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The classical physics pathway

1.1 Introduction

While it might appear that the nineteenth-century physics presented in this chapter

has no place in a topic as quantum mechanically oriented as atomic physics, this is

simply not the case. The purpose of this first chapter is to try to convince the readers

that the material learned in their early years of studying physics is not disjoint from

modern topics, but in fact can provide a foundation for their further understanding.

Other examples will occur later.

The reader may be a bit surprised to see that the results of the classical descrip-

tion turn out to be so close to the quantum mechanical results. Where there are

significant disagreements between classical and quantum descriptions, it is nec-

essary to explain why these occur. The correspondence principle requires that in

the limit of large quantum numbers the complete quantum mechanical description

must agree with the classical one. It is always better to need fewer of these expla-

nations and to be able to treat physics as a coherent whole instead of a collection

of topics.

The consequences of classical physics are intuitively familiar, and this is often

most helpful in gaining deeper understanding. In fact, the approach taken in very

many of the chapters in this book is to start with a purely classical description of a

topic, and then transport it directly into the Schrödinger equation. Radiation from

an accelerated charge, as treated here in the harmonic case, provides an ideal setting

for such pedagogy. Even though classical mechanics is used in place of quantum

mechanics, for the case of harmonic motion, the results are quite compatible.

The early history of atomic physics contains many topics that are well worth

reading about, especially the experimental facilities. For example, there were no

electric motors, wire was not readily available, and making even a crude vacuum

was an experimental tour de force. Very many textbooks have discussions of these

topics, and so they will not be presented here. But the reader is warned that certain

oft-repeated modern descriptions are simply wrong.
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4 The classical physics pathway

Perhaps the most important notion to be gained from this chapter is that the clas-

sical description of a harmonically bound electron provides quite accurate results

about the interaction between atoms and light. Of course, the utility of this descrip-

tion is limited because the classical harmonic oscillator has no internal structure,

is infinitely deep, and has a continuous energy spectrum. Atoms do not radiate or

interact with waves that have too low a frequency, and they will ionize if exposed

to too high a frequency. Still, this chapter will show that the classical description

gives very good answers for damping rate of the excited state, the cross-section for

light scattering, and the emitted spectrum of the light.

1.2 Damped harmonic oscillator

1.2.1 Introduction

The fact that atoms survive quite violent collisions surprisingly effectively suggests

that disturbances to the electrons’ motion are countered by restoring forces, and the

lowest-order term in an expansion of such a force is linear. Thus ûF = 2k(ûr 2 ûr0),

where ûr0 corresponds to a stable orbit about an infinitely massive nucleus. In this

approximation, the equation of motion in one dimension is ẍ + Ë2
0
x = 0, where

Ë2
0
= k/m.

An electron in such an orbit radiates because it is an accelerating charge, and the

radiation field is calculated in the appendix to this chapter. The energy flux (W/m2)

of the radiated field is given by the Poynting vector, ûS = ûE × ûH . Conservation of

energy requires that the radiated energy be lost from the motion of the oscillator,

and the result is equivalent to a damping force ûF = 2(e2Ë2
0
/6Ã·0c3)ûv c 2³ûv (also

shown in App. 1.A).

The equation of motion for a damped harmonic oscillator is ẍ + ´ẋ + Ë2
0
x = 0

with solution

x = x0e2´t/2 cos(Ë�0t + Ç), Ë�0 =

�

Ë2
0
2
´2

4
, ´ =

e2Ë2
0

6Ã·0mc3
, (1.1)

where ´ c ³/m comes from the damping coefficient following Eq. (1.17) in

App. 1.A. This solution is plotted in Fig. 1.1a.

For optical transitions (visible light) ´ j 5 × 108 rad/s. This value of ´ corre-

sponds to a lifetime Ç c 1/´ j 2 ns and is typical of the value of atomic excited

state lifetimes. It is most surprising that such a completely classical considera-

tion results in an answer that matches laboratory measurements. Furthermore, for

´ � Ë0 the frequency shift from Eq. (1.1) is approximately ´2/8Ë0 > 2 rad/s,

which is negligibly small compared with Ë0 > 1016 rad/s and even compared with

´ > 109 rad/s, so it is not even apparent in Fig. 1.1b. In the following Ë�
0

will be

replaced by Ë0.
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1.2 Damped harmonic oscillator 5
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Figure 1.1 (a) Amplitude of a damped harmonic oscillator in the Lorentz model,
where the motion is damped because of the acceleration of the electron. (b) Spec-
trum of the emitted radiation, where the width is inversely proportional to the
lifetime.

The quantity Q c Ë0/´ = 6Ã·0mc3/e2Ë0 is the number of cycles during one

damping time Ç, which is called the quality factor. For optical transitions Q j

2 × 107. The high Q domain extends all the way up to frequencies 3mc2/2� which

includes the ultraviolet, X-ray, and gamma-ray regions, and ends where E >

50 MeV.

1.2.2 Spectrum of emitted radiation

The spectrum of the emitted light can be found by calculating the Fourier transform

of the emitted radiation. The emitted field for t > 0 is

ûErad(t) c ûE
(0)

rad
e2´t/2 cos(Ë0t + Ç) (1.2)

where ûE
(0)

rad
c eË2

0
x0/4Ã·0c2r using Eq. (1.13) in Appendix 1.A and ẍ = 2Ë0

2x for

harmonic motion. The resulting Fourier transform is

ûErad(Ë) =
ûE

(0)

rad

2Ã

>
"

0

e2´t/2 cos(Ë0t + Ç)e2iËtdt

=

ûE
(0)

rad

2Ã

>
"

0

e2´t/2
1

2

"

ei(Ë0t+Ç) + e2i(Ë0t+Ç)
"

e2iËtdt

=

ûE
(0)

rad

4Ã

"

eiÇ

´/2 + i(Ë 2 Ë0)
+

e2iÇ

´/2 + i(Ë + Ë0)

"

. (1.3)

Since Ë0 � ´, the second term in Eq. (1.3) can be dropped, and the energy

spectrum in the vicinity of Ë > Ë0 is described by the Lorentzian

�

�

�

�

ûErad(Ë)
�

�

�

�

2
=

1

16Ã2

�

�

�

�

ûE
(0)

rad

�

�

�

�

2
"

1

´2/4 + (Ë 2 Ë0)2

"

, (1.4)

which is plotted in Fig. 1.1b.
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6 The classical physics pathway

1.3 The damped driven oscillator

1.3.1 Radiated power

For a driven oscillating charge, the amplitude will be constant after the initial tran-

sients die out, so the radiation will be emitted at a constant rate. The frequency

eventually settles to the driving frequency (not the natural frequency). Since the

oscillator is constantly radiating energy, it can only be that the energy is taken

from the driving field. Conservation of energy allows the calculation of the rate of

re-radiation starting with the work done by the driving force
�

ûF · ûv averaged over

one cycle of the oscillation.

For a driving field ûE = ûE0 cos(Ët) the resulting motion is x = x0 cos(Ët + Ç)

with Ë the driving frequency. The velocity ẋ is calculated from the derivative of

this motion, and for such a driving force

x0 =
e | ûE0 | /m

�

(Ë2
0
2 Ë2)2 + ´2Ë2

and tan Ç =
´Ë

Ë2 2 Ë2
0

. (1.5)

The average scattered power must equal the work done by the driving force, and

can be found by integrating over one period ∆t = 2Ã/Ë:

Prad =
1

∆t

" t+∆t

t

ûF · ûv dt

=
Ëe | ûE0 | x0

∆t

" t+∆t

t

sin(Ët + Ç) cos(Ët) dt

= mË2x2
0(´/2) =

e2E2

2m´
, (1.6)

when Eq. (1.5) is evaluated at the resonance condition Ë = Ë0.

1.3.2 Scattering of radiation

By conservation of energy, the rate of work done by the force exerted on the elec-

tron by the driving field must equal the radiated power. But knowing the fields

allows calculation of the intensity, which is the power per unit area of the incoming

light, not its total power. In order to relate scattered power to this incident intensity,

there is need for an “effective area” or cross-section Ã for the atom that character-

izes its effective size for light scattering so that the scattered light power equals the

incident light intensity times Ã. Using Eq. (1.6) gives

Ã =
e2 | ûE0 |

2
/2m´

·0c | ûE0 |
2
/2
=

e2

·0mc´
=

6Ãc2

Ë2
0

=
3»2

2Ã
. (1.7)
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1.4 The Bohr model 7

where the last steps come from using Eq. (1.1) for ´. Note that the incident

light intensity has equal contributions from both the electric and magnetic fields,

·0cE2/2+ cB2/2¿0, and each of these is proportional to cos2 Ët, whose time

average is 1/2. Thus the intensity is ·0cE2
0
/2.

This is a most interesting and curious result. The resonant cross-section depends

only on the wavelength of the incident light. It is completely independent of the

type of atom and the properties of the electron. Not only that, it is huge. It is 10,000

times larger than the size of the atom itself.

1.4 The Bohr model

1.4.1 Introduction

In the nineteenth century Balmer had already noticed certain regularities in spec-

trum of electrical discharges of hydrogen gas. He was interested in number theory

and its relation to natural phenomena, and studied the measured values of the

wavelengths. He found that the wavelengths of the hydrogen spectrum satisfied

¿n =
c

»n

?

"

1 2
4

n2

"

, (1.8)

where n g 3 is an integer. In studies that were unrelated at the time, Planck had

solved the long-standing problem of the spectrum of light from hot objects in 1900.

He did this by assuming, with no physical basis whatsoever, that the light was emit-

ted from oscillators in energy packets that had to be discrete, and the discretization

was in terms of the light frequency ¿. His now-famous formula is E = h¿ where

the constant h = 6.626 × 10234 Js now bears his name.

At that time, the prevailing theory of atomic structure was Thomson’s “plum

pudding” model: tiny negative particles embedded in a uniform sea of positive

charge that had the atomic size. Thomson’s idea was replaced after Rutherford’s

experiments in 1908 that could only be explained by the “solar system” model

still currently in use. However, the “solar system” model conflicted directly with

Maxwell’s electromagnetic theory that underlies Sec. 1.2. It requires that the orbit-

ing electrons would necessarily emit radiation, because of their acceleration, until

the atom collapsed.

Finally, in 1913 Bohr proposed his model. He supposed the “solar system”

model but with two additional postulates that were outside the realm of classi-

cal physics. One was that the electrons in certain special discrete orbits do not emit

classical radiation, and the other was that when they make a transition between dis-

crete orbits whose energy differs by ∆E, they emit radiation according to Planck’s

formula ∆E = h¿. A more detailed description is in Sec. 1.4.2. He found that found

the measured wavelengths agreed with his calculations to very high precision. In
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8 The classical physics pathway

many texts it is asserted that Bohr quantized the orbital angular momentum, but

this is simply not true [2, 3].

1.4.2 Energy levels

In his 1913 paper [2] (see also Ref. [3]) Bohr addressed the problem posed by

the Rutherford model with two postulates. First, in spite of the tenets of classi-

cal mechanics and electrodynamics, there were only discrete allowed orbits of the

Kepler motion of electrons in the Coulomb field of a massive nucleus, and these

were stable against radiation. Second, transitions between these allowed orbits con-

served energy by emitting or absorbing radiation whose frequency is given by the

Planck condition E = h¿. This was a radical choice because classical electrody-

namics requires that the radiation be at the harmonic frequencies of the orbital

motion, but classical electrodynamics had to be discarded for the quantum theory

anyway because of the postulate of orbital stability.

Newtonian mechanics for a circular orbit in the Coulomb field requires

F =
mv

2

r
=

e2

4Ã·0r2
. (1.9)

The total energy of such an orbit is given by the sum of kinetic and potential energy

terms, and Eq. (1.9) leads to

E = T + V =
mv

2

2
2

e2

4Ã·0r
=

1

4Ã·0

"

e2

2r
2

e2

r

"

= 2
e2

8Ã·0r
. (1.10)

The ratio of kinetic to potential energy is 1/2, which is an example of the virial

theorem. The total energy is negative because these are the bound states of the

atoms.

Bohr adapted Balmer’s formula for the measured frequencies in the spectrum

of atomic hydrogen and the Ritz combination principle to find that the energies of

these discrete orbits were given by En = 2R>/n
2 where n is an integer and

R> c
e2

8Ã·0a0

(1.11)

from Eq. (1.10). The length a0 is characteristic of atomic dimensions. He combined

this formula for En with Eq. (1.10) to find that the size of these fixed orbits was

rn = n2e2/8Ã·0R> c n2a0.

He then reasoned that orbits with very high values of n should correspond to

classical motion (the embryo of his later correspondence principle) so that the

frequency of the emitted radiation should be the same as the orbital frequency

Ërot. Equation (1.9) gives Ërot = v/r =
�

e2/(4Ã·0mr3) and the energy separation

between adjacent high n states is ∆E = 2(2R>/n
3)∆n with ∆n = 1. Then setting
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1.5 de Broglie waves 9

�Ërot = 2R>/n
3 and using rn = n2a0 gives a0 = 4Ã·0�

2/me2 = 0.529 × 10210 m,

so the total energy is

E = 2
�

2

2ma2
0
n2
c 2

R>

n2
. (1.12)

The Rydberg constant R> j 13.6 eV sets the scale for all energies of atomic

phenomena. These results are simpler to reach by quantizing orbital angular

momentum as mvr = n� but, in spite of statements in many textbooks, this was

not the path Bohr followed.

1.5 de Broglie waves

In 1923 de Broglie [4] suggested matter waves and claimed that they must undergo

constructive interference in atomic orbits in order to have the stationary states of the

Bohr model. The length of the orbit must be an integral number of de Broglie wave-

lengths as shown in Fig. 1.2, and since their wavelength is » = h/p, the constructive

interference condition is 2Ãr = n». This condition is the same as quantizing the

angular momentum of the orbit yielding mvr = n� and many authors claim that this

is the derivation used by Bohr. It is not. In fact, it is not even sensible because the

orbital angular momentum quantum number � is quite different from the principal

quantum number n.

Sometime later Debye asked the question “What is the wave equation for a de

Broglie matter wave?” There are wave equations for acoustic, water, and electro-

magnetic waves, so there should be one for matter waves. Later, Schrödinger

proposed the one that bears his name, and it became the basis of modern quan-

tum mechanics because of its success. The first major accomplishment was the

Figure 1.2 Artist sketch of the standing de Broglie waves in a circular orbit of an
H-atom with seven nodes.
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10 The classical physics pathway

calculation of Bohr’s formula for the energy levels of the hydrogen atom starting

from its time-independent form.

Appendices

1.A Damping force on an accelerating charge

An electron bound to a nucleus in a Kepler-like orbit can be represented by linear

harmonic oscillators. Since it is an accelerating charge it should radiate an electric

field as illustrated in Fig. 1.3 (see Ref. [5], section 14.2). The electric and magnetic

fields at position ûr (r̂ is a unit vector in the ûr direction) are given by

ûE =
e

4Ã·0c2

£

¤

¤

¤

¤

¥

r̂ × (r̂ × û̈x)

r

¦

§

§

§

§

¨

t2r/c

, ûH =

�

·0

¿0

(r̂ × ûE). (1.13)

Note that ûE § r̂ and also that ûE "§ û̈x.

The energy of the radiated field given by the Poynting vector ûS = ûE× ûH must be

lost from the oscillating charge, and this loss implies a “radiative” force that does

work on the charge. To calculate this force, start with the rate of energy loss, which

is the same as the rate of radiated energy. Begin by calculating ûS from the fields:

ûS =

�

·0

¿0

�

�

�

�

ûE
�

�

�

�

2
r̂ =

e2

16Ã2·2
0
c4

| r̂ × û̈x |
2

r2

�

·0

¿0

r̂

=
e2

4Ã·0

1

4Ãr2

(ẍ sin »)2

c3
r̂, (1.14)

x

y

E

z

ẍ

�r = n̂|�r|

Figure 1.3 The electric field ûE at location ûr from a charge accelerating along the
x-axis at the origin with acceleration ẍ.
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1.B Hanle effect 11

where » is the angle between r̂ and û̈x, and |r̂×(r̂× û̈x)| simplifies to |r̂× û̈x| because r̂ §

(r̂×û̈x). The total radiated power at a given instant of the oscillator is then the integral

of ûS over a closed surface. For a sphere, the area element dA = (rd»)(r sin »dÇ) =

r2 sin »d»dÇ so the total radiated power at any instant is

�
ûS · dûA =

e2 ẍ2

16Ã2·0c3

" 2Ã

0

dÇ

" Ã

0

d» sin3 » =
e2 ẍ2

6Ã·0c3
, (1.15)

where the integral over Ç yields 2Ã and the integral over » becomes 4/3. Since ẍ is

time-dependent, it is necessary to average Eq. (1.15) over one cycle. Then

û

ẍ 2
û

=
1

∆t

" t+∆t

t

ẍ2dt� =
1

∆t
ẍẋ

�

�

�

�

�

t+∆t

t

2
1

∆t

" t+∆t

t

...
x ẋdt�, (1.16)

where ∆t = 2Ã/Ë0. Because ẍẋ is periodic, the average ûẍẋû = 0. The energy lost

by the oscillator is the total radiated power and is given by

P =

û�
ûS · d ûA

û

= 2
e2

6Ã·0c3

1

∆t

" t+∆t

t

...
x ẋdt� = 2

1

∆t

" t+∆t

t

ûF · ûv dt� (1.17)

where the (2) sign arises because it is an energy loss. Using û̇x = ûv, and identify-

ing the terms in Eq. (1.17), leads to ûF = 2(e2Ë2
0
/6Ã·0c3)ûv since

...
x = 2Ë2

0
ẋ for

harmonic motion. Notice that ûF ? 2ûv, as is the usual case for a damping force.

Such a dependence is found in very many common physical systems, for example

air resistance at low Reynold’s number.

1.B Hanle effect

Suppose a harmonically bound electron is oscillating along the y-axis, for example

excited by the electric field of linearly polarized light incident along the x-axis and

polarized in the y-direction as shown in Fig. 1.4. The doughnut-shaped radiation

pattern expected from Eq. (1.13) is shown at the origin. It clearly shows that there is

no power radiated in the y-direction because that is the direction of the acceleration,

and also that the light radiated in any direction in the x2z plane is linearly polarized

parallel to the y-axis.

Now suppose a magnetic field ûB = ẑB is applied in the z-direction. Since there

is a velocity vy there is a force Fx causing the motion to deviate from the y-axis.

In fact, the Lorentz force e(ûv × ûB) combined with the harmonic force produces

a complicated motion in the x2 y plane and the result is radiation emitted in all

directions. A characteristic frequency of this motion is ËL = v/r = e| ûB|/m. How-

ever, the oscillator decays at a rate given by Eq. (1.1) and so the instantaneous

y-directed power Py is calculated from its electric field using |ûE|2 = e2´t sin2 ËLt

and its average value is given by
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