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1
Overview of pseudo-reductivity

1.1 Comparison with the reductive case

The notion of pseudo-reductivity is due to Borel and Tits. We begin by defining
this concept, as well as some related notions.

Definition 1.1.1 Let k be a field, G a smooth affine k-group. The k-unipotent
radical Ru,k(G) (resp. k-radical Rk(G)) is the maximal smooth connected
unipotent (resp. solvable) normal k-subgroup of G. A pseudo-reductive
k-group is a smooth connected affine k-group G such that Ru,k(G) = 1.

In the definition of pseudo-reductivity, it is equivalent to impose the stronger
condition that G contains no nontrivial smooth connected k-subgroups U such
that Uk ⊆ Ru(Gk). To prove the equivalence it suffices to show that U ⊆
Ru,k(G), or equivalently that U is contained in a smooth connected unipotent
normal k-subgroup. The smooth connected ks-subgroup U′ in Gks generated by
the G(ks)-conjugates of Uks is normal in Gks and satisfies U′

k
⊆ Ru(Gk), so U′

is unipotent. By construction, U′ is Gal(ks/k)-stable, so it descends to a smooth
connected unipotent normal k-subgroup of G that contains U, as desired.
A consequence of this argument is that if N is a smooth connected normal
k-subgroup of a smooth connected affine k-group G, so Ru(Nk) ⊆ Ru(Gk),
then Ru,k(N) ⊆ Ru,k(G). As a special case, if G is pseudo-reductive then
so is N. In particular, every smooth connected k-subgroup of a commutative
pseudo-reductive k-group is pseudo-reductive.

Pseudo-reductive k-groups are called k-reductive in Springer’s book [Spr].
To define a related notion of pseudo-semisimplicity, triviality of Rk(G)

(assuming connectedness of G) is a necessary but not sufficient condition for
the right definition. The reason is that for any imperfect field k, there are
smooth connected affine k-groups G such that Rk(G) = 1 and D(G) �= G
(see Example 11.2.1). We will study pseudo-semisimplicity in §11.2.
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4 Overview of pseudo-reductivity

Over a perfect field k, pseudo-reductivity coincides with reductivity for
smooth connected affine k-groups G because Ru,k(G)k = Ru(Gk) if k is
perfect. In contrast, for any imperfect field k there are many pseudo-reductive
k-groups G that are not reductive. We will see interesting examples in §1.3, but
we wish to begin with an elementary commutative example of a non-reductive
pseudo-reductive group to convey a feeling for pseudo-reductivity.

Our example will rest on the Weil restriction functor Rk′/k relative to a finite
extension of fields k′/k that is not separable. Weil restriction is a familiar
operation in the separable case (where it is analogous to the operation of
viewing a complex manifold as a real manifold of twice the dimension),
but it is not widely known for general finite extensions k′/k. We will use it
extensively with inseparable extensions, so we first review a few basic facts
about this functor, referring the reader to §§A.5 and A.7 for a more thorough
discussion.

If B → B′ is a finite flat map between noetherian rings (e.g., a finite
extension of fields) and if X′ is a quasi-projective B′-scheme, then the Weil
restriction X = RB′/B(X′) is a separated B-scheme of finite type (even quasi-
projective) characterized by the functorial property X(A) = X′(B′ ⊗B A) for
all B-algebras A. The discussion of Weil restriction in §A.5 treats the general
algebro-geometric setting as well as the special case of group schemes. For
any smooth connected affine k′-group G′, the Weil restriction G = Rk′/k(G′) is
an affine k-group scheme of finite type characterized by the property

G(A) = G′(k′ ⊗k A)

functorially in k-algebras A. By Proposition A.5.11, the k-group G = Rk′/k(G′)
is smooth and connected. Its dimension is [k′ : k] dim G′, since Lie(G) is the
Lie algebra over k underlying Lie(G′) (Corollary A.7.6).

Remark 1.1.2 Beware that if k′/k is inseparable then the “pushforward”
functor Rk′/k from affine k′-schemes to affine k-schemes has some surprising
properties in comparison with the more familiar separable case. This will be
illustrated in Examples 1.3.2 and 1.3.5.

Example 1.1.3 Now we give our first example of a non-reductive pseudo-
reductive group. Let k be an imperfect field of characteristic p > 0, and let
k′/k be a purely inseparable finite extension of degree pn > 1. Consider the
smooth k-group G = Rk′/k(GL1) of dimension pn. (Loosely speaking, G is
“k′× viewed as a k-group”.) This canonically contains GL1 as a k-subgroup.

The smooth connected quotient G/GL1 of dimension pn − 1 > 0 is killed
by the pn-power map since k′ pn ⊆ k, so it is unipotent and hence G is not
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1.1 Comparison with the reductive case 5

reductive. (More explicitly, Gk is the algebraic group of units of k′ ⊗k k, in
which the subgroup of 1-units is a codimension-1 unipotent radical.) However,
G(ks) = (k′ ⊗k ks)

× has no nontrivial p-torsion since k′ ⊗k ks is a field of
characteristic p, so the smooth connected commutative unipotent k-subgroup
Ru,k(G) must be trivial. That is, G is pseudo-reductive over k. The k-group
G naturally occurs (up to conjugacy) inside of GLpn . A non-commutative
generalization of this example is given in Example 1.1.11.

Remark 1.1.4 Let G be a smooth connected affine group over a field k. It is
elementary to prove that G/Ru,k(G) is pseudo-reductive over k. In particular,
G is canonically an extension of the pseudo-reductive k-group G/Ru,k(G)

by the smooth connected unipotent k-group Ru,k(G). To use this extension
structure to reduce problems for G to problems for pseudo-reductive k-groups,
we need to know something about the structure of smooth connected unipotent
k-groups.

A general smooth connected unipotent k-group U is hard to describe
(especially when char(k) > 0), but any such U admits a characteristic central
composition series whose successive quotients are k-forms Vi of vector groups
Gni

a (by [SGA3, XVII, 4.1.1(iii)], or by Corollary B.2.7 and Corollary B.3.3
when char(k) > 0). We have Vi 	 Gni

a when k is perfect (by [SGA3,
XVII, 4.1.5], or by Corollary B.2.7 when char(k) > 0) but Vi is mysterious
in general if k is imperfect and U �= 1. Nonetheless, such Vi are commutative
and p-torsion when char(k) = p > 0, so there are concrete hypersurface
models for Vi over infinite k (Proposition B.1.13). This often makes Ru,k(G)

tractable enough so that problems for general G can be reduced to the
pseudo-reductive case.

There are interesting analogies between pseudo-reductive k-groups and
connected reductive k-groups. For example, we will prove by elementary
methods that the Cartan k-subgroups (i.e., centralizers of maximal k-tori) in
pseudo-reductive k-groups are always commutative and pseudo-reductive; see
Proposition 1.2.4. We do not know an elementary proof of the related fact that,
when char(k) �= 2, a pseudo-reductive k-group is reductive if and only if its
Cartan k-subgroups are tori. Our proof of this result (Theorem 11.1.1) rests
on our main structure theorem for pseudo-reductive groups. It seems unlikely
that an alternative proof can be found (bypassing the structure theorem),
since the avoidance of characteristic 2 is essential. Indeed, we will show in
Example 11.1.2 that over every imperfect field k with characteristic 2 there are
non-reductive pseudo-reductive k-groups G whose Cartan k-subgroups are tori.

In view of the commutativity and pseudo-reductivity of Cartan subgroups in
pseudo-reductive groups, a basic reason that the structure of pseudo-reductive
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6 Overview of pseudo-reductivity

groups is more difficult to understand than that of connected reductive groups
is that we do not understand the structure of the commutative objects very
well. For example, whereas k-tori are unirational over k for any field k, in
Example 11.3.1 we will exhibit commutative pseudo-reductive k-groups that
are not unirational over k, where k is any imperfect field.

Example 1.1.5 The property of pseudo-reductivity over arbitrary imperfect
fields exhibits some behavior that is not at all like the more familiar connected
reductive case. We mention two such examples now, the second of which is
more interesting than the first.

(i) Pseudo-reductivity can be destroyed by an inseparable ground field
extension, such as scalar extension to the perfect closure. This is not a surprise,
since by definition it happens for every non-reductive pseudo-reductive group
(of which we shall give many examples).

In contrast, by Proposition 1.1.9(1) below, pseudo-reductivity is insensitive
to separable extension of the ground field. This will often be used when passing
to a separably closed ground field in a proof. An arithmetically interesting
example of a non-algebraic separable extension is kv/k for a global function
field k and a place v of k. Thus, a group scheme G over a global function field
k is pseudo-reductive over k if and only if Gkv is pseudo-reductive over kv .

(ii) The second, and more surprising, deviation of pseudo-reductivity from
reductivity is that it is generally not inherited by quotients. For example,
consider a non-reductive pseudo-reductive group G over a field k with
char(k) = p > 0. By Galois descent, the subgroup Ru(Gk) in Gk is defined
over the perfect closure kp of k. Since kp is perfect, the kp-descent of Ru(Gk)

has a composition series over kp whose successive quotients are kp-isomorphic
to Ga (Proposition A.1.4). But kp is the direct limit of subfields k p−n

, so if n
is sufficiently large then Ru(Gk) descends to a nontrivial unipotent subgroup
U of Gk p−n such that U is k p−n

-split. The pn-power map identifies k p−n
with

k carrying the inclusion k ↪→ k p−n
inside of k over to the pn-power map of k,

so Gk p−n is thereby identified with the target of the n-fold Frobenius isogeny
FG/k,n : G → G(pn) as in Definition A.3.3.

Hence, every non-reductive pseudo-reductive k-group G is a (purely insep-
arable) isogenous cover of a smooth connected affine k-group G′ such that the
smooth connected unipotent k-group Ru,k(G′) is nontrivial and is a successive
extension of copies of Ga over k. Such examples are of limited interest
since the structure of ker(G � G′) is not easily understood. But there are
more interesting examples of pseudo-reductive k-groups G admitting quotients
G/H that are not pseudo-reductive. This was illustrated in Example 1.1.3
in the commutative case with H a torus, and we will see examples using
(infinitesimal) finite central multiplicative H (Example 1.3.2 for commutative
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1.1 Comparison with the reductive case 7

G and Example 1.3.5 for perfect G) as well as very surprising examples using
perfect smooth connected H and perfect G (Example 1.6.4). These examples
exist over any imperfect field.

An important ingredient in our work is the minimal intermediate field in k/k
over which the geometric unipotent radical Ru(Gk) inside of Gk is defined.
This is a special case of a useful general notion:

Definition 1.1.6 Let X be a scheme over a field k, K/k an extension field,
and Z ⊆ XK a closed subscheme. For an intermediate field k′/k, Z is defined
over k′ if Z descends (necessarily uniquely) to a closed subscheme of Xk′ . The
(minimal) field of definition (over k) for Z ⊆ XK is the unique such k′/k that is
contained in all others. (For a thorough discussion of the general existence
of such a field, we refer the reader to [EGA, IV2, §4.8], especially [EGA,
IV2, 4.8.11].)

Sometimes for emphasis we append the word “minimal” when speaking of
fields of definition, but in fact minimality is always implicit.

Remark 1.1.7 The mechanism underlying the existence of (minimal) fields
of definition of closed subschemes is a fact from linear algebra, as follows.
Consider an extension of fields K/k, a k-vector space V , and a K-subspace
W ⊆ VK . Among all subfields F ⊆ K over k such that W arises by scalar
extension from an F-subspace of VF , we claim that there is one such F that is
contained in all others.

To see that such a minimal field exists, choose a k-basis {ei}i∈I of V and
a subset B = {ei}i∈J projecting bijectively to a K-basis of (K ⊗k V)/W.
Then F is generated over k by the coefficients of the vectors {ei mod W}i�∈J

relative to the K-basis B mod W. We call F the field of definition over k for the
K-subspace W.

The following lemma records the simple behavior of fields of definition
under a ground field extension.

Lemma 1.1.8 Let k be a field, L′/k′/k a tower of extensions, and L an
intermediate field in L′/k. Let X be a k-scheme and Y a closed subscheme of
Xk′ , and F ⊆ k′ the minimal field of definition over k for Y. The minimal field
of definition over L for the closed subscheme YL′ := Y ⊗k′ L′ in Xk′ ⊗k′ L′ =
XL ⊗L L′ is the compositum FL inside of L′.

In particular, if L′ = Lk′ and Y ⊆ Xk′ has minimal field of definition over k
equal to k′ then the closed subscheme YL′ ⊆ XL′ has minimal field of definition
over L equal to L′.
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8 Overview of pseudo-reductivity

The most useful instance of this lemma for our purposes will be the case
when k′/k is purely inseparable and L/k is separable (with F = k′) but no
ambient L′ is provided. In such cases L ⊗k k′ is a field (as we see by passage to
the limit from the case when k′/k is finite) and so we can take L′ := L ⊗k k′.

Proof We first reduce to the affine case, using a characterization of the minimal
field of definition F/k that is better suited to Zariski-localization: if {Ui} is an
open cover of X (e.g., affine opens) then a subfield K of k′ over k contains F
if and only if the closed subscheme Y ∩ (Ui)k′ ⊆ (Ui)k′ is defined over K for
all i. (This follows from the uniqueness of descent of a closed subscheme to a
minimal field of definition.) In other words, F is the compositum of the fields
of definition over k for each Y ∩(Ui)k′ ⊆ (Ui)k′ . Since the field of definition for
YL′ ⊆ XL′ over L is the corresponding compositum for the closed subschemes
YL′ ∩ (Ui)L′ ⊆ (Ui)L′ , if we can handle each Ui separately then passage to
composite fields gives the global result. Thus, we now may and do assume X
is affine, say X = Spec A for a k-algebra A.

The ideal of Y in Ak′ has the form k′ ⊗F J for an ideal J in AF , and F is the
smallest intermediate extension in k′/k to which k′ ⊗F J descends as an ideal.
But descent as an ideal is equivalent to descent as a vector subspace (as the
property of a subspace of an algebra being an ideal can be checked after an
extension of the ground field), so F/k is the minimal field of definition over k
for the k′-subspace V = k′ ⊗F J inside of Ak′ .

The proof of existence of minimal fields of definition for subspaces of a
vector space (as in Remark 1.1.7) implies that F is also the minimal field of
definition over k for the L′-subspace L′ ⊗k′ V ⊆ AL′ . Let K be the minimal
field of definition over L for this L′-subspace. Our aim is to prove that K =
FL. Since the L′-subspace L′ ⊗k′ V is defined over FL (as it even descends to
the F-subspace J in AF), we have L ⊆ K ⊆ FL. The problem is therefore
to prove that F ⊆ K. But L′ ⊗k′ V does descend to a K-subspace of AK by
definition of K/L, so by the minimality property for F relative to L′/k we
get F ⊆ K. �

Proposition 1.1.9 Let K/k be a separable extension of fields, and G a smooth
connected affine k-group.

(1) Inside of GK we have Ru,k(G)K = Ru,K(GK). In particular, G is pseudo-
reductive over k if and only if GK is pseudo-reductive over K.

(2) Choose a k-embedding k ↪→ K of algebraic closures. The field of definition
Ek over k for Ru(Gk) ⊆ Gk is a finite purely inseparable extension and
K ⊗k Ek = EK inside of K.
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1.1 Comparison with the reductive case 9

The analogue of Proposition 1.1.9(1) for the maximal k-split smooth
connected unipotent normal k-subgroup Rus,k(G) lies deeper, and is given in
Corollary B.3.5.

Proof First we prove (1). By Galois descent, if k′/k is a Galois extension
then Ru,k′(Gk′) descends to a smooth connected unipotent normal k-subgroup
of G. Such a descent is contained in Ru,k(G), so this settles the case where
K/k is Galois. Applying this to separable closures ks/k and Ks/K (with Ks

chosen to contain ks over k), we may assume that k is separably closed. Since
Ru,k(G)K ⊆ Ru,K(GK) in general, to prove the equality as in (1) it suffices to
prove an inequality of dimensions in the opposite direction when k = ks.

More generally, if U is a smooth connected unipotent normal K-subgroup
of GK , say with d = dim U � 0, we shall apply a specialization argument
to U to construct a smooth connected unipotent normal k-subgroup of G with
dimension d when k = ks. By expressing K as a direct limit of its finitely
generated subfields over k, there is such a subfield F for which U descends
to an F-subgroup of GF that is necessarily smooth, connected, unipotent, and
normal in GF . Thus, upon renaming F as K we may assume that K/k is finitely
generated. Separability of K/k then allows us to write K = Frac(A) for a
k-smooth domain A.

The normality of U in G can be expressed as the fact that the map GK ×U →
GK defined by (g, u) �→ gug−1 factors through U, and the unipotence can be
expressed as the fact that for some finite extension K′/K the K′-group UK′
admits a composition series whose successive quotients are Ga. Since K is the
direct limit of its k-smooth subalgebras A[1/a] for a ∈ A − {0}, by replacing
A with a suitable such A[1/a] we may arrange that U = UK for a closed
subscheme U ⊆ GA.

Let A′ be an A-finite domain such that A′
K = K′. By “spreading out” of

properties of U = UK and Spec K′ = (Spec A′)K from the fiber over the
generic point Spec K of Spec A, upon replacing A with a further localization
A[1/a] we can arrange that U is an A-smooth normal A-subgroup of GA

with (geometrically) connected fibers of dimension d, and that there is a finite
faithfully flat extension A → A′ (with generic fiber K′/K) such that UA′ admits
a composition series by A′-smooth normal closed A′-subgroups with successive
quotients isomorphic to Ga as an A′-group. Hence, all fibers of U over Spec A
are unipotent. Since A is k-smooth, if k = ks then there exist k-points of Spec A.
The fiber of U over such a point is a smooth connected unipotent normal
k-subgroup of G with dimension d. This proves (1).

For (2), we apply Lemma 1.1.8 to the tower K/k/k, the intermediate
field K, and the k-scheme X = G and k-scheme Y = Ru(Gk) (for which
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10 Overview of pseudo-reductivity

YK = Ru(GK)). The assertion of the lemma in this case is that the field
of definition EK over K for Ru(GK) is the composite field EkK inside of K.
Provided that Ek/k is purely inseparable, the ring Ek ⊗k K is a field (since K/k
is separable) and hence the surjective map Ek ⊗k K → EkK is an isomorphism.
It therefore remains to prove that Ek/k is a purely inseparable extension of
finite degree. By Galois descent, Ru(Gk) is defined over the perfect closure
kp of k, which is to say that it descends to a kp-subgroup U ⊆ Gkp . Since
the ideal of U in the coordinate ring of Gkp is finitely generated, and every
finite subset of kp is contained in a subextension of finite degree over k, we can
descend U to a k′-subgroup of Gk′ for some finite purely inseparable extension
k′/k. Necessarily Ek ⊆ k′, so we are done. �

To make interesting non-commutative pseudo-reductive groups, we need
to study the Weil restriction of scalars functor Rk′/k applied to connected
reductive groups over finite extension fields k′/k. For later purposes, it is
convenient to work more generally with nonzero finite reduced k-algebras k′,
which is to say k′ =∏ k′

i for a non-empty finite collection {k′
i} of fields of finite

degree over k. This generality is better suited to Galois descent (which we use
very often): the functor ks ⊗k (·) carries nonzero finite reduced k-algebras to
nonzero finite reduced ks-algebras, but generally does not carry fields to fields.
For such general k′ = ∏

k′
i, a quasi-projective k′-scheme X′ is precisely

∐
X′

i
for quasi-projective k′

i-schemes X′
i , and Rk′/k(X′) =∏Rk′

i/k(X
′
i).

Proposition 1.1.10 Let k be a field, k′ a nonzero finite reduced k-algebra,
and G′ a k′-group whose fibers over Spec k′ are connected reductive (or
more generally, pseudo-reductive). The smooth connected affine k-group G =
Rk′/k(G′) is pseudo-reductive.

Proof By Proposition A.5.2(4) and Proposition A.5.9, the affine k-group G
is smooth and connected. Let ι : U ↪→ G be a smooth connected unipotent
normal k-subgroup of G. We must show that ι is the trivial map (i.e., U = 1).
It is equivalent to prove triviality of the k′-map ι′ : Uk′ → G′ that corresponds
to ι via the universal property of Weil restriction. The image H′ ⊆ G′ of ι′ is
a smooth unipotent k′-subgroup of G′ with connected fibers over Spec k′, and
we claim that it is normal. Once this is proved, then reductivity (or even just
pseudo-reductivity) of the fibers of G′ over Spec k′ implies that ι′ is trivial, so
G is indeed pseudo-reductive over k.

To verify the normality of H′ in G′, we first observe that (by construction)
ι′ is the restriction to Uk′ of the canonical map q : Gk′ → G′ that
corresponds to the identity map of G = Rk′/k(G′) under the universal
property of Weil restriction. Smoothness of G′ implies that q is surjective
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