

Discrete and Continuum Models for Complex Metamaterials

Bringing together contributions on a diverse range of topics, this text explores the relationship between discrete and continuum mechanics as a tool to model new and complex metamaterials. Providing a comprehensive bibliography and historical review of the field, it covers mechanical, acoustic, and pantographic metamaterials, discusses naive model theory and Lagrangian discrete models, and their applications, and presents methods for pantographic structures and variational methods for multidisciplinary modeling and computation. The relationship between discrete and continuous models is discussed from both mathematical and engineering viewpoints, making the text ideal for those interested in the foundation of mechanics and computational applications, and innovative viewpoints on the use of discrete systems to model metamaterials are presented for those who want to go deeper into the field.

An ideal text for graduate students and researchers interested in continuum approaches to the study of modern materials, in mechanical engineering, civil engineering, applied mathematics, physics, and materials science.

Francesco dell'Isola is Professor of Structural Mechanics at the Sapienza University of Rome, and Director of the International Research Centre of Mathematics and Mechanics of Complex Systems (M&MoCS) at the University of L'Aquila.

David J. Steigmann is a professor in the Department of Mechanical Engineering at the University of California, Berkeley.

Discrete and Continuum Models for Complex Metamaterials

Edited by

FRANCESCO DELL'ISOLA

Università degli Studi di Roma, La Sapienza

DAVID J. STEIGMANN

University of California, Berkeley

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107087736 DOI: 10.1017/9781316104262

© Francesco dell'Isola and David J. Steigmann 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd., Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-08773-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List o	of Contributors	<i>page</i> viii		
Part I D	esigning	g Complex (Meta)Materials: Results and Perspectives	1		
1	Metai	materials: What Is Out There and What Is about to Come	3		
	F. dell'Isola, D. J. Steigmann, A. Della Corte, E. Barchiesi, M. Laudato				
	1.1	Technology and Science: A Two-way Interaction	3		
	1.2	The Importance of a Universal Terminology	5		
	1.3	The Relation between Mechanics' Fundamental Hypotheses			
		and Existing Technology	8		
	1.4	Three Approaches to Accomplish the Objective	9		
	1.5	Discrete and Continuous: An Attempt at a Twenty-First-Century			
		Methodological Position	13		
	1.6	Mission Statement: Examples of Possible Implementations	15		
	1.7	Standard Methods and Related Challenges in Material Designing	16		
	1.8	Surface-Related Effects in Micro- and Nano-structured Materials	24		
	1.9	An Example: Pantographic Structures	27		
	1.10	Final Thoughts before Moving On	29		
2	A Review of Some Selected Examples of Mechanical and Acoustic Metamaterials		ils 52		
	E. Barchiesi, F. Di Cosmo, M. Laudato				
	2.1	Mechanical Metamaterials	52		
	2.2	Acoustic Metamaterials	80		
3	Pantographic Metamaterial: A (Not So) Particular Case				
	F. dell'Isola, M. Spagnuolo, E. Barchiesi, I. Giorgio, P. Seppecher				
	3.1	Introduction	103		
	3.2	Modeling Pantographic Structures: A Rèsumè of Results Obtained	107		
	3.3	Conclusion	131		

vi **Contents**

	············	atical and Numerical Methods	139			
4	Naive Model Theory: Its Applications to the Theory of Metamaterials Design					
	F. dell'Isola, E. Barchiesi, A. Misra					
	4.1	Introduction	141			
	4.2	Morphisms	148			
	4.3	Mathematical Models of Physical Phenomena	151			
	4.4	Relation between Mathematics, Science, and Technology	156			
	4.5	A Digression on Mathematics and Mechanics	158			
	4.6	Materials or Metamaterials? A Dichotomy?	170			
	4.7	Data-Driven or Theory-Driven? Final Epistemological Reflections				
		Motivated by the Desire to Design Novel Metamaterials	190			
5	Lagrangian Discrete Models: Applications to Metamaterials					
	F. dell'	F. dell'Isola, E.Turco, E. Barchiesi				
	5.1	Introduction	197			
	5.2	Lagrangian Formulation of Mechanics	198			
	5.3	Continuous and Discrete Modeling in Modern Mechanics	218			
	5.4	Hencky-Type Model for Pantographic Metamaterials	220			
	5.5	Towards 3D Models: Hencky-Type Model for Elastica	249			
	5.6	Conclusions and Perspectives	254			
6	Experimental Methods in Pantographic Structures					
	F. dell'Isola, T. Lekszycki, M. Spagnuolo, P. Peyre, C. Dupuy, F. Hild, A. Misra, E. Barchiesi,					
	E. Turco, J. Dirrenberger					
	6.1	Introduction	263			
	6.2	Design and Manufacturing	263			
	6.3	Comparison between Experimental Measurements and				
		Numerical Simulations	272			
	6.4	Damage and Failure in Pantographic Fabrics	279			
	6.5	Validations via Image Correlation	285			
	6.6	Conclusion	291			
7	Variational Methods as Versatile Tools in Multidisciplinary Modeling					
	and Computation					
	U. Andreaus, I. Giorgio					
	7.1	Variational Principles: A Powerful Tool	298			
	7.2	Applications in Biomechanics	299			
	7.3	Applications in Materials Science	306			
	7.4	Applications in Vibration Damping	308			

Contents vii

8	Least Action and Virtual Work Principles for the Formulation of Generalized Continuum Models			
	F. dell'Isola, P. Seppecher, L. Placidi, E. Barchiesi, A. Misra			
	8.1	Introduction and Historical Background	327	
	8.2	Why Look for the Historical Roots of Variational Principles and		
		Calculus of Variation?	328	
	8.3	Pluralitas non est ponenda sine necessitate (John Duns Scoto 1265–1308)	332	
	8.4	Lex parsimoniae: "Law of Parsimony." Balance Laws or Variational		
		Principles for Generalized Continua?	337	
	8.5	More about Action Functionals	344	
	8.6	The Principle of Virtual Work	354	
	8.7	Appendix	382	
	Inde	r	395	

List of Contributors

Ugo Andreaus

Department of Structural and Geotechnical Engineering, Sapienza University of Rome.

Emilio Barchiesi

Department of Structural and Geotechnical Engineering, Sapienza University of Rome. International Research Center M&MoCS, University of L'Aquila.

Francesco dell'Isola

Department of Structural and Geotechnical Engineering, Sapienza University of Rome. International Research Center M&MoCS, University of L'Aquila. Department of Civil, Construction-Architectural and Environmental Engineering, University of L'Aquila.

Alessandro Della Corte

International Research Center M&MoCS, University of L'Aquila. Department of Civil, Construction-Architectural and Environmental Engineering, University of L'Aquila.

Fabio Di Cosmo

International Research Center M&MoCS, University of L'Aquila. Department of Civil, Construction-Architectural and Environmental Engineering, University of L'Aquila.

Justin Dirrenberger

Process and Engineering in Mechanics and Materials laboratory (PIMM), Ensam, CNRSC, CNAM, Paris.

Corinne Dupuy

Process and Engineering in Mechanics and Materials laboratory (PIMM), Ensam, CNRSC, CNAM, Paris.

Ivan Giorgio

International Research Center M&MoCS, University of L'Aquila.

Viii

List of Contributors

İΧ

François Hild

LMT, ENS Paris-Saclay/ CNRS/ University of Paris-Saclay.

Marco Laudato

Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila.

Tomasz Lekszycki

Warsaw University of Technology, Institute of Mechanics and Printing, Department of Construction Engineering and Biomedical Engineering.

Anil Misra

Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, USA International Research Center M&MoCS, University of L'Aquila.

Patrice Peyre

Process and Engineering in Mechanics and Materials laboratory (PIMM), Ensam, CNRSC, CNAM, Paris.

Luca Placidi

Faculty of Engineering, International Telematic University Uninettuno, Rome. International Research Center M&MoCS, University of L'Aquila.

Pierre Seppecher

International Research Center M&MoCS, University of L'Aquila. Mathematics Institute of Toulon, University of Toulon and Var.

Mario Spagnuolo

International Research Center M&MoCS, University of L'Aquila. CNRS, LSPM UPR3407, University Paris 13, Sorbonne Paris Cité.

David J. Steigmann

Department of Mechanical Engineering, University of California, Berkeley.

Emilio Turco

Department of Architecture, Design and Urban Planning, Alghero. International Research Center M&MoCS, University of L'Aquila.

