

The Neuroscience of Adolescence

As scientific inquiry and public interest in the adolescent brain grow, so too does the need for an accessible textbook that communicates the growing research on this topic. *The Neuroscience of Adolescence* is a comprehensive educational tool for developmental cognitive neuroscience students at all levels as it details the varying elements that shape the adolescent brain. Historical notions of adolescence have focused on the significant hormonal changes that occur as one transitions from childhood to adolescence, but new research has revealed a more nuanced picture that helps inform our understanding of how the brain functions across the lifespan. By emphasizing the biological and neurobiological changes that occur during adolescence, this book gives students a holistic understanding of this developmental window and uniquely discusses the policy implications of neuroscience research for the lives of young people today.

Adriana Galván is an Associate Professor of Psychology at University of California, Los Angeles (UCLA), where she is also the Jeffrey Wenzel Term Chair in Behavioral Neuroscience and the director of the Developmental Neuroscience Laboratory. Galván's research focuses on adolescent brain development and has informed public policy on teenage driving, sleep, and juvenile justice. She received the American Psychological Association (APA) Early Career Distinguished Scientific Contribution Award, the APA Boyd McCandless Early Career Award, the William T. Grant Scholars Award and the Cognitive Neuroscience Society Young Investigator Award, and serves as a Network Scholar for the MacArthur Foundation Research Network on Law and Neuroscience. Her research has been funded by the National Science Foundation, the MacArthur Foundation, the National Institutes of Health, the Jacobs Foundation, and the William T. Grant Foundation. She regularly teaches a popular UCLA undergraduate course on the developing brain.

Cambridge Fundamentals of Neuroscience in Psychology

Developed in response to a growing need to make neuroscience accessible to students and other non-specialist readers, the *Cambridge Fundamentals of Neuroscience in Psychology* series provides brief introductions to key areas of neuroscience research across major domains of psychology. Written by experts in cognitive, social, affective, developmental, clinical, and applied neuroscience, these books will serve as ideal primers for students and other readers seeking an entry point to the challenging world of neuroscience.

Forthcoming Titles in the Series:

The Neuroscience of Intelligence, by Richard J. Haier The Neuroscience of Expertise, by Merim Bilalić Cognitive Neuroscience of Memory, by Scott D. Slotnick The Neuroscience of Aging, by Angela Gutchess The Neuroscience of Addiction, by Francesca Filbey

The Neuroscience of Adolescence

Adriana Galván

University of California, Los Angeles

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107089921 DOI: 10.1017/9781316106143

© Adriana Galván 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United States of America by Sheridan Books, Inc. in 2017

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Names: Galvaán, Adriana, 1979- author.

Title: The neuroscience of adolescence / Adriana Galván.

Description: Cambridge, United Kingdom; New York, NY: Cambridge University

Press, 2017 | Includes bibliographical references.

Identifiers: LCCN 2016048271| ISBN 9781107089921 (hardback) |

ISBN 9781107461857 (paperback)

Subjects: | MESH: Mental Processes – physiology | Adolescent – physiology | Brain – physiology | Puberty – physiology | Adolescent Development – physiology Classification: LCC RJ503.7.A36 | NLM WL 337 | DDC 616.800835 – dc23

LC record available at https://lccn.loc.gov/2016048271

ISBN 978-1-107-08992-1 Hardback ISBN 978-1-107-46185-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication, and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To the past and current students of Psych 161 at UCLA
To my parents and sisters, t.k.m.
To my future adolescents, Gustavo and Lucia
To my inspiring husband Bill

Contents

	List	of Figures	page xii
	Pref	ace	xvii
1	Wha	t Is Adolescence?	1
		Introduction	1
	1.2	Periods of Development	2
		1.2.1 Childhood	2
		1.2.2 Adolescence	3
		1.2.3 Adulthood	3
	1.3	Adolescence: A Historical Perspective	5
	1.4	Adolescence across the Globe and across Species	6
	1.5	Theoretical Models of Adolescent Brain Development	7
		1.5.1 Dual Systems Model	7
		1.5.2 Triadic Model	9
		1.5.3 Imbalance Model	9
		1.5.4 Social Information Processing Model	10
		1.5.5 Fuzzy Trace Theory	10
	1.6	What is the Function of Adolescence?	11
		1.6.1 How Does the Brain Facilitate Independence?	15
	1.7	Human Brain Development: An Overview	15
		1.7.1 Interactive Specialization Framework	16
	1.8	The Importance of Understanding Adolescent Brain	
		Development	17
	1.9	The Importance of Animal Models	18
		Chapter Summary	19
	1.11	Review Questions	20
2	Puberty		21
	2.1	Introduction	21
	2.2	Pubertal Hormones	22
	2.3	Neuroendocrine System	23
		2.3.1 Adrenarche and Gonadarche	25
	2.4	What Triggers Puberty?	26
	2.5	Timing Is Everything	29
		2.5.1 Genetic Factors	30
		2.5.2 Psychosocial Factors	30

viii		•	Contents
		2.5.3 Ethnic Differences	31
		2.5.4 Early and Late Maturation	33
	2.6	Pubertal Implications on Behavior	36
		2.6.1 Pubertal Timing Effects on Psychopathology	36
	2.7	"You've Gotten so Tall!"	38
	2.8	Bone Age	39
		Puberty and Brain Structure	40
		2.9.1 Gray Matter	41
		2.9.2 White Matter	45
	2.10	Puberty and Brain Function	45
		Chapter Summary	48
		Review Questions	48
3	Cogi	nitive Neuroscience Methods to Study the Adolescent Brain	n 50
	3.1	Introduction	50
	3.2	Brain Scans	51
		3.2.1 Structural Magnetic Resonance Imaging	
		(sMRI)	51
		3.2.2 Diffusion Tensor Imaging (DTI)	56
		3.2.3 Functional Magnetic Resonance Imaging	
		(fMRI)	58
		3.2.4 Functional Connectivity	60
	3.3	Electrophysiology	67
		3.3.1 Electroencephalography (EEG)	67
		3.3.2 Magnetoencephalography (MEG)	67
		3.3.3 Strengths and Limitations	69
	3.4	Eye-Tracking	71
		3.4.1 Strengths and Limitations	73
	3.5	Recruiting Adolescent Research Volunteers	73
	3.6	Computerized Tasks	74
	3.7	Analytical Considerations	76
		3.7.1 Performance Differences	76
		3.7.2 The "Task B" Problem	78
		3.7.3 Physiological Differences	80
		3.7.4 Interpreting Group Differences	81
	3.8	Chapter Summary	83
	3.9	Review Questions	84
4	Brai	n Plasticity	85
	4.1	Introduction	85
	4.2	Neuroplasticity, Defined	86

Contents		ix
4.3	Neural Mechanisms of Plasticity	86
	4.3.1 Neuroplasticity Mechanisms	87
4.4	Critical Periods	92
	4.4.1 Experience-Expectant Mechanisms	93
	4.4.2 Experience-Dependent Processes	96
4.5	Neuroimaging Evidence of Plasticity in Humans	98
	4.5.1 Research in Adults	98
	4.5.2 Research in Children	101
	4.5.3 The Plasticity of Developmental Timing	102
4.6	J	104
	4.6.1 Opportunities for Intervention and Remediation	105
	4.6.2 Cross-Modal Plasticity	106
	4.6.3 Psychotherapy	107
	4.6.4 Exercise	108
4.7	Adverse Environments and Plasticity	109
	4.7.1 Socioeconomic Status and Plasticity	111
4.8	Chapter Summary	114
4.9	Review Questions	114
5 Neu	rocognitive Development	116
5.1	Introduction	116
	Cognition, Defined	117
5.3	Prefrontal Cortex – an Evolutionary History	117
	5.3.1 Why Do We Need a Prefrontal Cortex?	121
5.4	The A-not-B Task	123
	5.4.1 The Role of the Dorsolateral Prefrontal Cortex in	
	A-not-B	125
5.5	1	125
	5.5.1 Gray Matter	128
	5.5.2 White Matter	129
	5.5.3 Sex Differences	129
	5.5.4 Structural Developmental in Clinical Populations	130
	5.5.5 Effects of Psychopharmacological Treatment on	
	Neurodevelopment	134
5.6	Functional Development of the Prefrontal Cortex	135
	5.6.1 Cognitive Control	136
5.7	Functional Connectivity	144
5.8	Working Memory	146
5.9	Implications	148
	Chapter Summary	150
5.11	Review Questions	150

X			Contents
6	Mot	tivational Systems	151
Ū		Introduction	151
		What Is a Reward?	151
	6.3		152
	0.0	6.3.1 The Development of the Dopamine System	153
		6.3.2 Reward Neurocircuitry	155
		6.3.3 MRI Studies of the Adolescent Reward System	157
		6.3.4 fMRI Studies of the Adolescent Reward System	158
		6.3.5 Neurophysiological Maturation of the Reward	
		System	161
		6.3.6 Reward Influences on Cognitive Control	162
		6.3.7 Neural Response to Immediate versus Delayed	
		Rewards	163
		6.3.8 Functional Connectivity Studies of Reward	
		Processing	164
	6.4	Neural Correlates of Risk-Taking in Adolescents	165
		6.4.1 Individual Differences in Reward and	
		Risk-Sensitivity	169
	6.5	A Model to Explain Risky Decision-Making in	
		Adolescents	171
		6.5.1 Peer Influence on Risk-Taking	172
	6.6	The Adaptive Aspects of Adolescent Risk-Taking	174
	6.7	The Role of Motivational Systems in Learning	176
	6.8	Chapter Summary	178
	6.9	Review Questions	178
7	The	Social Brain	179
	7.1	Introduction	179
	7.2	Basic Social Cognitive Skills	181
		7.2.1 Face Processing	181
		7.2.2 Affect Processing	188
	7.3	Complex Social Cognitive Skills	196
		7.3.1 Theory of Mind/Mentalizing	196
		7.3.2 Social Evaluation	199
		7.3.3 Prosocial Behavior	202
	7.4	Adolescent Self-Development	205
	7.5	Atypical Social Development	206
		7.5.1 Social Anxiety Disorder	206
		7.5.2 Autism	207
	7.6	Chapter Summary	213
	7.7	Review Questions	213

Con	Contents		
8	The	Implications of Adolescent Neuroscience on Policy	214
	8.1	Introduction	214
	8.2	Maturity	215
		8.2.1 The Elements of Maturity	216
	8.3	Juvenile Justice	216
		8.3.1 Who Is a Juvenile?	216
		8.3.2 Juvenile Justice Law: A Historical Overview	217
		8.3.3 Current Juvenile Justice Law	218
		8.3.4 Competence	218
		8.3.5 The Role of Adolescent Brain Research in Juvenile	
		Justice	222
		8.3.6 A Cautionary Note about Adolescent Brain	
		Research in Juvenile Justice Policy	223
	8.4	Driving	227
		8.4.1 Effects of Teenage Passengers	229
		8.4.2 Effects of Alcohol and Other Drugs	230
		8.4.3 Effects of Drowsy Driving	231
		8.4.4 A Decline in Teenage Driving	232
	8.5	Adolescent Sleep	232
		8.5.1 Why Adolescents Receive Insufficient Sleep	233
		8.5.2 The Consequences of Poor Sleep	234
		8.5.3 The Role of School Start Time	234
		8.5.4 School Start Time: The Recommendations	236
		8.5.5 School Start Time: The Reality	238
		8.5.6 School Start Time: Reasons for the Resistance	238
	8.6	Media and the Adolescent Brain	239
	8.7	Sex Education	241
	8.8	Health Decisions	244
		8.8.1 The Mature Minor Doctrine	244
		8.8.2 Abortion	245
		Future Directions	247
		Chapter Summary	248
	8.11	Review Questions	249
		ssary	251
		rences	256
	Inde	x	307

The color plate section can be found between pp. 206 and 207

Figures

1.1	An illustration of the three prevailing models of adolescent behavior. Published with permission	
	of Annual Review of Psychology.	page 9
1 2	A proposed model of adolescent development by	page 9
1.2		
	Crone and Dahl. Published with permission of	12
1 2	Nature Reviews Neuroscience.	12
	US Census data depicting age of first marriage.	14
2.1	The hypothalamus regulates hormone release	2.4
2.2	from the pituitary gland.	24
	The endocrine system.	25
2.3	Tanner stages of puberty. Published with	
	permission from Dorn et al., 2006, Applied	•
	Developmental Science.	26
2.4	Gonadotropin-releasing hormone (GnRH)	
	fluctuates throughout development.	27
2.5	A group of young adolescents. Image courtesy of	
	Rosa Gutierrez.	29
2.6	Changes in bone structure and size across	
	development.	39
2.7	Brain volume changes from early to late pubertal	
	stage. Published with permission from Goddings	
	et al., 2014, Neuroimage.	44
3.1	A child undergoing a brain scan.	52
3.2	The three planes of MRI images.	54
3.3	An MRI scan and an fMRI scan. Image courtesy	
	of Adriana Galván, PhD.	55
3.4	An image taken using diffusion tensor imaging	
	technology to illustrate white matter fibers.	
	Published with permission from the UCLA Brain	
	Mapping Center. Image by Vaughan Greer / The	
	UCLA Brain Mapping Center.	57
3.5	The hemodynamic response function of the	
	BOLD signal.	59
3.6	A young research participant undergoes an EEG	
	experiment. Image courtesy of Shafali Jeste, MD.	68

List of Figures		
3.7	An illustration of the five basic waveforms in the	
	human brain.	69
3.8	A magnetoencephalography machine.	70
	Behavioral performance matching between	
	different age groups. Reproduced from Church	
	et al., 2010, Human Brain Mapping.	77
3.10	A graphical representation of the Task B	
	problem. Adapted from Church et al., 2010,	
	Human Brain Mapping.	79
4.1	A chemical synapse.	89
4.2	An illustration of long-term potentiation (LTP).	91
4.3	Synaptic density changes across development	
	in five distinct phases. Reproduced from	
	Huttenlocher, 1990.	96
5.1	The prefrontal cortex is disproportionately larger	
	in humans than in other primates. Published with	
	permission from Passingham, 2002, Nature	
	Neuroscience.	119
5.2	A comparison of brain size between different	
	species. Published with permission from	
	Herculano-Houzel, 2009, Frontiers in Human	
	Neuroscience.	120
5.3	The brain as topiary art.	123
5.4	Hypothetical developmental trajectories of	
	cortical development. Published with permission	
	from Shaw et al., 2010, Human Brain Mapping.	132
5.5	ADHD diagnosis changes with development.	
	Reproduced from Shaw et al., 2010, Human Brain	
	Mapping.	133
5.6	A young participant resisting temptation during	
	the delay-of-gratification task. Image courtesy of	
	Adriana Galván, PhD.	144
5.7	Developmental patterns of functional	
	connectivity underlying cognitive control.	
	Published with permission from Hwang et al.,	
	2010, Journal of Neuroscience.	145
	A chocolate reward.	152
6.2	A schematic illustrating the primary brain	
	structures and pathways of the reward circuit.	
	Published with permission from Haber and	

xiv		List of Figures
	Knutson, 2010, Neuropsychopharmacology	
	Reviews.	156
6.3	Monetary reward elicited activation in the ventral	
	striatum during fMRI in children, adolescent, and	
	adult research participants. Image courtesy of	
	Adriana Galván, PhD. Reproduced from Galván	
	et al., 2006, Journal of Neuroscience.	160
6.4	8 3 3 1	
	in laboratory-based risk-taking behavior across	
	development that peaks in adolescence.	
	Published with permission from Braams et al.,	
	2015, Journal of Neuroscience.	167
6.5	Striatal and prefrontal interactions across	
	development. Published with permission from	
	Somerville and Casey, 2010, Current Opinion in	
	Neurobiology.	173
7.1	Social relationships are very important in	
	adolescence.	180
7.2	1 2 0	
	comprise the social brain, including the medial	
	prefrontal cortex (mPFC), temporoparietal	
	junction (TPJ), and posterior superior temporal	
	sulcus (pSTS). Published with permission from	
	Blakemore, 2008, Nature Reviews Neuroscience.	181
7.3	Examples of monkey and human face study used	
	in the study by Pascalis and colleagues. Published	
	with permission from Pascalis et al., 2002, Science.	188
7.4	The amygdala exhibits enhanced activation	
	during presentation of fearful stimuli. Published	
	with permission from Tottenham et al., 2011.	192
7.5	Examples of children exhibiting helping behavior	
	in laboratory experiments. Published with	
	permission from Warneken and Tomasello, 2009,	
	Trends in Cognitive Science.	203
7.6	Eye-tracking pattern of individuals with autism	
	on the left and individuals without autism on the	
	right.	210
8.1	Younger adolescents exhibit reasoning	
	impairments in judicial matters. Reproduced from	
	Grisso et al., 2003, Law and Human Behavior.	220

List of Figures		xv
8.2	Younger adolescents are more likely to confess to	
	a crime whereas adults are more likely to remain	
	silent. Reproduced from Grisso et al., 2003, <i>Law</i>	
	and Human Behavior.	221
8.3	Unintentional injury (mainly car accidents)	
	comprises almost half of fatalities among	
	adolescents in the United States. Source: National	
	Vital Statistics System, Mortality.	227
8.4	Results from an fMRI study of Instagram and the	
	developing brain. Published with permission from	
	Sherman et al., 2016, Psychological Science.	241
8.5	High school students engaged in a football tackle	247

Preface

The explosion of research on the adolescent brain in recent years has triggered enthusiastic media attention on this topic. Popular outlets such as Time, The Wall Street Journal, National Geographic, and The New Yorker have all featured research on the adolescent brain. The rationale for writing this book is twofold. First, this book will fill a growing need in the area of developmental cognitive neuroscience. Although there are numerous textbooks on cognitive neuroscience and a couple of popular textbooks on adolescent psychology, there is currently no single textbook that merges these two disciplines together from a developmental cognitive neuroscience perspective. As scientific inquiry and public interest in the adolescent brain has grown, so too has the need for a comprehensive and accessible textbook that communicates extant neuroscience research on this topic. This book was motivated by my own frustration at failing to find a suitable textbook for an upper-division undergraduate course on the developing adolescent brain. The goal is for the book to serve as an educational tool for developmental cognitive neuroscience students and trainees at all levels. Second, the book will describe the multifaceted elements that shape the adolescent brain. Historical notions of the adolescent have focused on the significant hormonal changes that occur as individuals transition from childhood to adolescence. However, new research using cutting-edge technology to visualize the healthy human brain presents a more nuanced picture of adolescence. Tools such as structural and functional magnetic resonance imaging (sMRI and fMRI) have informed our understanding of how the brain functions across the lifespan. By emphasizing both biological and neurobiological changes that occur during adolescence, this book will introduce readers to a more holistic understanding of this important developmental window.

Woven into empirical data and research approaches are the latest neurobiological and psychological models that have been proposed to explain adolescent behavior. The general premise of these models is that the brain regions we rely on for decision-making and judgment develop along different developmental trajectories: the motivational and emotional systems outpace maturation of the prefrontal cortex, which is important for regulating behavior and goal-planning. The book describes these models in detail and then provides the most up-to-date take on their relevance, utility, and limitations.

xviii Preface

An innovative aspect of this book is that it was written with an eye toward the policy implications of research on the adolescent brain. These themes are woven through the chapters and then described in greater detail in Chapter 8 on policy. The main topics discussed are the role of adolescent neuroscience on the juvenile justice system, teenage driving, teenage sleep, and health decisions.

How to Use this Book

The book is intended to introduce an academic audience, with some background in developmental psychology, cognitive neuroscience, and/or neuroimaging, to the burgeoning field of developmental cognitive neuroscience in general and the adolescent brain in particular.

The book is organized by cognitive domains. Each chapter discusses the development of a particular construct, such as social processing or cognition during adolescence. Particular brain regions tend to be implicated in particular constructs (the prefrontal cortex, for instance, is considered the most important hub of high cognition), so each chapter focuses on the relevant brain region(s). However, this is not intended to imply that there is a one-to-one correspondence between one brain region and one cognitive domain. The brain works as an entire network, so even brain regions that are not explicitly mentioned in particular chapters may play a role in supporting the construct of interest. As such, there is reference to other chapters within each chapter but it is written so that the book can be used flexibly and not necessarily taught in sequential order.

Each chapter ends with a bulleted list of major themes in the chapter, a set of review questions to help guide comprehension, and a list of suggested further readings. There are too many great articles to list so only a select few, usually review papers, are listed. Sprinkled throughout the chapter you will find images of concepts or data from the empirical research reviewed in the chapter. Space constraints limit our ability to include all the important data figures that are germane to the central themes, so students are encouraged to read the original articles.

The final chapter on policy aims to introduce students to the important strides adolescent brain research has made in informing public policy and legal sanctions related to adolescent development. It is by no means an exhaustive inventory of adolescent policy but is simply meant to be a primer of this important topic.