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1 QuantumMechanics

According to quantum mechanics, at a given moment in time t, a system of particles is

described by a probability amplitude function, a complex-valued function ψ(x1, x2, . . . ; t)

of the (point) particle positions. The probability amplitude, which is also referred to as the

wave function, has the significance that its absolute square |ψ(x1, x2, . . . ; t)|2 at the time in

question determines the probability for the event: particles at the specified positions. The

description in terms of the wave function is complete, i.e. the dynamics of the particles is

determined by a differential equation that is first order in time. The rate of change in time

of the wave function is specified in terms of the wave function at the time in question and

an operator, the Schrödinger equation,

i�
∂ψ(x1, x2, . . . ; t)

∂t
= Ĥψ(x1, x2, . . . ; t). (1.1)

The linear operator Ĥ is called the Hamiltonian and is ultimately determined by exper-

imental knowledge. The symbol � is a constant of nature, and as such also empirically

determined. A “hat” has been introduced to signify that a quantity is an operator, i.e. it

operates on a function, thereby turning it into another function, and standard notation for

the result of an operator operating on a function has been used, Ĥψ(x, t) ≡ (Ĥψ)(x, t).

As an example, for a free particle of mass m, the Hamiltonian is the spatial differential

operator

Ĥ0 = − �
2

2m

∂2

∂x2
, (1.2)

where

∂2

∂x2
= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (1.3)

Various notations for the Laplacian or Laplace operator will be employed:

∂2

∂x2
= ∇2

x = ∇x · ∇x = �x, ∇x ≡ ∂

∂x
. (1.4)

In accordance with its probabilistic interpretation, at any moment in time, a proper wave

function satisfies the normalization condition

∫

dx1 · · ·
∫

dxN |ψ(x1, x2, . . . , xN ; t)|2 = 1, (1.5)

since the particles are assumed with certainty to be somewhere in space.
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2 QuantumMechanics

The free particle Schrödinger equation is analogous to a linear wave equation, and has

the plane wave solutions

ψk(x, t) = A eik·x−i(�k2/2m)t (1.6)

specified in terms of a wave vector k. These are unnormalized solutions from which nor-

malized solutions, i.e. wave packets, can be obtained by superposing solutions of different

wave vectors (as constructed in Chapter 2).

We could at this point get right on with solving the Schrödinger equation for the phys-

ical problems of interest, having the Hamiltonian handed to us through the knowledge

obtained by our forefathers.1 A reader inclined to such a “tell me like it is” approach can

jump directly to Chapter 2 and use the Schrödinger equation to study quantum tunneling or

to the following chapters studying the properties of metals and semiconductors. However,

such an “I believe in the Schrödinger equation and all its consequences” approach does not

present the quantum mechanical concepts in the most instructive way. Our intuition is built

on our direct experience with large objects, and there is no way in which we can directly

experience quantum behavior by our senses. In fact, quantum mechanics is at odds with

common sense, and unintelligible in terms of the way the macroscopic world behaves as

we perceive directly with our senses and understand by the empirically confirmed laws of

classical physics. Foremost, we note that, in quantum mechanics, probability has entered

in a fundamental way, i.e. chance is a feature of how the world works. In general, for

given identical circumstances, it is impossible to predict what will happen in the future:

quantum mechanics is probabilistic in nature. Quantum mechanics only provides the odds

for different outcomes. We also observe the strange feature that, in contrast to any physi-

cal statement, a description in terms of complex numbers is demanded. For the interested

reader, it is shown in Appendix A that the Schrödinger equation can be arrived at from a

few basic principles.

1.1 Hamiltonian

Consider the Schrödinger equation for a single particle of mass m in a potential,

i�
∂ψ(x, t)

∂t
=

(

− �
2

2m

∂2

∂x2
+ V(x, t)

)

ψ(x, t). (1.7)

The Hamiltonian, specifying the Schrödinger equation, then consists of the Laplacian and

a multiplication operator, the space- and time-dependent potential, V(x, t), multiplying the

wave function,

Ĥ ≡ Ĥ(t) = − �
2

2m

∂2

∂x2
+ V(x, t). (1.8)

The real scalar potential, V(x, t), describes the fact that the particle is not free, but at dif-

ferent locations experiences different environments, which in addition can be changing

1 In the same vein, you have probably solved Newton’s equation having the expression for the gravitational force

being handed to you.
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3 1.2 Free Propagator

in time. As shown in Appendix A, the potential is the potential energy the particle has

according to classical mechanics, and the gradient of the potential equals the classical

force, F(x, t) = −∇V(x, t).

That normalization at one instant of time,

∫

dx |ψ(x, t)|2 = 1, (1.9)

guarantees it at all times is a defining property of a Hamiltonian. If a function is normal-

ized, it vanishes spatially at infinity in order for the normalization integral to be finite.

For arbitrary normalized functions ψ(x, t) and φ(x, t), two partial integrations, where the

boundary terms at infinity vanish, transfer the Laplacian to the other function,

∫

dx φ∗(x)

(

∂2ψ(x)

∂x2

)

=
∫

dx ψ(x)

(

∂2φ(x)

∂x2

)∗
, (1.10)

and we have used that differentiation and complex conjugation are interchangeable opera-

tions. Since the potential is a real function, it can trivially be moved as a factor under the

complex conjugation, and the Hamiltonian, Eq. (1.8), is seen to have the property

∫

dx φ∗(x, t) Ĥψ(x, t) =
∫

dx ψ(x, t)(Ĥφ(x, t))∗. (1.11)

An operator having the property (1.11) is called a hermitian operator.

If ψ(x, t) is a solution of the Schrödinger equation (1.7), then it follows that

d

dt

∫

dx |ψ(x, t)|2 =
∫

dx

(

ψ∗(x, t)
∂ψ(x, t)

∂t
+ ψ(x, t)

∂ψ∗(x, t)

∂t

)

= 1

i�

⎛

⎝

∫

dx ψ∗(x, t) Ĥψ(x, t) −
∫

dx ψ(x, t)Ĥ∗ψ∗(x, t)

⎞

⎠

= 0, (1.12)

the last equality following from Eq. (1.11).2 Therefore, if at one instant the wave function

is normalized, the Schrödinger dynamics guarantees that it stays normalized at all times as

a consequence of the Hamiltonian being hermitian.

1.2 Free Propagator

The fundamental solution of a Schrödinger equation, the propagator of the particle, is the

solution that specifies the time evolution of an arbitrary wave function. The expression for

2 For the considered case of a scalar potential, the Hamiltonian is real, Ĥ∗ = Ĥ. For the case of a vector potential,

this property is lost, but the Hamiltonian is still hermitian as discussed in Exercise A.2 on page 345.
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4 QuantumMechanics

the propagator for a free particle will be obtained here by solving the Schrödinger equation.

For this we employ Fourier transformation (discussed in Appendix C).

Consider first, for simplicity, the one-dimensional case. Given a wave function, ψ(x, t),

the Fourier-transformed function with respect to the spatial variable is

ψ(k, t) = 1

2π

∞
∫

−∞

dx e−ixkψ(x, t) (1.13)

and the inverse Fourier transformation is

ψ(x, t) =
∞

∫

−∞

dk eikxψ(k, t). (1.14)

Inserting the Fourier expansion of the wave function, Eq. (1.14), into the free particle

Schrödinger equation,

i�
∂ψ(x, t)

∂t
= − �

2

2m

∂2ψ(x, t)

∂x2
, (1.15)

gives the equation

∞
∫

−∞

dk eixk

(

i�
∂ψ(k, t)

∂t
− �

2k2

2m
ψ(k, t)

)

= 0. (1.16)

The Fourier representation is unique (the Fourier transform of the zero function is the

zero function), and the Fourier transform of the wave function thus satisfies the first-order

differential equation

i�
∂ψ(k, t)

∂t
= �

2k2

2m
ψ(k, t). (1.17)

The task of solving Eq. (1.17) thus amounts to finding the function that, when differentiated

with respect to time once, gives back the same function multiplied by a number, here the

imaginary number −i�k2/2m. This is the defining mark of the exponential function, and

the solution of Eq. (1.17) is

ψ(k, t) = ak e−i(�k2/2m)t, (1.18)

where ak according to Eq. (1.13) is determined by

ak = ei(�k2/2m)tψ(k, t) = ei(�k2/2m)t 1

2π

∞
∫

−∞

dx e−ixkψ(x, t), (1.19)

the formula being valid for arbitrary time t.

The general solution of the free particle Schrödinger equation, Eq. (1.14), is thus a

superposition of the functions given by Eq. (1.6), the plane wave solutions themselves

corresponding to the choice ak = Aδ(k − k0).

Assuming the wave function at time t′, ψ(x, t′), is known, the Fourier transform, ψ(k, t′),
at the same instant is known, and thereby the prefactor

ak = ei(�k2/2m)t′ψ(k, t′). (1.20)
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5 1.2 Free Propagator

Inserting this expression into Eq. (1.18), the Fourier transform is then specified at all

times by

ψ(k, t) = ψ(k, t′) e−i(�k2/2m)(t−t′), (1.21)

where

ψ(k, t′) = 1

2π

∞
∫

−∞

dx e−ixkψ(x, t′). (1.22)

The Fourier transform of a free particle wave function, Eq. (1.21), thus has a simple time

dependence: an exponential with a phase varying linearly in time.

Inserting the expression (1.21) into Eq. (1.14) gives

ψ(x, t) =
∞

∫

−∞

dk eikxψ(k, t′) e−i(�k2/2m)(t−t′)

=
∞

∫

−∞

dk eikxe−i(�k2/2m)(t−t′) 1

2π

∞
∫

−∞

dx′ e−ix′kψ(x′, t′), (1.23)

the last equality following from Eq. (1.22). Interchanging the order of the integrations gives

ψ(x, t) =
∞

∫

−∞

dx′ K0(x, t; x′, t′) ψ(x′, t′), (1.24)

where

K0(x, t; x′, t′) = 1

2π

∞
∫

−∞

dk eik(x−x′)−i(�k2/2m)(t−t′). (1.25)

Since ψ(x, t) is a solution of the free particle Schrödinger equation, so is the kernel, K0,

according to Eq. (1.24). The Gaussian integral, Eq. (1.24), is performed by completing the

square (see Appendix B), giving the expression

K0(x, t; x′, t′) =
√

m

2πi�(t − t′)
exp

(

i

�

m(x − x′)2

2(t − t′)

)

. (1.26)

According to Eq. (1.24), the kernel, K0, propagates the arbitrary initial state, and is there-

fore called the propagator; here for the case of a free particle, it is the free propagator. Free

quantum dynamics, initially described by the Schrödinger differential equation, has thus

been inverted to be described by an integral equation.3

In three spatial dimensions, we simply have to do three-fold exactly the same calculation

as above due to the multiplicative character of Fourier transformation:

exp(−ix · k) = exp(−ik1x − ik2y − ik3z) = exp(−ik1x) exp(−ik2y) exp(−ik3z).

3 Propagation of a wave function by a kernel is generally valid: the fundamental equation of quantum dynamics

arrived at in Appendix A, Eq. (A.12). The propagator is the basic quantum mechanical quantity, the quantum

concept surviving even in relativistic quantum theory.
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6 QuantumMechanics

The general expression for the free particle propagator is therefore (here specified for d

spatial dimensions)

K0(x, t; x′, t′) =
(

m

2π�i(t − t′)

)d/2

exp

(

im

2�

(x − x′)2

t − t′

)

. (1.27)

Exercise 1.1 Show by explicit differentiation that the free propagator K0(x, t; x′, t′) satisfies

the free particle Schrödinger equation.

Exercise 1.2 Show that the plane wave solutions of the free particle Schrödinger equation

(1.6), though non-normalized, are propagated by the free propagator, Eq. (1.27), i.e.

eik·x−i(�k2/2m)t =
∞

∫

−∞

dx′ K0(x, t; x′, 0) eik·x′
. (1.28)

Exercise 1.3 Consider the free evolution of the Gaussian wave packet (consider the one-

dimensional case for simplicity) which at time t = 0 is centered around position x = 0 and

has a width δx (the parameters δx and p are real numbers),

ψ0p(x, t = 0) =
(

1

2πδx2

)1/4

exp

(

− x2

4δx2
+ i

�
px

)

. (1.29)

Show that this initial state is normalized. Obtain, by using Eq. (1.24), the wave function

and probability density at times t > 0.

Solution

The integration to be performed is Gaussian and obtained by completing the square

ψ0p(x, t) =
∞

∫

−∞

dx′ K0(x, t; x′, 0) ψ0p(x′, 0)

=
(

δx2

2πδx4
t

)1/4

exp

(

im

2�t
x2

)

exp

(

− imδx2

2�t

(x − x0(t))2

δx2
t

)

, (1.30)

where

δx2
t = δx2

(

1 + i�t

2mδx2

)

, x0(t) = p

m
t. (1.31)

The probability density at time t then becomes

P0p(x, t) = |ψ0p(x, t)|2 =
√

1

2π�x2
t

exp

(

− (x − x0(t))2

2�x2
t

)

, (1.32)

where

�x2
t = |δx2

t |2
δx2

= δx2

(

1 +
(

�t

2mδx2

)2
)

. (1.33)

www.cambridge.org/9781107084940
www.cambridge.org


Cambridge University Press
978-1-107-08494-0 — Physics of Electronic Materials
Jørgen Rammer 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

7 1.3 Probability Current

As time goes by, the probability density keeps its Gaussian shape, but the profile does

not propagate rigidly in space, instead experiencing wave packet spreading: its height

decreasing and width increasing in concordance with the constraint of normalization of

the probability distribution. The center of the Gaussian wave packet, x0(t) = pt/m, moves

with the constant velocity, p/m, the velocity with which a free particle of mass m and

momentum p moves according to Newton’s equation. Knowing the free propagator, we

could turn to a discussion of the concept of momentum, or equivalently velocity, in quan-

tum mechanics. However, this is postponed until needed, the details being relegated to

Appendix G.

1.3 Probability Current

In view of the conservation of probability, Eq. (1.12), a diminishing probability in time

in some region of space means that probability has streamed out of that volume. The

Schrödinger equation identifies the probability current density describing this dynamics.

The time derivative of the probability density, P(x, t) = |ψ(x, t)|2 = ψ(x, t) ψ∗(x, t), where

∗ denotes complex conjugation,

∂P(x, t)

∂t
= ψ∗(x, t)

∂ψ(x, t)

∂t
+ ψ(x, t)

∂ψ∗(x, t)

∂t
(1.34)

becomes, according to the Schrödinger equation,

∂P(x, t)

∂t
= 1

i�
[ψ∗(x, t)Ĥ(t)ψ(x, t) − ψ(x, t)(Ĥ(t))∗ψ∗(x, t)]. (1.35)

Consider the case of a particle in a scalar potential, i.e. described by the Hamiltonian in

Eq. (1.8). The two terms in Eq. (1.35) containing the potential cancel each other, leaving

∂P(x, t)

∂t
= i�

2m
(ψ∗(x, t) �xψ(x, t) − ψ(x, t)�xψ

∗(x, t))

= − �

2im
∇x · (ψ∗(x, t)∇xψ(x, t) − ψ(x, t)∇xψ

∗(x, t)), (1.36)

where the last equality is a trivial rewriting, in terms of the divergence, as the additional

two generated terms cancel each other. Introducing the vector field (which we note is real,

S∗ = S)

S(x, t) = �

2im
(ψ∗(x, t) ∇xψ(x, t) − ψ(x, t)∇xψ

∗(x, t))

= �

2im
ψ∗(x, t)∇xψ(x, t) + c.c. (1.37)

for a particle in the state described by the wave function ψ(x, t), Eq. (1.36) takes the form

of a continuity equation,
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8 QuantumMechanics

∂P(x, t)

∂t
+ ∇x · S(x, t) = 0. (1.38)

Integrating Eq. (1.38) over volume �, and using Gauss’s theorem from vector calculus

turns the divergence term into a surface integral4

d

dt

∫

�

dx P(x, t) =
∫

�

dx
∂P(x, t)

∂t
= −

∫

�

dx ∇ · S(x, t) = −
∫

S

ds · S(x, t),

(1.39)

where S is the surface enclosing the volume �, and ds = ds n is the directed surface

element, where n is a unit vector normal to the surface area element, ds, directed outward

from the enclosed volume. Equation (1.39) expresses the fact that the change in time of

the probability for the particle to be in volume � at the time in question is expressed in

terms of the net flow of the vector field S(x, t) through the surface enclosing the volume.

The vector field S(x, t) therefore has the meaning of a probability current density or flux,

i.e. �s n · S(x, t) is the probability per unit time that the particle at time t will pass through

the small surface at position x with area �s. If n · S is positive, the flow is in the direction

specified by n, and if negative the flow is opposite, i.e. out- or in-flow. Since |ψ(x, t)|2
is a probability, S(x, t) is also an average quantity, the average particle current density.

According to Eq. (1.36), the probability current density is generated by the kinetic energy

part of the Hamiltonian, the potential only entering implicitly through the wave function,

a solution of the Schrödinger equation where the potential is present.5 The probability

current density is a measurable quantity. Just as the probability statements of the wave

function are obtainable by repeated measurements, so is the probability current density

by measuring the particle flux in terms of, for example, the blackening of photographic

emulsions constituting the surface elements of interest.

Even for non-normalizable wave functions, such as the plane wave equation (1.6) cor-

responding to a state of a free particle, Eq. (1.39) renders |ψ |2 a measure of the relative

probability density for bounded spatial regions.

Writing the wave function in terms of its modulus and phase, two real functions, ψ =
|ψ |ei�, the expression in Eq. (1.37) becomes

S(x, t) = �

m
|ψ(x, t)|2 ∇x�(x, t). (1.40)

1.4 Stationary States and Energy

For an isolated system, the Hamiltonian being time-independent, the Schrödinger equa-

tion is now shown to have solutions describing situations where all physical properties are

4 If unfamiliar with Gauss’s theorem, then first do the calculation in one spatial dimension where the boundary

terms appear immediately by the fundamental theorem of integration. Then the three-dimensional case where

� is a box corresponds to doing the partial integration three times.
5 In the case of a vector potential, its influence will in addition enter explicitly in the probability current density

as discussed in Exercise A.2 on page 345.
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9 1.4 Stationary States and Energy

independent of time, a stationary state of the system. In particular, the probability density is

time-independent in a stationary state, and, for a single particle |ψ(x, t)|2 = P(x), nothing

happens in the whereabouts of the particle as time passes. A stationary state of the particle

must thus be described by a function whose time dependence can only occur in the phase,

ψ(x, t) =
√

P(x) ei�(x,t), (1.41)

where so far � can be an arbitrary but real function. The probability current density in a

stationary state is, according to Eq. (1.40),

S(x, t) = �

m
P(x)∇x �(x, t). (1.42)

For a stationary state where no physical properties are to change in time, the probability

current density must also be time-independent, which then requires that the gradient of

�(x, t) be independent of time, and �(x, t) therefore has the form (the minus sign just for

convenience)

�(x, t) = ϕ(x) − f (t), (1.43)

where ϕ and f are real functions in view of � being real.6 The wave function of a stationary

state is thus the product of independent spatial and temporal parts,

ψ(x, t) =
√

P(x) eiϕ(x)e−if (t). (1.44)

The time derivative is

i�
∂ψ(x, t)

∂t
= �ḟ (t) ψ(x, t) (1.45)

and a stationary state function is a solution of the Schrödinger equation only if (dividing

out the overall factor eif (t))

�ḟ (t)
√

P(x) eiϕ(x) = Ĥ
√

P(x) eiϕ(x). (1.46)

Since the right-hand side of the equation is independent of time, the time derivative of f (t)

must be a constant, and therefore

f (t) = r1t + r2, (1.47)

where r1 and r2 are real numbers. According to Eq. (1.46), a stationary state is thus

described by a wave function of the form7

ψE(x, t) = ψE(x) e−(i/�)Et, (1.48)

where E is a real number, E ≡ r1�, and ψE(x) =
√

P(x) eiϕ(x) is determined by

ĤψE( x) = EψE(x). (1.49)

6 The other option, �(x, t) = −f (t)g(x) + ϕ(x), ∇x g(x) = 0, reduces to the former case as the constraint on g(x)

demands it to be constant in space, g(x) = c.
7 In view of its physical interpretation, a wave function is not uniquely defined, but can always be subjected to a

phase factor change, ψ → ψ eiϕ , where the phase, ϕ, can be any real number. The state of a physical system

is thus properly represented by a so-called ray, the (equivalence) class of wave functions eiϕψ , differing only

by an overall phase factor of modulus one (with respect to which the observable quantities, |ψ |2 and S, are

invariant).
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10 QuantumMechanics

The spatial part of the wave function for a stationary state is a solution of the so-called time-

independent Schrödinger equation, an eigenfunction of the Hamiltonian corresponding to

an eigenvalue E.

The real number E determines the time dependence of the stationary state at all times.

Stationary states are the only solutions of the Schrödinger equation whose time dependence

is a phase factor with a phase linear in time and characterized by a single real number, and

we shall call this conserved quantity, or constant of motion, the energy of the particle in

the stationary state in question. A particle in a stationary state would, if isolated, stay in

this state of definite energy forever.

The energy eigenfunctions and eigenvalues for a free particle were already encountered

in Eq. (1.6). The kinetic energy is related to the wave vector, k, according to E = �
2k2/2m.

We note that, if momentum p = �k (the de Broglie relation) is associated with the wave

vector of a plane wave, the energy dispersion is identical to that of a classical particle,

E = p2/2m.

For a stationary state, the probability density is constant in time, and since then ∇·S = 0,

the net flow into any volume vanishes, i.e. in-flow equals out-flow. For the stationary free

particle state, Eq. (1.6), the probability current density at each point in space equals

S = �k

m
|A|2 = 1

�

∂E(k)

∂k
|A|2 = ∂E(p)

∂p
|A|2. (1.50)

A solution of a time-independent Schrödinger equation that is real (up to the usual over-

all phase factor) has in the corresponding stationary state, according to Eq. (1.40) or (1.37),

a probability current density that vanishes everywhere.

Shifting a Hamiltonian by a real constant V0, Ĥ → Ĥ + V0, has no physical conse-

quences as it is equivalent to subjecting the wave function to the phase transformation

ψ(x, t) → ψ(x, t) exp(−iV0t/�). If ψ(x, t) is a solution to the Schrödinger equation

described by the Hamiltonian Ĥ, then ψ(x, t) exp(−iV0t/�) is a solution to the Schrödinger

equation described by the Hamiltonian Ĥ + V0. The physical observables, the probabil-

ity density and current density, are identical for either of the wave functions, as the two

wave functions describe the same physical situation. For a stationary state, the change cor-

responds to shifting the energy values by the amount V0, i.e. shifting the zero level from

which energy is measured. The energy value of a quantum state is thus only defined modulo

a constant, i.e. only an energy difference has physical significance in quantum mechanics.

Exercise 1.4 Show that, as a consequence of the Hamiltonian being a hermitian operator,

the energy eigenvalue in Eq. (1.49) must be real.

Exercise 1.5 Show that, for a particle in a bounded potential, V(x) ≥ Vmin, the energy

spectrum is bounded from below, E ≥ Vmin.

Exercise 1.6 Show that ∇ · S = 0 for a stationary state also follows directly from the

time-independent Schrödinger equation.
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