Contents

List of Contributors
page x
Preface
page xiii

1
Fundamentals on Synthesis and Properties of Ultrananocrystalline Diamond (UNCD™) Coatings
Orlando Auciello, Jesus J. Alcantar-Peña, and Elida de Obaldia
1
1.1 Background on UNCD Film Synthesis, Properties, and Applications
1
1.2 Fundamentals of UNCD Film Synthesis via MPCVD and Properties
6
1.3 Fundamentals on the Synthesis of MCD, NCD, and UNCD Thin Films via HFCVD
37
1.4 Conclusions
73

2
Ultrananocrystalline Diamond (UNCD™) Film as a Hermetic Biocompatible/Bioinert Coating for Encapsulation of an Eye-Implantable Microchip to Restore Partial Vision to Blind People
Orlando Auciello
86
2.1 Background Information on Vision, Conditions that Induce Blindness in Humans Born with Vision, and Concepts for Artificial Retina Devices to Restore Partial Vision
86
2.2 Vision Restoration Technologies
87
2.3 Scientific and Technological State-of-the-Art of Biocompatible/Bioinert Encapsulation Technologies for Si Microchips Implantable in the Eye
92
2.4 Carbon-Based Biocompatible UNCD Coating for Si Microchip Encapsulation and Growth Techniques
93
2.5 Characterization of Hermetic/Biocompatible/Corrosion-Resistant/Bioinert Si Microchip-Encapsulating UNCD Coating
95
2.6 Characterization of Electrochemical Performance in Eye Humor–Like Saline Solution to Test Corrosion-Resistance of Hermetic UNCD Encapsulating Coating on Silicon
98
2.7 Characterization of UNCD/CMOS Integration
100
2.8 *In-Vivo* Animal Tests of Hermetic/Biocompatible/Corrosion-Resistant UNCD Coatings Encapsulating Si Microchips for Artificial Retinas
101
3 Science and Technology of Ultrananocrystalline Diamond (UNCD™) Coatings for Glaucoma Treatment Devices
Alejandro Berra, Mario J. Saravia, Pablo Gurman, and Orlando Auciello
3.1 Introduction 107
3.2 Low-Cost, Best Biocompatible, Extremely Hydrophobic, and Antifouling UNCD Coating for Encapsulation of Commercial Polymer-Based Glaucoma Valves for Orders of Magnitude Performance Improvement 115
3.3 Alternative Low-Cost, Best Biocompatible, Extremely Hydrophobic, and Antifouling UNCD-Coated Mesh Implantable in the Trabecular Region of the Eye to Drain Fluid 116
3.4 Conclusions 117

4 Science and Technology of Novel Integrated Biocompatible Superparamagnetic Oxide Nanoparticles Injectable in the Human Eye and External Ultrananocrystalline Diamond (UNCD™)-Coated Magnet for a New Retina Reattachment Procedure
Mario J. Saravia, Roberto D. Zysler, Enio Lima, Jr., Pablo Gurman, and Orlando Auciello
4.1 Introduction 121
4.2 New Revolutionary Nanotechnology-Based Retina’s Reattachment Procedure 129
4.3 Conclusions 137

5 Science and Technology of Biocompatible Ultrananocrystalline Diamond (UNCD™) Coatings for a New Generation of Implantable Prostheses: First Application to Dental Implants and Artificial Hips
Orlando Auciello, Karam Kang, Daniel G. Olmedo, Debora R. Tasat, and Gilberto López Chávez
5.1 Background Information on Human Teeth, the Need for Natural Teeth Replacement by Dental Implants, and Current Dental Implant Technologies 141
5.2 Physical and Chemical Effects on Dental Implants 143
5.3 Replacement of Destroyed Natural Teeth 143
5.4 Challenges with Current Materials in Dental Implants 144
5.5 Background on Biocompatible, Corrosion-Resistant UNCD Coatings for Dental Implants 145
5.6 Fundamentals and Technological Development of UNCD Coating on Dental Implants 146
5.7 *In-Vitro* Studies of Corrosion of Ti-6Al-4V and UNCD-Coated Ti-6Al-4V Dental Implants in Saliva 157

5.8 *In-Vivo* Studies in Animals of Biological Performance of UNCD-Coated Ti Alloy Dental Implants 159

5.9 Clinical Trials of UNCD-Coated Dental Implants in Bioingeniería Humana Avanzada 163

5.10 Development of an Industrial Process for Commercial-Scale Production of UNCD-Coated Ti Alloy Dental Implants 164

5.11 Application of Biocompatible, Low-Friction, Body Fluid Corrosion-Resistant UNCD Coatings for a New Generation of Superior Prostheses 166

5.12 Current Performance of UNCD-Coated Industrial Prostheses Predict the Performance of Future UNCD-Coated Prostheses 168

5.13 Conclusions 168

6 Science and Technology of Novel Ultrananocrystalline Diamond (UNCD™) Scaffolds for Stem Cell Growth and Differentiation for Developmental Biology and Biological Treatment of Human Medical Conditions 175

Bing Shi and Orlando Auciello

6.1 Introduction 175

6.2 UNCD Thin-Film Growth 178

6.3 Characterization of UNCD Films 180

6.4 Cell Culture Studies on UNCD Film Surfaces 183

6.5 Studies of Cells’ Biological Components by Chemical Analysis Techniques 188

6.6 Discussion of Cell Attachment and Proliferation Mechanism on the Surface of UNCD Films 188

6.7 Conclusions 192

7 New Generation of Li-Ion Batteries with Superior Specific Capacity Lifetime and Safety Performance Based on Novel Ultrananocrystalline Diamond (UNCD™)-Coated Components for a New Generation of Defibrillators/Pacemakers and Other Battery-Powered Medical and High-Tech Devices 197

Orlando Auciello and Yonhua Tzeng

7.1 Background Information on Li-Ion Batteries and Other Batteries for Implantable Medical Devices and Other Applications 197

7.2 Introduction of Innovative Electrically Conductive N-UNCD and Insulating UNCD-Based Coating Technologies for LIB Components for Superior Performance 199

7.3 Research and Development on N-UNCD-Coated Commercial NG/Cu Anodes 200
Contents

7.4 Fabrication of LIB Cells 205
7.5 Test of LIB Cells with Uncoated and N-UNCD-Coated NG/Cu Anodes 206
7.6 Conclusions 210

Martin Zalazar and Orlando Auciello
8.1 Introduction 214
8.2 Medical Applications for Acoustic Wave Devices 215
8.3 Integration of AlN and UNCD Films 216
8.4 New Generation of Biomedical MEMS Based on Integrated AlN–UNCD Films 223
8.5 Discussion and Conclusions 233

Orlando Auciello and Geunhee Lee
9.1 Introduction 237
9.2 UNCD Thin Film: A New Best Biocompatible Paradigm Material for Implantable MEMS/NEMS Biosensors and Power Generators 242
9.3 Materials Integration and Process Strategies for Fabrication of MEMS/NEMS Devices Based on Integrated Piezoelectric Oxide and UNCD Films 244
9.4 MEMS and NEMS Biosensors and Power Generation Devices Based on Integrated Piezoelectric/UNCD FILMS 252
9.5 Integrated Pt–“Biocompatible” Piezoelectric–Pt–TiAl–UNCD films for MEMS/NEMS Cantilever-Based Biosensors and Implantable Power Generation Devices 256
9.6 Conclusions 258

10 **Biomaterials and Multifunctional Biocompatible Ultrananocrystalline Diamond (UNCD™) Technologies Transfer Pathway: From the Laboratory to the Market for Medical Devices and Prostheses** 263
Orlando Auciello
10.1 Introduction 263
10.2 Ethics in Biomedical Research and Product Marketing 264
10.3 Regulation of Medical Devices in the USA, Europe, and Japan 265
10.4 A Brief History of the FDA 266
10.5 Organization and Operation of the FDA 267
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>The Helsinki Declaration for Current Clinical Research</td>
<td>271</td>
</tr>
<tr>
<td>10.7</td>
<td>Examples of Faster Pathways for Insertion of New Biomaterials, Such</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>as UNCD Coatings and UNCD-Coated Devices, into the US Market,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overcoming the Current Long Pathway Induced by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FDA Regulations</td>
<td>271</td>
</tr>
<tr>
<td>10.8</td>
<td>Conclusions</td>
<td>274</td>
</tr>
</tbody>
</table>

Index 277