Cambridge University Press 978-1-107-08496-4 - A Guided Tour of Mathematical Methods for the Physical Sciences: Third Edition Roel Snieder and Kasper Van Wijk Frontmatter More information

A GUIDED TOUR OF MATHEMATICAL METHODS FOR THE PHYSICAL SCIENCES THIRD EDITION

Mathematical methods are essential tools for all physical scientists. This book provides a comprehensive tour of the mathematical knowledge and techniques that are needed by students across the physical sciences. In contrast to more traditional textbooks, all the material is presented in the form of exercises. Within these exercises, basic mathematical theory and its applications in the physical sciences are well integrated. In this way, the mathematical insights that readers acquire are driven by their physical-science insight. This third edition has been completely revised: new material has been added to most chapters, and two completely new chapters on probability and statistics and on inverse problems have been added. This guided tour of mathematical techniques is instructive, applied, and fun. This book is targeted for all students of the physical sciences. It can serve as a stand-alone text or as a source of exercises and examples to complement other textbooks.

> We dedicate this book to our loving and beloved families: Idske, Hylke, Hidde, and Julia, and Mila, Sasha, and Niels. We also dedicate this book to our "scientific families": our teachers and mentors, in particular Guust Nolet and John Scales, our colleagues, and our students.

A GUIDED TOUR OF MATHEMATICAL METHODS FOR THE PHYSICAL SCIENCES THIRD EDITION

ROEL SNIEDER Colorado School of Mines

KASPER VAN WIJK University of Auckland

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107641600

> © Roel Snieder 2001, 2004 © Roel Snieder and Kasper van Wijk 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2001 Second edition published 2004 Third edition published 2015

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Snieder, Roel, 1958-

A guided tour of mathematical methods for the physical sciences / Roel Snieder, Colorado School of Mines, Kasper van Wijk, University of Auckland. – Third edition. pages cm Includes bibliographical references and index. ISBN 978-1-107-08496-4 (alk. paper) 1. Mathematical analysis. 2. Physical sciences–Mathematics. 3. Mathematical physics. I. Van Wijk, Kasper. II. Title. QA300.S794 2015 515-dc23

2015000908

ISBN 978-1-107-08496-4 Hardback ISBN 978-1-107-64160-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Cover image: The image shows a soap bubble on a rotating table. The internal reflection of light within the soap film causes variations in the thickness of the film to show up as different colors. This laboratory experiment is used to study vortices in rotating systems; the experiment can be seen as a small-scale version of a hurricane. This figure is taken with permission from the following publication: Meuel, T., Y.L. Xiong, P. Fischer, C.H. Bruneau, M. Bessafi, and H. Kellay, *Intensity of vortices: from soap bubbles to hurricanes*, Scientific Reports, 3, p3455, 2013.

Cover design by James F. Brisson

Contents

	List of figures	<i>page</i> vii
	List of tables	xvii
	About the authors	xix
1	Introduction	1
2	Dimensional analysis	4
3	Power series	18
4	Spherical and cylindrical coordinates	34
5	Gradient	50
6	Divergence of a vector field	68
7	Curl of a vector field	85
8	Theorem of Gauss	99
9	Theorem of Stokes	108
10	The Laplacian	125
11	Scale analysis	145
12	Linear algebra	166
13	Dirac delta function	188
14	Fourier analysis	203
15	Analytic functions	234

v

vi	Contents	
16	Complex integration	244
17	Green's functions: principles	257
18	Green's functions: examples	278
19	Normal modes	303
20	Potential field theory	345
21	Probability and statistics	372
22	Inverse problems	398
23	Perturbation theory	416
24	Asymptotic evaluation of integrals	442
25	Conservation laws	466
26	Cartesian tensors	485
27	Variational calculus	518
28	Epilogue, on power and knowledge	545
	References	547
	Index	555

Figures

2.1	Definition of the variables for a falling ball.	page 9
2.2	The weight of many flying objects (vertical axis) against their	
	cruising speed (horizontal axis) on a log-log plot.	15
2.3	The geometry of a pipe through which a fluid flows.	16
3.1	Four different kinds of motion of a particle along a line as a	
	function of time.	19
3.2	The motion of a particle that suddenly changes character at time t_0 .	23
3.3	The motion of a bouncing ball that loses energy with every bounce.	
	To visualize the motion of the ball better, the ball is given a	
	constant horizontal velocity that is conserved during the bouncing.	26
3.4	Geometry of the problem where two stacks of thin reflective layers	
	are combined. The coefficients for the various left- and right-going	
	waves are indicated.	29
3.5	These swirls are grayscale representations of color changes in	
	a soap bubble made by T. Meuel and H. Kellay, Université de	
	Bordeaux and CNRS (Meuel et al., 2013), and is shown on the	
	front cover of this book. The colors are an example of wave	
	interference caused by reflections off the front and back of the	
	soap layer.	32
4.1	The definition of (x, y, z) in terms of the radius <i>r</i> and angles (θ, φ)	
	of spherical coordinates.	35
4.2	Definition of the geometric variables used to derive the radial	
	component of the velocity.	41
4.3	Definition of the geometric variables for an infinitesimal volume	
	element dV in spherical coordinates.	45
4.4	Definition of the geometric variables r , φ , and z used in cylindrical	
	coordinates.	46

viii	List of figures	
4.5	The cylindrical coordinate system has the same properties as the	17
5 1	Definition of the points A. P. and C.	4/ 51
5.1 5.2	Contour lines (deshed) defined by the condition $f = const$ and a	51
5.2	contour lines (dashed) defined by the condition $f = const.$ and a parturbation $\delta \mathbf{r}$ in the position vector along a contour line	53
53	Contour lines (dashed) defined by the condition $f = const$ and a	55
5.5	contour lines (dashed) defined by the condition $f = const.$ and a perturbation $\delta \mathbf{r}$ in the position vector in an arbitrary direction	53
54	Contour map of the pressure at sea level in millibars. Data courtesy	55
5.1	of NOAA.	54
5.5	Definition of geometric variables for the derivation of the pressure	0.
	force.	56
5.6	The definition of the points A and B at the end of an interval and	
	the intermediary points P_1, P_2, \ldots, P_N .	57
5.7	An observer standing on a fixed tower experiences an increase in	
	temperature, because warm air moves toward the observer from	
	right to left.	61
5.8	An observer in a balloon experiences an increase in temperature,	
	because the balloon flies to a warmer region on the right.	62
5.9	Definition of the geometric variables and the points A, B, C , and	
	D in spherical coordinates.	66
6.1	Definition of the geometric variables in the calculation of the flux	-
	of a vector field through an infinitesimal rectangular volume.	70
6.2	The vector field for fluid flow in a thin sheet with a source at the	70
()	origin (expression (6.14)).	13
6.3	The vector field for fluid flow in a thin sheet as computed in Problem d for a course at $(0.5, 0)$ and a sink at $(-0.5, 0)$	74
6.4	Problem d for a source at $(0.5, 0)$ and a sink at $(-0.5, 0)$.	/4
0.4	cylindrical coordinates	77
65	Definition of variables for the perturbed orbit of the Earth	83
7.1	Modeled horizontal windspeed vectors around the eve of tropical	05
/.1	cyclone Katrina in the Gulf of Mexico, as an example of a	
	cylindrically symmetric source-free flow in the (x, y) -plane. Data	
	courtesy of NOAA.	86
7.2	Definition of the geometric variables for the interpretation of the curl.	86
7.3	An axisymmetric source-free flow in the (x, y) -plane and the	
	radial direction ($\hat{\varphi}$).	88
7.4	The vorticity of a rigid rotation. A paddle wheel moves with the	
	flow, but also rotates around its own axis.	90
7.5	Sketch of the flow field for a shear flow.	91

	List of figures	ix
7.6	Definition of the geometric variables for the computation of the	
	φ -component of the <i>curl</i> in spherical coordinates.	94
8.1	Two bodies with different mass distributions generate the same	
	gravitational field $\mathbf{g}(\mathbf{r})$ for distances larger than radius R .	101
9.1	The relation between the sense of integration and the orientation of	
	the surface.	109
9.2	Definition of the geometric variables for Problem a.	110
9.3	Two surfaces that are bounded by the same contour C .	111
9.4	Definition of the geometric variables for the derivation of Stokes'	
	theorem from the theorem of Gauss.	112
9.5	Geometry of the magnetic field induced by a current in a straight	
	infinite wire.	113
9.6	A wire-loop in a magnetic field B .	115
9.7	The TC1 seismograph consists of a magnet suspended from a	
	slinky toy that hangs inside a coil. The system is damped with	
	another magnet – below the first one – inside a short copper pipe.	116
9.8	Geometry of the magnetic field.	117
9.9	Experiment in which electrons travel through two slits and are	
	detected on a screen behind the slits. The resulting interference	
	pattern is sketched. The experiment without a magnetic field is	
	shown on the left; the experiment with a magnetic field is shown	
	on the right. Note the shift in the maxima and minima of the	
	interference pattern between the two experiments.	119
9.10	Vortices trailing from the wingtips of a Boeing 727.	121
9.11	Sketch of the flow along an airfoil. The wing is shown in gray the	
	contour <i>C</i> is shown by the thick solid line.	121
9.12	Geometry of the surface S and the wingtip vortex for an aircraft	
	seen from above. The surface S encloses the wingtip of the aircraft.	
	The edge of this surface is the same contour C as drawn in the	
	previous figure.	122
9.13	Two boats carrying sails with different aspect ratios.	123
10.1	Definition of the geometric variables in the computation of the	100
	radius of curvature of a function.	126
10.2	The behavior of a function near a minimum and a maximum.	127
10.3	The relation between the derivative of a function and the arc-length	100
10.4	of the corresponding curve.	129
10.4	The unperturbed function $h(x)$ and the perturbation $\epsilon(x)$ that	100
10.7	vanishes at the endpoint of the interval.	130
10.5	The shape of a soap film whose edges are fixed at the outer edges	100
	of the box.	132

х

10.6 The shape of the same soap film as in the previous figure after a rotation through 45 degrees. (New edges define the area of this soap film.) The shape of the soap film is given by the function $h(x, y) = x^2 - y^2$; the shape of the soap film in the previous figure is given by h(x, y) = 2xy. 135 11.1 The forces that act in a fluid vortex on the northern hemisphere of a rotating Earth. 146 11.2 The slope of a function f(x) that is known at positions x and x + h. 149 11.3 The shock waves generated by a T38 airplane flying at Mach 1.1 (a speed of 1.1 times the speed of sound) made visible with the schlieren method. 153 11.4 Water flowing with a speed v encounters a rock, creating secondary waves with a speed c. The three panels are scenarios for varying relative values of v and c. 154 11.5 Geometry of a plane incoming wave that propagates from a half-space z < 0 with constant velocity c_1 that moves into a half-space z > 0 with constant velocity c_2 . Wavefronts are indicated with dashed lines. 158 11.6 Two alternatives for the heat transport in the Earth. In the left-hand panel the material does not move and heat is transported by conduction. In the right-hand panel the material flows and heat is transported by convection. 161 12.1 Definition of the geometric variables for the projection of a vector **v**. 167 12.2 Decomposition of a vector **q** in a rotating coordinate system. 171 12.3 Definition of a local Cartesian coordinate system that is aligned with the Earth's surface. 174 12.4 Three masses *m* connected via two springs with constant *k* vibrate around their equilibrium positions with amplitudes x_1, x_2, x_3 , 180 respectively. 13.1 The boxcar function $B_a(x)$ for three values of *a*. 190 13.2 The Gaussian function $g_a(x)$ for three values of *a*. 192 13.3 The function g(x) (thick solid line) and the tangent line (dashed) 195 at the zero-crossing x_0 . 14.1 The power of the sound of a low C on a soprano saxophone as a function of frequency. The unit used for the horizontal axis is the hertz (the number of oscillations per second), the unit on the vertical axis is decibels (a logarithmic measure of power). 204 14.2 The unit circle in the complex plane and Euler's formula. 208

List of figures

	List of figures	xi
14.4	Pressure-wave recordings of seismic signals from the solid earth $(i(t))$, and their reverberations in the water column.	221
14.5	Geometry of experiment where noise recorded at two sensors A and B is used to find the ways that propagate between these sensors	231
14.6	Two snapshots of the wave field in the southwestern United States from Lin et al. (2009). These are obtained by cross-correlating noise recorded at a master station (indicated by a star) with noise	231
	recorded at a network of stations (triangles).	232
15.1	A function $F(x)$ that is not differentiable at x.	235
15.2	Three paths along which the limit $\Delta z \rightarrow 0$ can be taken in the complex plane.	235
15.3	Definition of the geometric variables for the fluid flow with a	2.42
15.4	source and a sink. Streamlines for a source at $L = 0.5$ and a sink at $L = -0.5$ from	242
	the contours of expression (15.26).	242
16.1	Left: A contour C in the complex plane, enclosing a single pole at	
	z_0 . Right: The contour <i>C</i> is adjusted to exclude the only pole at z_0 .	246
16.2	The paths C_{real} and C_R form a closed contour in the complex plane. Poles are at $z = \pm i$.	249
16.3	A pole in the complex plane and the closure of contours for $t' > t$,
	(left) and $t' < t$ (right).	255
17.1	The girl on a swing.	258
17.2	A continuous function (left) and an approximation to this function	
	that is constant within finite intervals Δ (right).	261
17.3	Definition of the geometric variables and boundary conditions for	
	the temperature in the Earth's crust.	271
18.1	The contours C_R , C_C , and C in the complex k-plane.	281
18.2	The variable r defines the distance from a point on the z -axis to a	207
10.0	point in the (x, y) -plane with a distance ρ to the origin.	297
18.3	The Green's function of the wave equation in one, two, and three	200
10.4	dimensions as a function of time.	298
18.4	Paths that connect the points \mathbf{r}_1 and \mathbf{r}_2 in opposite directions. The waves that propagate in the two opposite directions are identical	
	even in the presence of the free surface, where the pressure $n = 0$	301
191	A metal plate oscillating at six frequencies that correspond to	501
17.1	modes of the plate. For each mode, sugar collects in the nodal	
	lines, where the motion vanishes.	304
19.2	The Bessel functions $J_m(x)$ for orders $m = 0, 1, 2, \text{ and } 3$.	20.
	The right panel compares these functions to the approximation	
	$J_m(x) \approx \left(\frac{x}{2}\right)^m / m!$ for $x < 1$.	308

xii

List of figures

19.3	The Legendre polynomials $P_l^0(x)$ for $l = 0, 1, 2, \text{ and } 3$.	312
19.4	the Earth in the Mollweide projection. The value of the order l and	
	degree m is shown above each panel. Negative amplitudes are light	
	and positive amplitudes dark.	314
19.5	The Bessel functions $J_0(x)$ and $J_2(x)$ and their approximations	
	from (19.54) in thinner lines. Note that the approximation for	
	smaller values of x is better for $m = 0$ than for $m = 2$.	321
19.6	An expanding wavefront with radius r on a flat surface. This could	
	be the model for a resonance in a shaken cup of coffee, or a drum	
	struck in the center.	321
19.7	An expanding wavefront on a spherical surface at an angle θ	
	from the source. These wavefronts could describe the propagation	
	of infrasound in the atmosphere, generated by the impact of a	
	meteorite on the north pole.	324
19.8	Seismograms from stations in the global seismic network IU after	
	the Great Tohoku Earthquake of March 11, 2011. The zig-zagging	
	pattern represents surface waves circling the Earth. Station ANMO,	
	used in the next section, is at an epicentral distance of 83 degrees.	326
19.9	Amplitude spectrum of the vertical component of the ground	
	motion at a seismic station ANMO, New Mexico (USA), after the	
	Great Tohoku Earthquake of March 11, 2011. The numbers $_{n}S_{l}$	
	denote the different spheroidal normal modes of the Earth.	330
19.10	The location of the poles and the integration path in the complex	
	ω -plane. In the left-hand panel poles on the real axis are located on	
	the integration path at $\pm \omega_n$. The right-hand panel shows the poles	
	after a slight anelastic damping is introduced.	331
19.11	A single layer of thickness H and velocity c_1 in between two	
	homogeneous half-spaces with velocity c_0 .	333
19.12	Vertical component of the ground motion at Hillside Junior High	
	School in Boise, Idaho, after an earthquake in Costa Rica. This	
	station is part of a school network of TC1 seismometers described	
	in Section 9.4. The time is given in Coordinated Universal Time (in	
	French "Temps Universel Coordonné," UTC), and the amplitude is	
	in arbitrary units.	336
19.13	Contour plot of the function $ F(k) $ for a high-velocity layer with	
	velocity $c_1 = 8.4$ km/s and a thickness $H = 15$ km which is	
	embedded between two half-spaces with velocity $c_0 = 8$ km/s for	
	waves with a frequency of 5 Hz.	338
	. a contait a frequency of o fill.	220

List of figures

xiii

19.14	Seismic waves recorded in Wellington (station SNZO) after an	
	earthquake in the Tonga-Kermadec subduction zone, organized	
	in narrow frequency bands. Note how the waves with a higher	
	frequency appear to arrive faster in Wellington than the ones with	
	a lower frequency.	340
19.15	Geometry of an oscillating mass that is coupled to a spring and a wire.	341
19.16	Sketch of the force exerted by the wire on the mass.	342
20.1	Gravity field over the Chicxulub impact crater on the northern	
	coast of Yucatan (Mexico), courtesy of M. Pilkington and A.	
	R. Hildebrand. The coastline is shown by a white line, and the	
	vertical and horizontal axes are latitude and longitude in degrees.	
	respectively. The gray scale represents the magnitude of the	
	horizontal gradient of the Bouguer gravity anomaly (details are	
	given by Hildebrand et al., 1995).	346
20.2	Geometry of the upward continuation problem. A mass anomaly	
_0	(in grav) leaves an imprint on the gravitational potential at $z = 0$.	
	The upward continuation problem states how the potential at the	
	surface $z = 0$ is related to the potential $V(x, z)$ at greater height.	348
20.3	Earth's geoid, based on data from the International Centre for	0.0
2010	Global Earth Models. The grevscale indicates deviations from the	
	Earth's reference ellipsoidal shape	351
20.4	Two opposite charges that constitute an electric dipole	359
20.5	The definition of the monopole, dipole, and quadrupole in terms of	007
20.0	electric charges	362
20.6	The decomposition of a binary star in a gravitational monopole	202
20.0	and a gravitational quadrupole	362
20.7	Definition of the integration variable \mathbf{r}' within the mass and the	502
20.7	observation point r outside the mass	363
20.8	Definition of the angles Ψ_i between the observation point r and the	505
2010	eigenvectors \mathbf{v} of the inertia tensor \mathbf{T}	366
20.9	Definition of the moments of inertia A and C for an Earth with	200
20.7	cylindrical symmetry around the rotation (<i>z</i> -)axis	369
21.1	A European roulette wheel with alternating black and dark grey	207
21.1	slots and a light grey slot with the number ()	373
21.2	The probability density function for a uniform distribution with	010
	$a = 0.536$ and $b = 7.464$, which corresponds to mean $\mu = 4$ and	
	standard deviation $\sigma = 2$. Values within one standard deviation	
	from the mean are shaded.	376
		210

xiv

21.3	The probability density function for a normal distribution with	
	mean $\mu = 4$ and standard deviation $\sigma = 2$. Values within one	
	standard deviation from the mean are shaded.	377
21.4	The probability density of m random walks with 250 steps from the	
	origin. For large values of <i>m</i> , this approximates a two-dimensional	
	Gaussian with a zero mean and a variance of 250, describing the	
	2D diffusion of these random walkers.	388
21.5	The probability density function for a Poisson distribution with	
	mean $\mu = 4$ and standard deviation $\sigma = 2$. Values within one	
	standard deviation from the mean are in lighter gray.	391
22.1	Schematic of a sinkhole with mass M centered at a depth of r	
	below the surface.	399
22.2	Data misfit versus model size, as a function of the damping parameter.	405
22.3	Iterative linear inversions to solve the nonlinear problem of a	
	sinkhole of mass (left) and depth (right). The starting values were	
	$M_0 = 6 \times 10^5$ kg and $r_0 = 10$ m, while the true sinkhole is at	
	$M = 5 \times 10^5$ kg at $r = 15$ m depth.	411
22.4	Iterative linear least-squares inversions to solve the nonlinear	
	problem of a sinkhole of mass $M = 5 \times 10^5$ kg at $r = 15$ m depth,	
	from noisy data.	412
23.1	The polynomial $x^3 - 4x^2 + 4x$ (thick solid line) and the lines	
	$\epsilon = 0.15$ (dotted line) and $\epsilon = -0.15$ (dashed line).	417
23.2	Decomposition of the total wave field (thick solid line) in the	
	unperturbed wave, the single scattered wave, the double scattered	
	wave, and higher-order scattering events. The total Green's	
	function G is shown by a thick line, the unperturbed Green's	
	function G_0 by thin lines, and each scattering event by the	
	heterogeneity <i>n</i> is indicated by a black circle.	424
23.3	Wavefronts as the surfaces of constant travel time τ (solid lines),	
	and the rays that are the curves perpendicular to the travel time	
	surfaces (dashed lines). The unit vector $\hat{\mathbf{n}}$ is perpendicular to the	
	wavefronts.	428
23.4	The function $y = \sqrt{\epsilon}$ approaches a vertical line near the origin.	439
24.1	The function $F_n(u)$ normalized by its maximum value for $n = 2$	
	(dashed line), $n = 10$ (thin solid line), and $n = 20$ (thick solid line).	447
24.2	The function $F_{20}(u)$ normalized by its maximum value (thick solid	
	line), the parabolic approximation (dashed line), and the Gaussian	
	approximation (thin solid line).	448
24.3	The function $\Re e\left(\exp\left(ix^2\right)\right) = \cos(x^2)$ for $-6 < x < 6$. The	
	vertical axis runs from -1 to 1.	451

List of figures

	List of figures	XV
24.4 The fu	unction $\Re e(\exp(iz^2))$ in the complex plane. For clarity the ential growth has been diminished by a factor 10, by plotting	
the fur	nction $e^{-0.1 \times 2xy} \cos(x^2 - y^2)$.	452
24.5 The fu	unction $\Re e\left(\exp\left(iz^2\right)\right)$ in the complex plane along the lines	
x = y	(solid line) and $x = -y$ (dashed line).	452
24.6 The be	ehavior of the function $exp(iz^2)$ in the complex plane.	453
24.7 Defini	tion of the integrations paths for the steepest descent integration.	454
24.8 Part of	f the wave field from an earthquake in Costa Rica recorded	
at Hill	side Junior High School (Figure 19.12), highlighting the	
disper	sive Rayleigh-wave arrival.	458
24.9 Defini	tion of the geometric variables for a wave from source point	
\mathbf{r}_s that	t reflects at point r in a plane to receiver point \mathbf{r}_r .	462
24.10 The po	osition of an image source that is the mirror image of the real	
source	e at position \mathbf{r}_s .	465
25.1 Heat f	low and temperature gradient in an isotropic medium	
(left-h	and panel) and in a medium consisting of alternating layers	
of cop	per and styrofoam (right-hand panel).	474
25.2 Coolir	ng model of the oceanic lithosphere of thickness H ,	
spread	ling horizontally with speed U . At the mid-oceanic ridge	
(x = 0))) and at the bottom of the lithosphere the temperature is that	
of the	mantle $T = T_m$. At the surface, the temperature $T = 0$.	477
25.3 Bathy	metry of the Atlantic Ocean: water depth at the mid-oceanic	
ridge	running approximately north-south is smaller than away	
from t	he ridge.	479
25.4 The di	irection of momentum transport within a large-scale flow by	
small-	scale motions.	480
26.1 Defini	tion of a vector v in the old (solid) and new (dashed)	
coordi	nate system.	486
26.2 The sh	hape of a rock before (dashed lines) and after (solid lines)	
shear	deformation.	492
26.3 The sa	ame deformation as in the previous figure, but the rotational	
compo	onent is removed. The sample prior to deformation is shown	
by the	dashed lines, the deformed sample by the solid lines.	494
26.4 The de	eformation of the previous figure seen by a geologist who	
uses a	coordinate system that is rotated through 45 degrees.	495
26.5 A circ	cular current in the horizontal plane induces a vertical	
magne	etic field B .	503
26.6 The de	eformation u of two nearby points r and $\mathbf{r} + \delta \mathbf{r}$.	507
26.7 The tr	action acting on a surface perpendicular to the x -direction.	509

xvi	List of figures	
27.1	Definition of the surface area S , height h , circumference C , and	
	radius r of a can.	519
27.2	Top view of a can with its radius a function of the angle φ .	521
27.3	The shortest path of a flight from Amsterdam to San Francisco on	
	a map with a Mercator projection.	523
27.4	The unperturbed curve $\theta(\varphi)$ that joins two points on the sphere	
	(solid line), the perturbation $\epsilon(\varphi)$, and the perturbed curve (dashed	
	line).	524
27.5	The great-circle as the intersection of the surface of the sphere	
	with a plane that is spanned by the center of the sphere, and the	
	two points that define the great-circle (indicated by black circles).	527
27.6	The direction of the vectors ∇C and ∇V at two points on a ball.	
	The dashed lines indicate the equipotential surfaces where	
	V = const.	535
27.7	The geometry of a wire suspended between two points.	541
27.8	The chain in the background and the arch in the foreground have	
	the shape of a catenary. The arch consists of blocks of foam that	
	are not glued together.	544
27.9	The balance of the tensional forces and gravity for a suspended	
	wire (left panel), and the balance between tensional forces and the	
	gravitational force for an arch (right panel).	544

Tables

18.1	Asymptotic behavior of the Bessel and Neumann functions	
	of order zero.	page 292
19.1	The lowest roots of the Bessel function $J_m(x)$, these are the values	5
	of x for which $J_m(x) = 0$.	309
19.2	The lowest-order spherical harmonics $Y_{lm}(\theta, \varphi)$.	313
21.1	The average number of earthquakes occurring per year as a	
	function of magnitude as given by the U.S. Geological Survey.	
	Data from http://earthquake.usgs.gov/	
	earthquakes/search/.	392
21.2	Left column: the number of random walks used to construct	
	Figure 21.4. Second column: (n) the number of walks that visit a	
	cell at $(x, y) = (5, 5)$ with width and height $dx = dy = 1$. Third	
	column: the standard deviation in the number of visits $\sigma = \sqrt{n}$	
	predicted by equation (21.89). Right column: the relative error in	
	the number of visits.	393
21.3	The probabilities of carrying a disease when testing either positive	;
	or negative.	395
22.1	The goodness of fit of the model represented in terms of χ_i^2 , for	
	iterations $i = 0, 1, 2, \text{ and } 3$.	412
24.1	The probability $P(y < \sigma/2)$ and various approximations	
	to this probability.	445
24.2	The probability $P(y > 3\sigma)$ and two approximations to this	
	probability.	446
24.3	The values of $n!$ and its approximation by Stirling's formula for	
	different values of <i>n</i> .	450

© in this web service Cambridge University Press

About the authors

Roel Snieder.

Roel Snieder holds the Keck Foundation Endowed Chair of Basic Exploration Science at the Colorado School of Mines. In 1984 he received a master's degree in geophysical fluid dynamics from Princeton University, and in 1987 a PhD in seismology from Utrecht University. For this work he received the Vening Meinesz award from the Netherlands Organization for Scientific Research. In 1988 he worked as a postdoctoral Fellow in the "Equipe de Tomographie Géophysique" at the Université Paris VI and was appointed in 1989 as associate professor at Utrecht University. In 1993 he was promoted to full professor of seismology at Utrecht University, where from 1997 to 2000 he served as dean of the Faculty of Earth Sciences and spearheaded the integration of the research of the department with the Netherlands Institute of Applied Geoscience TNO. Roel served on the editorial boards of Geophysical Journal International, Inverse Problems, Reviews of Geophysics, and the European Journal of Physics. In 2000 he was elected as Fellow of the American Geophysical Union for important contributions to geophysical inverse theory, seismic tomography, and the theory of surface waves. He is author of the textbook The Art of Being a Scientist, published by Cambridge University Press. He teaches

XX

About the authors

his class "The Art of Science" to universities and industry. From 2003 to 2011 he was a member of the Earth Science Council of the U.S. Department of Energy. In 2008 Roel worked for the Global Climate and Energy Project at Stanford University on outreach and education on global energy. In 2008 he was a founding member of the humanitarian organization "Geoscientists Without Borders." Since 2010 he is director of the Center for Professional Education at the Colorado School of Mines. In 2011 he was elected as Honorary Member of the Society of Exploration Geophysicists. He received three teaching awards at the Colorado School of Mines. Roel was a volunteer firefighter from 2000 to 2014 and served as fire chief with Genesee Fire Rescue. For more information, visit his website http://www.mines.edu/~rsnieder.

Kasper van Wijk

Kasper van Wijk is a senior lecturer in the physics department at the University of Auckland in Auckland, New Zealand. Kasper is the director of the Physical Acoustics Laboratory at the University of Auckland (http://physics.auckland.ac.nz/research/pal). He studied geophysics in Utrecht (in the Netherlands) from 1991 to 1996, where he specialized in inverse theory. After teaching outdoor education in the mountains of Colorado, Kasper obtained his PhD in the Department of Geophysics at the Colorado School of Mines. After completing his PhD-degree, Kasper became a research faculty member at Colorado School of Mines. In 2006 Kasper van Wijk joined the geosciences department at Boise State University as an assistant professor. In 2011 he was awarded tenure and promoted to associate professor. In 2012, he moved to the Department of Physics at the University of Auckland, New Zealand, as a senior lecturer. His research interests center around elastic wave propagation in disordered media with applications ranging from medical imaging to global earth seismology. Kasper serves on the editorial board for the journal *Geophysics* and the *European Journal of Physics*.

About the authors

He serves on the continuing education committee, as well as on the publications committee of the Society of Exploration Geophysicists. Kasper (co-)organized and taught geophysical field camps in Colorado, Oregon, and Thailand. His outreach efforts in Seismometers in Schools have exposed kids from 8–80 to the dynamic processes of our Earth.

xxi