UNIVERSAL THEMES OF BOSE-EINSTEIN CONDENSATION

Following an explosion of research on Bose-Einstein condensation (BEC) ignited by demonstration of the effect by 2001 Nobel Prize winners Cornell, Wieman, and Ketterle, this book surveys the field of BEC studies. Written by experts in the field, it focuses on BEC as a universal phenomenon, covering topics such as cold atoms, magnetic and optical condensates in solids, liquid helium, and field theory. Summarising general theoretical concepts and the research to date – including novel experimental realisations in previously inaccessible systems and their theoretical interpretation – it is an excellent resource for researchers and students in theoretical and experimental physics who wish to learn of the general themes of BEC in different subfields.

NICK P. PROUKAKIS is Professor of Quantum Physics at Newcastle University and the Associate Director of the Joint Quantum Centre Durham-Newcastle. He is an expert on finite temperature non-equilibrium modelling of quantum gases; his research interests span from atomic physics to optical condensates, being mainly focused on universal features, non-equilibrium dynamics, superfluid turbulence, and multi-component quantum matter.

DAVID W. SNOKE is Professor of Physics at the University of Pittsburgh and a Fellow of the American Physical Society. He is author of over 130 articles and 4 books, including *Bose-Einstein Condensation* (Cambridge University Press, 1996), one of the first books to survey the phenomenon. His research focuses on nonequilibrium dynamics, semiconductor optics, and Bose-Einstein condensation.

PETER B. LITTLEWOOD is a professor of physics at the University of Chicago, former Head of the Cavendish Laboratory, Cambridge University, and former Director of Argonne National Laboratory. Author of more than 200 articles, he has played an important role in the theory of Bose-Einstein condensation in cold atoms, polaritons, and excitonic systems.

UNIVERSAL THEMES OF BOSE-EINSTEIN CONDENSATION

NICK P. PROUKAKIS Newcastle University

DAVID W. SNOKE University of Pittsburgh

PETER B. LITTLEWOOD

University of Chicago

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107085695

10.1017/9781316084366

© Nick P. Proukakis, David W. Snoke and Peter B. Littlewood 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2017

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Names: Proukakis, Nick, editor. | Snoke, David W., editor. | Littlewood, Peter B., editor. Title: Universal themes of Bose-Einstein condensation / edited by Nick P. Proukakis (Newcastle University), David W. Snoke (University of Pittsburgh),

Peter B. Littlewood (University of Chicago).

Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2017. | Includes bibliographical references and index.

Identifiers: LCCN 2016039245| ISBN 9781107085695

(Hardback ; alk. paper) | ISBN 1107085691 (Hardback ; alk. paper)

Subjects: LCSH: Bose-Einstein condensation.

Classification: LCC QC175.47.B65 U55 2017 | DDC 530.4/2-dc23

LC record available at https://lccn.loc.gov/2016039245

ISBN 978-1-107-08569-5 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Foreword pa Preface pa	ge viii xi
	Part I Introduction	1
1	Universality and Bose-Einstein Condensation: Perspectives on Recent Work	3
2	D. W. SNOKE, N. P. PROUKAKIS, T. GIAMARCHI, P. B. LITTLEWOOD A History of Bose-Einstein Condensation of Atomic Hydrogen	22
3	T. GREYTAK, D. KLEPPNER Twenty Years of Atomic Quantum Gases: 1995–2015	38
4	Introduction to Polariton Condensation P. B. LITTLEWOOD, A. EDELMAN	57
	Part IIGeneral TopicsEditorial Notes	75 77
5	The Question of Spontaneous Symmetry Breaking in Condensates D. W. SNOKE, A. J. DALEY	79
6	Effects of Interactions on Bose-Einstein Condensation R. P. SMITH	99
7	Formation of Bose-Einstein Condensates	117
8	Quenches, Relaxation, and Prethermalization in an Isolated Quantum System	151
9	T. LANGEN, J. SCHMIEDMAYER Ultracold Gases with Intrinsic Scale Invariance C. CHIN	168

v

v	Contents	
1	0 Berezinskii-Kosterlitz-Thouless Phase of a Driven-Dissipative Condensate	187
1	 N. Y. KIM, W. H. NITSCHE, Y. YAMAMOTO 1 Superfluidity and Phase Correlations of Driven Dissipative Condensates J. KEELING, L. M. SIEBERER, E. ALTMAN, L. CHEN, S. DIEHL, J. TONER 	205
1	2 BEC to BCS Crossover from Superconductors to Polaritons A. EDELMAN, P. B. LITTLEWOOD	231
	Part III Condensates in Atomic Physics	249
	Editorial Notes	251
1	3 Probing and Controlling Strongly Correlated Quantum Many-Body	
1	Systems Using Ultracold Quantum Gases I. BLOCH	253
1	4 Preparing and Probing Chern Bands with Cold Atoms N. GOLDMAN, N. R. COOPER, J. DALIBARD	274
1	5 Bose-Einstein Condensates in Artificial Gauge Fields L. J. LEBLANC, I. B. SPIELMAN	299
1	6 Second Sound in Ultracold Atomic Gases L. PITAEVSKII, S. STRINGARI	322
1	7 Quantum Turbulence in Atomic Bose-Einstein Condensates N. G. PARKER, A. J. ALLEN, C. F. BARENGHI, N. P. PROUKAKIS	348
1	8 Spinor-Dipolar Aspects of Bose-Einstein Condensation M. UEDA	371
	Part IV Condensates in Condensed Matter Physics	387
	Editorial Notes	389
1	9 Bose-Einstein Condensation of Photons and Grand-Canonical Condensate Fluctuations	391
	J. KLAERS, M. WEITZ	
2	D Laser Operation and Bose-Einstein Condensation: Analogies and Differences	409
	A. CHIOCCHETTA, A. GAMBASSI, I. CARUSOTTO	
2	1 Vortices in Resonant Polariton Condensates in Semiconductor	
	Microcavities	424
	D. N. KRIZHANOVSKII, K. GUDA, M. SICH, M. S. SKOLNICK, L. DOMINICI,	
2	D. SANVILLU 2 Optical Control of Polariton Condensates	445
4	G. CHRISTMANN, P. G. SAVVIDIS, J. J. BAUMBERG	τ τ J
	,	

CAMBRIDGE

	Contents	vii
23	Disorder, Synchronization, and Phase-locking in Nonequilibrium Bose-Einstein Condensates	462
	P R FASTHAM R ROSENOW	102
24	Collective Topological Excitations in 1D Polariton Quantum Fluids	477
25	H. TERÇAS, D. D. SOLNISHKOV, G. MALPUECH	
23	Room Temperature	493
	H. SALMAN, N. G. BERLOFF, S. O. DEMOKRITOV	
26	Spintronics and Magnon Bose-Einstein Condensation R. A. DUINE, A. BRATAAS, S. A. BENDER, Y. TSERKOVNYAK	505
27	Spin-Superfluidity and Spin-Current Mediated Nonlocal Transport	525
28	Bose-Einstein Condensation in Quantum Magnets	549
	C. KOLLATH, T. GIAMARCHI, C. RÜEGG	
	Part V Condensates in Astrophysics and Cosmology	569
	Editorial Notes	571
29	Bose-Einstein Condensates in Neutron Stars	573
	C. J. PETHICK, T. SCHÄFER, A. SCHWENK	
30	A Simulated Cosmological Metric: The Superfluid ³ He Condensate G. R. PICKETT	593
31	Cosmic Axion Bose-Einstein Condensation	608
32	G. DVALI, C. GOMEZ	620
	Universal Bose-Einstein Condensation Workshop	635
	Contributors	638
	Index	644

Foreword

At the time of the first workshop in this series in 1993, the only experimentally realized Bose condensate (at least in the simple sense conjectured by Einstein) was liquid ⁴He. In the intervening twenty-plus years, much has happened in the world of Bose-Einstein condensation (BEC). Probably the most exciting development has been the attainment of condensation in ultracold bosonic atomic gases such as ⁸⁷Rb and ²³Na in 1995, followed a few years later by the achievement of degeneracy and eventually Bardeen-Cooper-Schrieffer (BCS) pairing in their fermionic counterparts, and the experimental realization of the theoretically long-anticipated "BEC-BCS crossover" by using the magnetic field degree of freedom to tune the system through a Feshbach resonance. One particularly fascinating aspect of the latter has been the realization of a "unitary gas" at the resonance itself – a system which prima facie has no characteristic length scale other than the interparticle separation, and is therefore a major challenge to theorists. Other systems in which BEC has been realized, sometimes transiently, include exciton-polariton complexes in semiconducting microcavities and, at least in a formal sense, the magnons in a magnetic insulator, as well as ultracold gases with a nontrivial and sometimes large "spin" degree of freedom.

As compared with our "traditional" Bose condensate, liquid ⁴He, these new systems typically have many more (and more rapidly adjustable) control parameters, and have therefore permitted qualitatively new types of experiment. One particularly fascinating development has been the use of optical techniques to generate "synthetic gauge fields" and thus mimic some of the topologically nontrivial systems which have recently been of such intense interest in a condensed-matter setting. At the same time, there remain long-standing issues from helium physics, such as the nature and consequences of "spontaneously broken U(1) symmetry," the "Kibble-Zurek" mechanism, and more generally the relaxation of strongly non-equilibrium states to equilibrium; in some cases, the new systems have been used to

Foreword

address these more quantitatively than was possible with ⁴He. The chapters in this volume address all of these questions and more, and should be of intense interest to both the experimental and the theoretical sides of the BEC community.

Tony Leggett University of Illinois at Urbana-Champaign, USA

Preface

This book marks the twentieth anniversary of the publication of the book *Bose-Einstein Condensation* by Cambridge University Press. The book was the result of the 1993 meeting in Levico-Terme, Italy, organized by Allan Griffin, David Snoke, and Sandro Stringari, with significant help from Andre Mysyrowicz. That meeting grew out of a desire by many theorists and experimentalists to discuss the general themes of Bose-Einstein condensation, to draw connections between different physical systems.

One of the major driving forces for that meeting was the desire to have another example of Bose-Einstein condensation besides liquid helium. There was serious discussion at the time of whether nature abhorred a condensate, and liquid helium was a special, anomalous case. Experiments on spin-polarized hydrogen, excitons in semiconductors, and optically trapped atoms had been going on for more than a decade, without success. To move the field forward, the organizers of the 1993 meeting brought together world experts on the general theory, and experimentalists of all types, to discuss the universal themes of Bose-Einstein condensation generally. There were fascinating and heated debates about such topics as the time scale for condensation (could it be possible that condensation will not occur in a system with finite lifetime?), the concept of spontaneous symmetry breaking (could there ever be a universal "phase standard" for condensates?), and how superfluidity and condensation are related.

The situation is quite changed now. We now have many experimental examples of Bose-Einstein condensation, most notably atoms at very low temperature in optical traps, which led to the Nobel Prize in Physics in 2001. This work of Eric Cornell and Carl Wieman was first announced at the second general meeting on Bose-Einstein condensation in 1995, in Mt. Ste. Odile, France. This led to the successful conference series on atomic Bose-Einstein condensation, which now takes place regularly in San Feliu de Guixols, Spain.

xii

Preface

Because of this changed situation, the present book does not have the same form as the 1995 book. At that time, it was possible to survey a good fraction of all the experimental and theoretical efforts in the field. The field is now so large that no book can do that comprehensively, and this book leaves out a good many significant topics. But the meeting¹ which led to this book, held at the Lorentz Center² in Leiden, Netherlands, in 2013, had much the same spirit as the original 1993 meeting, namely to bring together many of the world's experts on the general theory and diverse experiments on Bose-Einstein condensation, with the aim of discussing universal questions, some of which are still debated. This book aims to have that spirit of looking at the larger questions, while also surveying many of the particular experimental systems. Several of the people at the 1993 and/or 1995 meetings gave impetus to the 2013 Leiden meeting, such as Gordon Baym, Wolfgang Ketterle, Tony Leggett, David Snoke, Henk Stoof, and Sandro Stringari.

It is with great sadness that we note that the chair of the original 1993 meeting, Allan Griffin, who was a driving force of nonequilibrium and condensate physics and the San Feliu de Guixols conference series for many years, passed away in 2011, before the meeting in Leiden. In fact, the first discussions for organizing a twenty-year anniversary meeting took place between David Snoke and Nick Proukakis during "Griffinfest," a research symposium held in Toronto in May of 2011, attended by colleagues, friends, and family of Allan Griffin, just a few days before he passed away.³ His energy and zeal would surely have made a significant contribution to this book.

Nick P. Proukakis Joint Quantum Centre Durham-Newcastle, Newcastle University, UK

> David W. Snoke University of Pittsburgh, USA

Peter B. Littlewood University of Chicago, USA

¹ "Universal themes of Bose-Einstein Condensation" workshop, organized by K. Burnett, P. B. Littlewood, N. P. Proukakis, D. W. Snoke, and H. T. C. Stoof, 11–15 March 2013. Details can be found at www.lorentzcenter .nl/lc/web/2013/546/info.php3?wsid=546.

² We gratefully acknowledge the wonderful support received by all the staff at the Lorentz Center, and in particular Corrie Kuster and Mieke Schutte, whose constant support ensured we could focus on the "science," thus indirectly assisting us in the early stages of planning of this book.

³ Details can be found at ultracold.physics.utoronto.ca/GriffinFest.html.