Batteries for Electric Vehicles

This fundamental guide will teach you the basics of battery design for electric vehicles. Working through this book, you will understand how to optimise battery performance and functionality, whilst minimising cost and maximising durability.

Beginning with the basic concepts of electrochemistry, the author moves on to describe implementation, control, and management of batteries in real vehicles, with respect to the battery materials. The author describes how to select cells and batteries with explanations of the advantages and disadvantages of different battery chemistries, enabling you to put your knowledge into practice and make informed and successful design decisions, with a thorough understanding of the trade-offs involved.

The first of its kind, and written by an industry expert with experience in academia, this is an ideal resource both for students and researchers in the fields of battery research and development, as well as for professionals in the automotive industry extending their interest towards electric vehicles.

Including a foreword by Leif Johansson, Chairman of Telefonaktiebolaget LM Ericsson and AstraZeneca PLC, and former CEO of the Volvo Group.

Helena Berg is the CEO of AB Libergreen, founded by herself in 2012 to advise other companies in the areas of electromobility and batteries. Previously she was the Global Corporate Battery Specialist of the Volvo Group and she also has a Ph.D. in battery materials.

Batteries for Electric Vehicles

Materials and Electrochemistry

HELENA BERG

CAMBRIDGE

Cambridge University Press 978-1-107-08593-0 — Batteries for Electric Vehicles Helena Berg Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107085930

© Helena Berg 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Berg, Helena.
Batteries for electric vehicles : materials and electrochemistry / Helena Berg. pages cm
Includes bibliographical references.
ISBN 978-1-107-08593-0 (Hardback)
1. Electric vehicles-Batteries. I. Title.
TL220.B427 2015
629.25'02-dc23 2015006511

ISBN 978-1-107-08593-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-08593-0 — Batteries for Electric Vehicles Helena Berg Frontmatter **More Information**

Contents

	Fore Pref	<i>page</i> ix xi	
	Intro	oduction	1
I Elec	ctrochemi	stry and battery technologies	5
1	The	electrochemical cell	7
	1.1	Definitions	8
	1.2	Cell components	8
		1.2.1 Electrodes	9
		1.2.2 Electrolytes	9
		1.2.3 Separators	10
		1.2.4 Current collectors	10
		1.2.5 Casing	11
	1.3	Cell and battery	11
		1.3.1 Half cells	11
		1.3.2 Full cells: monopolar and bipolar	12
		1.3.3 Full cells: three-dimensional	13
		1.3.4 Battery	14
	1.4	Thermodynamics	14
		1.4.1 Chemical and electrochemical potentials	15
		1.4.2 Cell voltage	17
	1.5	1.4.3 Temperature	20
	1.5	Electrode and electrolyte processes 1.5.1 Electrode kinetics	21 22
			22 23
		1.5.2 Electrode–electrolyte interfaces	23 24
		1.5.3 Mass transport1.5.4 Ion transport	24 25
		1.5.5 Mass transport in solid states	23
		1.5.6 Electrolyte stability	31
	1.6	Practical cell measures	31
	1.0	1.6.1 Cell voltage under load	32
		1.0.1 Con voltage under load	55

۷

CAMBRIDGE

Cambridge University Press 978-1-107-08593-0 — Batteries for Electric Vehicles Helena Berg Frontmatter <u>More Information</u>

vi	Cont	tents	
		1.6.2 Charge and discharge rates	35
		1.6.3 Capacity	36
		1.6.4 Energy and power	38
		1.6.5 Efficiency	40
	1.7	Electrochemical analysis methods	41
		1.7.1 Galvanostatic and potentiostatic cycling	41
		1.7.2 Cyclic voltammetry	42
		1.7.3 Electrochemical impedance spectroscopy	43
		1.7.4 Reference electrode	46
2	Batt	47	
	2.1	Lead-acid batteries	48
		2.1.1 Basics	48
		2.1.2 Lead-acid concepts	51
	2.2	Nickel metal-hydride batteries	52
		2.2.1 Basics	53
		2.2.2 NiMH battery materials	55
	2.3	Lithium batteries	57
		2.3.1 Lithium metal	58
		2.3.2 Li-ion and Li-ion polymer	59
		2.3.3 Lithium-oxygen	59
		2.3.4 Lithium-sulphur	60
	2.4	J I	62
		2.4.1 Capacitor materials	65
	2.5	2.4.2 High-energy capacitors	65
	2.5	Other battery technologies	66
		2.5.1 High-temperature molten-salt batteries	66
		2.5.2 Nickel zinc batteries	68
		2.5.3 Zinc-air batteries	69 70
		2.5.4 Metal-ion batteries	70
	26	2.5.5 Redox flow batteries	72
	2.6	Fuel cells	74
		2.6.1 Polymer electrolyte membrane fuel cells	75 78
		2.6.2 PEMFC usage	/8
II Li-io	on batter	ry technology – materials and cell design	81
3	Lithi	ium battery materials	83
	3.1	Negative electrode materials	86
		3.1.1 The solid electrolyte interphase	87
		3.1.2 Metallic lithium	89
		3.1.3 Carbons	91

CAMBRIDGE

Cambridge University Press 978-1-107-08593-0 — Batteries for Electric Vehicles Helena Berg Frontmatter <u>More Information</u>

				Contents	vii
		3.1.4	Alloys		96
		3.1.5	Oxides		98
	3.2 Positive electrode materials			100	
		3.2.1	Layered materials		102
		3.2.2	The cubic spinel LiMn ₂ O ₄		105
		3.2.3	Olivine LiFePO ₄		109
		3.2.4	Other materials		111
			Mixed electrode concepts		113
	3.3	Electro	olytes and separators		114
		3.3.1	Liquid electrolytes		115
		3.3.2	Separators		120
		3.3.3	Polymer-based electrolytes		123
		3.3.4	Ionic liquids as electrolytes		124
4	Cell	design		126	
	4.1	Comp	osite electrodes		126
	4.2	Energ	y and power-optimised electrodes		129
	4.3	Energ	y and power-optimised cells		130
		4.3.1	Cell balancing		130
		4.3.2	Energy and power relationship		131
		4.3.3	Example: energy and power-optimised cells		132
	4.4	Cell fo	ormat and design		134
		4.4.1	Cylindrical cells		134
		4.4.2	Prismatic cells		135
		4.4.3	Pouch cells		135
		4.4.4	Cell safety devices		137
	4.5	Produ	ction processes		137
		4.5.1	Safety and reliability		139
III Batt	ery usa	ge in e	lectric vehicles		141
5	Vehi	icle requ	uirements and battery design		143
	5.1	Vehic	le types and requirements		143
		5.1.1	Vehicle types		143
		5.1.2	Usage conditions		146
		5.1.3	Energy and power requirements		147
	5.2		y design		152
		5.2.1	General design criteria		154
		5.2.2	Cell selection		156
			Additional battery components		163
		5.2.4			166

viii	Contents					
6	Battery control and management 163					
Ū	6.1	Battery management system		168		
	011	6.1.1	Charge and discharge control and methods	171		
		6.1.2		174		
		6.1.3	Battery monitoring	178		
	6.2	State f	functions	179		
		6.2.1	State of charge	180		
		6.2.2	State of health	189		
		6.2.3	State of function	192		
7	Batt	194				
	7.1	Degra	dation basics and mechanisms	195		
		7.1.1	Examples: origins of capacity fade	199		
		7.1.2	Accelerated degradation	201		
	7.2					
		7.2.1	General degradation categories	209		
		7.2.2	Degradation of active materials	212		
		7.2.3	Degradation of electrolytes	219		
	7.3	Degra	dation analysis methods	221		
		7.3.1	Galvanostatic cycling	222		
		7.3.2	Electrochemical impedance spectroscopy	223		
		7.3.3		224		
		7.3.4	Differential voltage	226		
		7.3.5	Half cell	227		
		7.3.6	Post-mortem	228		
	Glo	230				
	Fur	234				
	Inde	235				

Foreword

Already in the late 1970s when I was the Managing Director of *Husqvarna Motorcycles*, I was involved in a project where we tried to build useful and light electric scooters. We were forced to give up. The batteries of those days were simply insufficient regarding energy storage. In addition, there were few control components that worked at high enough powers.

Today, 30 years later, we see the first generation of electric vehicles – cars and scooters, as well as city buses – emerge. This is made possible through new types of batteries available in configurations that actually work at high-power outputs and relatively large amounts of stored energy. Today there are also computers capable of monitoring the batteries and there are high-power electronic components based on semiconductors. Altogether this provides the opportunity to construct systems suitable for vehicles. As CEO of the *Volvo Group*, I was happy and proud of the projects emerging with the electrification and hybrid electrification of vehicles during the first decade of the twenty-first century, and with which Helena Berg, among others, was working.

The task is bigger, though, than only supplying vehicles with well-functioning battery packs. As human beings, we are identifying increasing demands on mobility in our everyday life. This implies a desire to make extensive use of mobile devices such as cameras, smart telephones, tablets, media players, and in the future a vast number of products we cannot even imagine today.

'The internet of things' will result in many billions of products needing to communicate with one another in order to establish a society as efficient and accessible as we all wish. All these products will need an energy source most likely a battery. And when building the future electric power supply and distribution system – 'The smart grid' – we will need load levelling and energy storage.

For all this, batteries and battery technologies are needed. We need to deepen our understanding of today's batteries and to better assess what we can expect of batteries in the future.

The knowledge of batteries, battery configurations, and their control has become strategic knowledge that many people need to assimilate. This obviously applies

x Foreword

to all categories of product developers and the direct design and construction work, but also to the leaders of such development. I would also argue that it would be beneficial if interested political leaders, developers of society, and decision makers could better understand the possibilities of the technology in such an important field.

Helena Berg has written a book about all of this. She has a profound technical background in addition to a thorough experience of applications in real situations.

Gothenburg, January 2015

Leif Johansson Chairman of Telefonaktiebolaget LM Ericsson and AstraZeneca PLC

Preface

When I started to work with batteries 20 years ago, Li-ion cells had been introduced to the market a few years before and everyone was talking about the battery revolution – the electric car will finally become true. Since then we have seen the Li-ion batteries come to totally dominate the consumer electronics market and now starting their journey to become the source of electricity for electric vehicles. Today most vehicle manufacturers are promoting electric vehicles and large electromobility programmes exist among government bodies, universities, and companies around the world as crucial steps towards a sustainable world in terms of meeting the serious threats to our societies such as depletion of oil reserves and climate change.

The key for this to ultimately succeed is knowledge of the battery itself and how to design a battery with optimal performance and functionality at a low cost and with long durability. Trying to design a battery without proper knowledge about the materials used and electrochemistry basics sooner or later ends up in a non-optimal design in terms of cost, performance, or durability. Inside the battery it is the cell chemistry that sets the fundamental limitations and hence, in the long run, also the performance of the vehicle.

This is the book I would have liked to be able to hand out to my co-workers and managers during my years in the automotive industry. This book explains the fundamentals behind why a battery has to be handled according to specific constraints and how it should be matched with the type of vehicle; most of all this book should help design teams to talk the same 'battery language' and thus enable greater battery research.

During my winding road towards a finalised book, I have had the opportunity to work and discuss batteries and electric vehicles with Anette Häger, Erlendur Jónsson, Hanna Bryngelsson, Henrik Engdahl, Jenny Ring, Leif Johansson, Niklas Thulin, Patrik Johansson, Patrik Persson, and Mario Wachtler – all are gratefully acknowledged. A special thanks goes to the professional editorial team at Cambridge University Press who believed in the scope of the book from the very first day.

Helena Berg

Amiens January 2015

xi