Contents

Preface

Part I Physical Properties of Unconventional Reservoirs

1 Introduction

Unconventional Resources 6
Types of Unconventional Reservoirs 9
Recovery Factors and Production Rates 17
Horizontal Drilling and Multi-Stage Hydraulic Fracturing 21

2 Composition, Fabric, Elastic Properties and Anisotropy 31

Composition and Fabric 31
Elastic Properties 41
Elastic Anisotropy 50
Poroelasticity 53
Estimating Elastic Properties from Geophysical Data 56

3 Strength and Ductility 65

Rock Strength 65
Time-Dependent Deformation (Creep) 69
Stress and Strain Partitioning 73
Modeling Time-Dependent Deformation 76
Estimating In Situ Differential Stress from Viscoelastic Properties 80
Brittleness and Stress Magnitudes 84

4 Frictional Properties 91

Fault Strength and Stress Magnitudes 92
Rock Friction 95
Frictional Strength and Stability 101
Implications for Induced Shear Slip during Hydraulic Stimulation 111
Table of Contents

Part I \(\text{Unconventional Reservoir Geomechanics} \)

5 \hspace{1em} Pore Networks and Pore Fluids
- Matrix Porosity
- Matrix Pore Networks
- In Situ Pore Fluids

6 \hspace{1em} Flow and Sorption
- Matrix Flow
- Permeability
- Sorption

7 \hspace{1em} Stress, Pore Pressure, Fractures and Faults
- State of Stress in US Unconventional Reservoirs
- Measuring Stress Orientation and Magnitude
- Pore Pressure in Unconventional Reservoirs
- Fractures and Faults in Unconventional Reservoirs
- Utilizing 3D Seismic Data to Map Fault zones and Fractures

Part II \(\text{Stimulating Production from Unconventional Reservoirs} \)

8 \hspace{1em} Horizontal Drilling and Multi-Stage Hydraulic Fracturing
- Horizontal Drilling
- Multi-Stage Hydraulic Fracturing
- Fracturing Fluids and Proppants

9 \hspace{1em} Reservoir Seismology
- Microseismic Monitoring during Reservoir Stimulation
- Seismic Wave Radiation
- Earthquake Source Parameters and Scaling Relationships
- Earthquake Statistics
- Locating Microearthquakes

10 \hspace{1em} Induced Shear Slip during Hydraulic Fracturing
- Shear Stimulation and Production
- Coulomb Faulting and Slip on Poorly Oriented Fracture and Fault Planes
- Shear Slip and Permeability

11 \hspace{1em} Geomechanics and Stimulation Optimization
- Landing Zones
- Optimizing Completions I: Field Tests and Reservoir Simulation
- Vertical Hydraulic Fracture Growth
Table of Contents

Optimizing Completions II: Reservoir Simulation and 3D Geomechanics 334
- Viscoplastic Stress Relaxation and Varying Stress Magnitudes with Depth 339
- Targeting Geomechanical Sweet Spots: Fractures, Faults and Pore Pressure 344

12 Production and Depletion

- Production Decline Curves and One-Dimensional Flow 345
- Using Microseismicity to Estimate Total Fracture Area 346
- Evolution of a Shear Fracture Network 349
- Matrix Damage and Permeability Enhancement 353
- Seismic and Aseismic Fault Slip 358
- Depletion of Ultra-Low Permeability Formations with High Permeability Fractures 359
- The Frac Hit Phenomenon and Well-to-Well Communication 360
- Modeling Poroelastic Stress Changes 362

Part III Environmental Impacts and Induced Seismicity

13 Environmental Impacts and Induced Seismicity

- Overview of Environmental Issues 375
- Induced Seismicity 378

14 Managing the Risk of Injection-Induced Seismicity

- Avoiding Injection Near Potentially Active Faults 377
- Estimation of Fault Slip Potential in the Permian and Fort Worth Basins 389
- Risk Management and Traffic Light Systems 406
- Utilizing Seismogenic Index Models to Manage Produced Water Injection 415
- Site Characterization Risk Frameworks 422

References 426

Index 434

© in this web service Cambridge University Press www.cambridge.org