

Applying Graph Theory in Ecological Research

Graph theory can be applied to ecological questions in many ways, and more insights can be gained by expanding the range of graph theoretical concepts applied to a specific system. But how do you know which methods might be used? And what do you do with the graph once it has been obtained?

This book provides a broad introduction to the application of graph theory in different ecological systems, providing practical guidance for researchers in ecology and related fields. Readers are guided through the creation of an appropriate graph for the system being studied, including the application of spatial, spatio-temporal, and more abstract structural process graphs. Simple figures accompany the explanations to add clarity, and a broad range of ecological phenomena from many ecological systems are covered. This is the ideal book for graduate students and researchers looking to apply graph theoretical methods in their work.

Mark R. T. Dale is a Professor in the Ecosystem Science and Management Program at the University of Northern British Columbia and Dean of Regional Programs. His research interests include the spatial structure of plant communities and the development and evaluation of numerical methods to answer ecological questions, including applications of graph theory. He wrote *Spatial Pattern Analysis in Plant Ecology* (Cambridge, 1999) and was co-author, with Marie-Josée Fortin, of *Spatial Analysis: A Guide for Ecologists* (Cambridge, 2014).

Applying Graph Theory in Ecological Research

MARK R. T. DALE

University of Northern British Columbia

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107089310

DOI: 10.1017/9781316105450

© Cambridge University Press & Assessment 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2017

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-08931-0 Hardback ISBN 978-1-107-46097-3 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To my grandchildren: Monroe and Elliot in Sydney; Laura and Thomas in Edmonton

Contents

	Preface	page x
1	Graphs as Structure in the Ecological Context	1
	Introduction	1
	1.1 Graphs as Structure	3
	1.2 Graphs and Ecological Relationships	10
	1.3 Graphs and Locations: Spatial and Temporal	11
	1.4 Networks and Dynamics	17
	1.5 Graphs and Data	18
	1.6 Ecological Hypotheses and Graph Theory	27
	1.7 Statistical Tests and Hypothesis Evaluation	29
	1.8 Concluding Comments	35
2	Shapes of Graphs: Trees to Triangles	37
	Introduction	37
	2.1 Acyclic Graphs	37
	2.2 Digraphs and Directed Acyclic Graphs	41
	2.3 Weighted Directed Trees	45
	2.4 Lattice Graphs	46
	2.5 Triangles	49
	2.6 Smaller Than Triangles: Singletons, Isolated Pairs and Whiskers	50
	2.7 How It Looks	51
	2.8 Concluding Comments	52
3	Species Interaction Networks	54
	Introduction	54
	3.1 Objects	57
	3.2 Properties	60
	3.3 Generative Models	68
	3.4 Comparisons	72
	3.5 Concluding Comments	77

viii Contents

4	Trophic Networks: Structure, Partitioning and Dynamics	79
	Introduction	79
	4.1 Trophic Networks and Derived Graphs	82
	4.2 Trophic Network Characteristics	86
	4.3 Concluding Comments	102
5	Species Associations, Communities and Graphs of Social Structure	105
	Introduction	105
	5.1 Graphs of Social Structure	107
	5.2 Cluster Detection in Graphs and Networks	113
	5.3 Transitivity and Reciprocity	121
	5.4 Balance	122
	5.5 Change	124
	5.6 Key Nodes; Key Edges	126
	5.7 Concluding Comments	127
6	Competition: Hierarchies and Reversals	128
	Introduction	128
	6.1 Concepts for Competition Interaction Graphs	130
	6.2 Measuring Competitive Outcomes	135
	6.3 Choosing Edges and Finding Hierarchies	137
	6.4 Example: Arabidopsis thaliana Ecotypes	141
	6.5 Concluding Comments	144
7	Mutualism, Parasitism and Bipartite Graphs	147
	Introduction	147
	7.1 Internal Structure of Bipartite Graphs	147
	7.2 Applications of Bipartite Graphs	158
	7.3 Concluding Comments	163
8	Temporal or Time-Only Graphs	164
	Introduction	164
	8.1 Properties of Temporal Graphs	170
	8.2 Techniques for Temporal Graphs: Testing Significance	180
	8.3 Applications of Techniques	183
	8.4 Conclusions and Advice	185
9	Spatial Graphs	191
	Introduction	191
	9.1 Properties of Spatial Graphs	193
	1 1	

		Contents	ix
	9.2 Techniques for Spatial Graphs: Testing S	ignificance and Other	
	Assessments		201
	9.3 Choice and Applications of Techniques		202
	9.4 Concluding Comments		221
10	Spatio-temporal Graphs		222
	Introduction		222
	10.1 Characteristics		226
	10.2 Two Spatio-temporal Properties		228
	10.3 Examples of Ecological Applications		232
	10.4 Concluding Comments		251
11	Graph Structure and System Function: Graphle	t Methods	252
	Introduction		252
	11.1 Graphs for Structure and Dynamics in Ed	cological Systems	257
	11.2 Graph Characteristics and Methods Base	d on Graphlets	259
	11.3 Concluding Comments		269
12	Synthesis and Future Directions		271
	Introduction		271
	12.1 Comparisons and Matching		271
	12.2 What Next?		276
	12.3 Concluding Comments		285
	Glossary		286
	References		297
	Index		328
	Appendix		333
	Colour plates are found between pages 212 an	d 213.	

Preface

Applications of graph theory have been proliferating throughout ecology over the past several decades, whether explicitly realized or implicit in the approaches used, and not only in the cases which fall clearly into the popular category of networks. The reasons for this increased interest are as diverse as the areas of research. A basic impetus is that graphs and graph theory are about structure and provide the methods to analyze structure as abstracted from almost any ecological (or other) system. The second reason is the great popularity of network studies and network theory, originally applied to social relationships, communications (including the Internet as a prime example), transportation and the spread of disease. It is an obvious step to take network concepts and models from these sources and see how well they apply to ecological systems. Such network studies are obvious sources of inspiration for investigations of ecological interactions of all kinds (such as predation, competition, mutualism and facilitation) using the methods developed for those other systems. A third reinforcement for graph theory applications arises from the growing sophistication of ecologists in analyzing spatial data or time-ordered data or the complexities of spatio-temporal data; and, once again, methods based on graph theory provide the right mix of simplicity of concept but flexibility in application to provide valuable insights that would otherwise be impossible. Putting together interaction networks and spatio-temporal data brings a researcher to the challenges and rewards of studying the interplay of form and function (or "pattern and process" or "structure and dynamics") in ecological systems in which both form and function change through time by reciprocal influences and effects.

The book is organized in an order that reflects this range of sources. First is an introduction to thinking with graphs based on the theme of graphs and structure (Chapters 1 and 2). There are then several chapters on ecological interaction networks, first in general (Chapter 3), followed by more specific topics: predation (Chapter 4), social structure (Chapter 5), competition (Chapter 6) and mutualism (Chapter 7). The next three chapters are about locational graphs, in which the nodes have positions in one or more dimensions: time only (Chapter 8), space only (Chapter 9) and spatio-temporal (Chapter 10). Chapter 11 describes approaches to studying the dynamics of networks in the context of the reciprocal effects of form and function, focusing on the fascinating and promising methods based on graphlets. The last chapter (Chapter 12) attempts to draw together a number of the themes that emerged throughout the book and provide a synthesis of the common threads; it also takes on the risky task of making some predictions about future directions and developments to be expected in this field.

Preface

χi

The working title started out as "Smart Things Ecologists Can Do with Graph Theory"; and that is a good description of the intention. The book is not primarily an introduction to graph theory developed for ecologists; it is intended to make researchers aware of the wide range of possibilities for their own research projects, even when (or especially when) they have yet to be fully tried out in ecological systems. A prime example is the many forms of analysis based on graphlets that are recently developed and applied in other biological systems (e.g. protein-protein interactions) but not yet in ecology. The goal is to provide enough background that the researcher knows how and where to start and where to find some examples that will provide inspiration and support. The treatments of the various topics are very heterogeneous; some have a good range of examples to be cited (e.g. food webs or trophic networks; mutualism), but others have virtually none.

My own interest in graph theory as a useful approach to answering ecological questions related to structure started with my MSc research many years ago, and I owe a large debt to my then-supervisor, Tony Yarranton, who suggested the area and encouraged my exploration of the field. I owe thanks to John Moon, who helped me understand some of the more formal aspects of graph theory and its application (look at his *Topics on Tournaments*, if you have not already: a great example). In acknowledging people who have helped with this book, I thank the following for reading chapters, sometimes as they developed: Alex Aravind, Tan Bao, Conan Vietch, JC Cahill and Brendan Wilson. I thank Marie-Josée Fortin, especially; she read all the chapters, and some more than once! For data used in examples, there are many to be acknowledged, including Tan Bao and JC Cahill for the *Arabadopsis* competition tournament material and Gord Thomas for the rich data set on Saskatchewan weed communities. I thank NSERC Canada and UNBC for their support over many years.

I greatly enjoyed writing this book, and discovering all the exciting material I had not known was very rewarding. It is my hope that the readers will find the work equally rewarding and that it will help create pathways to more that is useful, more that is new and more that is surprising.