.A Damping force on an accelerating charge
 Appendix 1.B Hanle effect
 Appendix 1.C Optical tweezers

2 **Interaction of two-level atoms and light**
 2.1 Introduction
 2.2 Quantum mechanical view of driven optical transitions
 2.3 Rabi oscillations
 2.4 The dressed atom picture
 2.5 The Bloch vector and Bloch sphere
 Appendix 2.A Pauli matrices for motion of the Bloch vector
 Appendix 2.B The Ramsey method
 Appendix 2.C Echoes and interferometry
 Appendix 2.D Adiabatic rapid passage
 Appendix 2.E Superposition and entanglement

3 **The atom–light interaction**
 3.1 Introduction
 3.2 The three primary approximations
Contents

3.3 Light fields of finite spectral width 44
3.4 Oscillator strength 46
3.5 Selection rules 47
Appendix 3.A Proof of the oscillator strength theorem 50
Appendix 3.B Electromagnetic fields 50
Appendix 3.C The dipole approximation 55
Appendix 3.D Time resolved fluorescence from multilevel atoms 56

4 “Forbidden” transitions 64
4.1 Introduction 64
4.2 Extending the electric dipole approximation 65
4.3 Extending the perturbation approximation 70
Appendix 4.A Higher-order approximations 78

5 Spontaneous emission 80
5.1 Introduction 80
5.2 Einstein A- and B-coefficients 80
5.3 Discussion of this semi-classical description 83
5.4 The Wigner–Weisskopf model 84
Appendix 5.A The quantum mechanical harmonic oscillator 87
Appendix 5.B Field quantization 89
Appendix 5.C Alternative theories to QED 91

6 The density matrix 93
6.1 Introduction 93
6.2 Basic concepts 93
6.3 The optical Bloch equations 96
6.4 Power broadening and saturation 98
Appendix 6.A The Liouville–von Neumann equation 101

Part II Internal structure 105

7 The hydrogen atom 107
7.1 Introduction 107
7.2 The Hamiltonian of hydrogen 108
7.3 Solving the angular part 109
7.4 Solving the radial part 110
7.5 The scale of atoms 117
7.6 Optical transitions in hydrogen 118
Appendix 7.A Center-of-mass motion 122
Appendix 7.B Coordinate systems 123
Contents

Appendix 7.C Commuting operators 124
Appendix 7.D Matrix elements of the radial wavefunctions 125

8 Fine structure 131
8.1 Introduction 131
8.2 The relativistic mass term 132
8.3 The fine-structure “spin–orbit” term 133
8.4 The Darwin term 138
8.5 Summary of fine structure 138
8.6 The Dirac equation 138
8.7 The Lamb shift 140
Appendix 8.A The Sommerfeld fine-structure constant 142
Appendix 8.B Measurements of the fine structure 144

9 Effects of the nucleus 149
9.1 Introduction 149
9.2 Motion, size, and shape of the nucleus 149
9.3 Nuclear magnetism – hyperfine structure 152
Appendix 9.A Interacting magnetic dipoles 157
Appendix 9.B Hyperfine structure for two spin-1/2 particles 160
Appendix 9.C The hydrogen maser 161

10 The alkali-metal atoms 164
10.1 Introduction 165
10.2 Quantum defect theory 166
10.3 Non-penetrating orbits 168
10.4 Model potentials 170
10.5 Optical transitions in alkali-metal atoms 171
Appendix 10.A Quantum defects for the alkalis 175
Appendix 10.B Numerov method 176

11 Atoms in magnetic fields 181
11.1 Introduction 181
11.2 The Hamiltonian for the Zeeman effect 182
11.3 Zeeman shifts in the presence of the spin–orbit interaction 183
Appendix 11.A The ground state of atomic hydrogen 188
Appendix 11.B Positronium 190
Appendix 11.C The non-crossing theorem 192
Appendix 11.D Passage through an anti-crossing: Landau–Zener transitions 194
Contents

12 Atoms in electric fields 198
 12.1 Introduction 198
 12.2 Electric field shifts in spherical coordinates 199
 12.3 Electric field shifts in parabolic coordinates 202
 12.4 Summary 205

13 Rydberg atoms 208
 13.1 Introduction 208
 13.2 The Bohr model and quantum defects again 209
 13.3 Rydberg atoms in external fields 211
 13.4 Experimental description 218
 13.5 Some results of Rydberg spectroscopy 219

14 The helium atom 227
 14.1 Introduction 227
 14.2 Symmetry 227
 14.3 The Hamiltonian for helium 230
 14.4 Variational methods 233
 14.5 Doubly excited states 237
 Appendix 14.A Variational calculations 239
 Appendix 14.B Detail on the variational calculations of the ground state 239

15 The periodic system of the elements 244
 15.1 The independent particle model 245
 15.2 The Pauli symmetrization principle 247
 15.3 The “Aufbau” principle 248
 15.4 Coupling of many-electron atoms 249
 15.5 Hund’s rules 254
 15.6 Hartree–Fock model 256
 15.7 The Periodic Table 258
 Appendix 15.A Paramagnetism 261
 Appendix 15.B The color of gold 264

16 Molecules 272
 16.1 Introduction 272
 16.2 A heuristic description 274
 16.3 Quantum description of nuclear motion 276
 16.4 Bonding in molecules 282
 16.5 Electronic states of molecules 286
 16.6 Optical transitions in molecules 290
 Appendix 16.A Morse potential 299
Contents

17 Binding in the hydrogen molecule 303
 17.1 The hydrogen molecular ion 303
 17.2 The molecular orbital approach to H₂ 306
 17.3 The valence bond approach to H₂ 311
 17.4 Improving the methods 312
 17.5 Nature of the H₂ bond 314
Appendix 17.A Confocal elliptical coordinates 316
Appendix 17.B One-electron, two-center integrals 317
Appendix 17.C Electron–electron interaction in molecular hydrogen 318

18 Ultra-cold chemistry 321
 18.1 Introduction 321
 18.2 Long-range molecular potentials 322
 18.3 LeRoy–Bernstein method 328
 18.4 Scattering theory 331
 18.5 The scattering length 334
 18.6 Feshbach molecules 337

Part III Applications 345

19 Optical forces and laser cooling 347
 19.1 Two kinds of optical forces 347
 19.2 Low-intensity laser light pressure 348
 19.3 Atomic beam slowing and collimation 352
 19.4 Optical molasses 353
 19.5 Temperature limits 355
 19.6 Experiments in three-dimensional optical molasses 356
 19.7 Cooling below the Doppler temperature 359

20 Confinement of neutral atoms 367
 20.1 Dipole force optical traps 367
 20.2 Magnetic traps 370
 20.3 Magneto-optical traps 373
 20.4 Optical lattices 376

21 Bose–Einstein condensation 382
 21.1 Introduction 382
 21.2 The road to BEC 384
 21.3 Quantum statistics 385
 21.4 Mean-field description of the condensate 388
 21.5 Interference of two condensates 391
 21.6 Quantum hydrodynamics 394
Contents

21.7 The superfluid–Mott insulator transition 400
Appendix 21.A Distribution functions 405

22 Cold molecules 413
22.1 Slowing, cooling, and trapping molecules 413
22.2 Stark slowing of molecules 415
22.3 Buffer gas cooling 418
22.4 Binding cold atoms into molecules 420
22.5 A case study: photo-association spectroscopy 426

23 Three-level systems 433
23.1 Introduction 433
23.2 The spontaneous and stimulated Raman effects 435
23.3 Coherent population trapping 436
23.4 Autler–Townes and EIT 438
23.5 Stimulated rapid adiabatic passage 440
23.6 Slow light 442
23.7 Observations and measurements 444
Appendix 23.A General case for $\delta_1 \neq \delta_2$ 445

24 Fundamental physics 448
24.1 Precision measurements and QED 449
24.2 Variation of the constants 452
24.3 Exotic atoms and antimatter 455
24.4 Bell inequalities 459
24.5 Parity violation and the anapole moment 461
24.6 Measuring zero 463

Part IV Appendix 465

Appendix A Notation and definitions 467
Appendix B Units and notation 471
Appendix C Angular momentum in quantum mechanics 473
Appendix D Transition strengths 479

References 490
Index 508
Preface

By any measure, atomic physics is among the fastest-growing, most dynamic, and best-recognized areas of physics. The student attendance at conferences devoted to this subject area has burgeoned, and the number of new university tenure track positions in atomic physics is disproportionately high. Recently there have been several documents from national and international science-oriented agencies extolling the growth and importance of atomic physics, with statements such as “Light influences our lives today in ways we could never have imagined a few decades ago,” and “AMO science (not only) provides the basis for new technology, it is also a source of the intellectual capital on which science and technology depend for growth and development.” The General Assembly of the United Nations and UNESCO declared 2015 as the “International Year of Light”, further underscoring its importance to the world. Applications are not restricted to further exploration of our specialized field, but have expanded to include substantial impact on other areas of physics such as condensed matter, quantum information, thermodynamics, and fluid mechanics. For these and other reasons, we have decided to provide an introductory text appropriate to the emerging laser era in atomic, molecular, and optical science.

This book is intended for multiple purposes. First and foremost, we are experimentalists, so the material is presented in an intuitive and very physical tone. Many ideas are developed from the classical physics perspective rather than from mathematical formalism. We try to connect the concepts with measurements where it makes sense to do so, and to motivate each topic by the observations that produced the information about it.

Our intent is to use it as a text for a course in atomic physics. It requires a knowledge of quantum mechanics at the level of the well-known textbooks by Griffiths or Liboff, and of elementary electricity and magnetism. Thus it is suitable for an advanced undergraduate course or a beginning graduate course (certainly for a course that serves both populations together). In addition, we have tried to write
in a sufficiently familiar style that a student can read and understand the material even without the benefit of a course. That is, the material is presented in a descriptive mode to maximize understanding. Some applications and detailed calculations relevant to a particular chapter are provided as appendices to the specific chapter.

Atomic physics underwent a renaissance with the advent of tunable lasers in the 1970s, and we have taken this revolution to heart. Modern atomic physics is intimately coupled to the interaction of atoms with laser light, and we have chosen to emphasize this aspect. Since almost all students in physics or chemistry have some minimal notions about atomic structure before they undertake a course devoted to this subject, this book begins with several chapters on transitions of two-level systems driven by a single frequency of light. We have chosen this approach because it is most appropriate for the frontiers of research in atomic physics at present. Most of the books currently available emphasize atomic structure first, and the interaction with light is treated as a secondary topic. Thus this book is distinct because its initial approach is based on the interaction of atoms with light as opposed to the elements of atomic structure.

The text begins with a discussion of classical physics as it relates to atomic physics because there are so many striking similarities. The second chapter has a discussion of two-level systems with appendices on Ramsey spectroscopy, adiabatic rapid passage, entanglement, and other topics. Then we generalize to multilevel systems with selection rules, the usual radiative approximations, and a discussion of electromagnetic fields from various sources. In the next chapter we relax these approximations to include M1/E2 transitions and multiphoton processes. The following chapters introduce spontaneous emission, the density matrix, field quantization, and several related topics.

These discussions of electromagnetic radiation at the start are not to suggest that atomic structure is neglected. Beginning with the hydrogen atom in Chapter 7, the conventional topics are discussed in some detail. After chapters on the fine and hyperfine structure of hydrogen including measurements of the Lamb shift and fine structure, there are chapters on helium and heavier atoms, followed by a treatment of external fields (Zeeman and Stark effects). What is important is that they are interspersed with material that is rarely found in textbooks, such as intuitive description of quantum defects. We have found that students rarely understand why the dominant transitions of many atoms are between two states of the same principal quantum number: the Bohr energy formula is often considered sacrosanct. This second part of the book continues with a discussion of the structure of Rydberg atoms, helium, and heavier atoms. These are followed by a chapter on molecular structure and a second one on the paradigm of molecular physics, H2.

The third part of the book has separate chapters on various applications of the first two parts. These include but are not limited to laser cooling, trapping, BEC,
applications to fundamental physics such as parity violation, exotic atoms, and three-level systems. References are made to the earlier sections of the book where the underlying science has been introduced. Since the development of these applications are contemporary, there are many more references to the current literature than to the standard textbooks that discuss the topics of the first two parts. These are quite likely to be outdated by further progress, whereas the standard topics in Parts I and II will stand the test of time.

Some of the material in Parts I and II has a small overlap, including a few figures, with the early chapters of our previous work, “Laser Cooling and Trapping” [1], where the background needed to understand laser cooling and trapping is summarized. However, this book provides more depth and more complete description of the atomic physics needed for present-day research in this field. By contrast, Chapters 19 and 20 here present a summary of laser cooling and trapping, but much more detailed discussion can be found in Ref. [1]. Students are encouraged to consult that book for further studies.

The chapters are complemented by exercises of two types. Some of these exercises are simply mathematical calculations to derive something in the text that is dismissed with “it can be shown that...”. Others are extensions of the text where the students are asked to find something new based on a different approach than that taken in the text. Since most of Part III addresses current progress, it does not lend itself as well to exercises as do Parts I and II, so it contains only around 10% of the approximately 130 exercises in the book.

Although there are many systems of units in use, this book is restricted to SI units. Atomic units are very convenient and are summarized in an appendix, but SI units enable numerical evaluation of formulas needed for laboratory work where experimental parameters must be chosen. We think that the price of the frequent appearance of $4\pi\varepsilon_0$ and other constants is worth it.