Climate System Dynamics and Modelling

This book presents all aspects of climate system dynamics on all time scales from the Earth's formation to modern human-induced climate change. It discusses the dominant feedbacks and interactions between all the components of the climate system: atmosphere, ocean, land surface and ice sheets. It addresses one of the key challenges for a course on the climate system: students can come from a range of backgrounds. A glossary of key terms is provided for students with little background in the climate sciences, whilst instructors and students with more expertise will appreciate the book's modular nature. Exercises are provided at the end of each chapter for readers to test their understanding. This book will be invaluable for any course on climate system dynamics and modelling and will also be useful for scientists and professionals from other disciplines who want a clear introduction to the topic.

Hugues Goosse is a senior research associate with the Fonds National de la Recherche Scientifique (F.R.S.-FNRS-Belgium) and a professor at the Université catholique de Louvain in Belgium. He teaches climate-related topics to students from a wide range of backgrounds, including physics, geography, engineering, bioengineering, biology, Earth and environmental sciences and philosophy. His research is mainly devoted to the development of climate models, model-data comparisons and the application of models to study past, current and future climate change, analysing both natural variability and the response to human-induced perturbations. He is currently editor and former co–chief editor of the journal *Climate of the Past*. He has contributed to several international programs and assessment reports, in particular, to the fourth and fifth assessment reports of the Intergovernmental Panel on Climate Change.

Climate System Dynamics and Modelling

HUGUES GOOSSE

Université catholique de Louvain

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107445833

 ${\ensuremath{\mathbb C}}$ Hugues Goosse 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United States of America

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloguing in Publication Data Goosse, Hugues, 1971– Climate system dynamics and modelling / Hugues Goosse, Université catholique de Louvain. pages cm Includes bibliographical references and index. ISBN 978-1-107-08389-9 (hardback) – ISBN 978-1-107-44583-3 (pbk.) 1. Climatology–Mathematical models. 2. Climatic changes–Mathematical models. 3. Atmospheric physics–Statistical methods. I. Title. QC874.5.G66 2015

551.601′5118–dc23 2015009564

ISBN 978-1-107-08389-9 Hardback ISBN 978-1-107-44583-3 Paperback

Addition resources for this publication at www.cambridge.org/goosse

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Dominique, Nicolas and Oriane

Contents

Preface Acknowledgements				<i>page</i> xi xiii			
Main Symbols and Acronyms, Including Typical Values							
for Constants							
1	1						
	1.1	Introd	1 2				
	1.2	· · · · · · · · · · · · · · · · · · ·					
		1.2.1	Composition and Temperature	2			
		1.2.2	•	7			
		1.2.3	1	9			
	1.3	The Oc		11			
			Composition and Properties	11			
			Oceanic Circulation	12			
			Temperature and Salinity	15			
	1.4		yosphere	20			
		1.4.1	I I I I I I I I I I I I I I I I I I I	20			
		1.4.2		24			
	1.5		nd Surface and the Terrestrial Biosphere	25			
	Rev	iew Exer	rcises	29			
2	2 Energy Balance, Hydrological and Carbon Cycles						
	2.1	The Ea	rth's Energy Budget	30			
		2.1.1	The Radiative Balance at the Top of the Atmosphere: A Global View	30			
		2.1.2	The Greenhouse Effect	32			
		2.1.3	Present-Day Insolation at the Top of the Atmosphere	35			
		2.1.4	The Radiative Balance at the Top of the Atmosphere:				
			Geographical Distribution	42			
		2.1.5	Heat Storage and Transport	43			
		2.1.6	Energy Balance at the Surface	49			
	2.2	The Hy	/drological Cycle	53			
			Global Water Balance	53			
		2.2.2	Water Balance on Land	54			
		2.2.3	Local Water Balance and Water Transport	57			
	2.3		irbon Cycle	58			
			Overview	58			
			Oceanic Carbon Cycle	59			
		2.3.3	Terrestrial Carbon Cycle	64			

vii

© in this web service Cambridge University Press

viii		Contents			
		2.3.4 Geological Reservoirs	67		
		2.3.5 The Methane Cycle	67		
	Re	view Exercises	70		
:		odelling the Climate System	73		
	3.1		73		
		3.1.1 What Is a Climate Model?	73		
		3.1.2 Types of Models	76		
	3.2		78		
		3.2.1 Energy-Balance Models and Simple Dynamic Systems	78		
		3.2.2 Intermediate-Complexity Models	79		
		3.2.3 General Circulation Models	81		
		3.2.4 Regional Climate Models	82		
	3.3	3.2.5 Statistical Downscaling Components of a Climate Model	84		
	5.5	3.3.1 Atmosphere	85 85		
		3.3.2 Ocean	89		
		3.3.3 Sealce	91		
		3.3.4 Land Surface	93		
		3.3.5 Marine Biogeochemistry	96		
		3.3.6 Ice Sheets	98		
		3.3.7 Aerosols and Atmospheric Chemistry	99		
		3.3.8 Earth System Models: Coupling between the Components	100		
	3.4		101		
		3.4.1 A Simple Example Using the Finite-Difference Method	101		
		3.4.2 Consistence, Convergence, Stability and Accuracy	102		
		3.4.3 Time and Space Discretisations Using Finite Differences	105		
		3.4.4 Spectral Representation, Finite-Volume and Finite-Element Methods	108		
	3.5	5 Model Evaluation	110		
		3.5.1 Testing, Verification and Validation	110		
		3.5.2 Evaluating Model Performance	114		
	3.6	6 Combining Model Results and Observations	121		
		3.6.1 Correction of Model Biases	121		
		3.6.2 Data Assimilation	125 130		
	Review Exercises				
	4 Response of the Climate System to a Perturbation		133		
	4.1		133		
		4.1.1 Notion of Radiative Forcing	133		
		4.1.2 Major Radiative Forcing Agents	135		
		4.1.3 Equilibrium Response of the Climate System: A Definition of Feedback	142		
		4.1.4 Direct Physical Feedbacks	145		
	4 -	4.1.5 Transient Response of the Climate System: Ocean Heat Uptake	148		
	4.2		151		
		4.2.1 Water-Vapour Feedback and Lapse-Rate Feedback	151		
		4.2.2 Cryospheric Feedbacks	154		

CAMBRIDGE

ix	Contents					
		4.2.3 C	loud Feedbacks	155		
		4.2.4 S	oil-Moisture Feedbacks	157		
			dvective Feedback in the Ocean	158		
	4.3		ical, Biogeochemical and Biogeophysical Feedbacks	162		
			oncentration-Carbon and Climate-Carbon Feedbacks	162		
			nteractions between Climate and the Terrestrial Biosphere	168		
			alcium Carbonate Compensation	169		
			nteraction among Plate Tectonics, Climate and the Carbon Cycle	172		
			r of the Most Important Feedbacks	173		
	Re	Review Exercises 174				
			f Climate: Causes and Mechanisms	178		
	5.1			178		
			orced and Internal Variability ime Scales of Climate Variations	178 180		
	5.2		limate Variability	180		
	5.2		l Niño–Southern Oscillation	182		
			lorth Atlantic Oscillation	182		
			outhern Annular Mode	180		
		0.12.10	tlantic Multi-Decadal Oscillation and Pacific Decadal Oscillation	190		
	5.3		Icting Past Climates	190		
	5.5		lecords of Past Climate Changes	191		
			Dating Methods	196		
			n Important Example: Reconstructions Based on Isotopes	200		
	5.4		ince the Earth's Formation	202		
			recambrian Climate	202		
		5.4.2 P	'hanerozoic Climate	205		
		5.4.3 C	enozoic Climate	207		
	5.5	The Last N	Aillion Years: Glacial-Interglacial Cycles	211		
		5.5.1 V	ariations in Astronomical Parameters and Insolation	211		
		5.5.2 T	he Astronomical Theory of Paleoclimates	214		
		5.5.3 G	ilacial-Interglacial Variations in the Atmospheric CO ₂ Concentration	219		
		5.5.4 N	Aillennial-Scale Variability during Glacial Periods	221		
	5.6	The Last D	Deglaciation and the Holocene	224		
		5.6.1 T	he Last Deglaciation	224		
			he Current Interglacial	227		
			he Past 2000 Years	229		
	5.7		-	236		
)bserved Changes	236		
			Petection and Attribution of Recent Climate Changes	237		
	Review Exercises					
		ure Climate	-	247		
	6.1	Scenarios		247		
			he Purpose of the Scenarios and Scenario Development pecial Report on Emission Scenarios (SRES)	247 249		
			r · · · · · · · · · · · · · · · · · · ·			

CAMBRIDGE

X	Contents			
	6.1.3	Representative Concentration Pathways (RCPs)	250	
6.	2 Climat	te Changes over the Twenty-First Century	253	
	6.2.1	Model Ensembles	253	
	6.2.2	Decadal Predictions and Projections	255	
	6.2.3	Changes in Global Mean Surface Temperature	258	
	6.2.4	Spatial Distribution of Surface Temperature Changes	260	
	6.2.5	Spatial Distribution of Precipitation Changes	263	
	6.2.6	Changes in the Ocean and Sea Ice	265	
	6.2.7	Changes in Modes of Variability	267	
	6.2.8	Changes in Climate Extremes	268	
	6.2.9	Changes in the Carbon Cycle	270	
6.	3 Long-	Term Climate Changes	273	
	6.3.1	The Carbon Cycle	273	
	6.3.2	Sea Level and Ice Sheets	275	
	6.3.3	Abrupt Climate Changes	279	
R	Review Exercises		281	
Con	cludino	Remarks	285	
	Concluding Remarks Glossary			
	-	ences and Further Reading	287 317	
	Solutions of the Review Exercises			
	Index			

Preface

The climate has a significant impact on life on Earth as well as on human activities. Temperature and precipitation strongly constrain the type of vegetation that can grow in a particular region. The design and location of houses depend on summer and winter temperatures and also on the probability of flooding. One single, late frost or a heavy hail storm could ruin an entire crop. Since the beginning of humanity, people thus have had to cope with climate and, if possible, to adapt to it. As a consequence, the various human civilisations have observed and tried to understand climate variations. They first provided mythological or religious explanations, often relying on weather lore to obtain forecasts. In parallel, climate has evolved as a science, elaborating more and more sophisticated representations of the observed phenomena. Such a description of climate now involves a very broad range of expertise corresponding to different domains of the sciences, including physics, chemistry, biology and geology.

A comprehensive analysis of all the components of the climate system (i.e., atmosphere, ocean, ice sheets, land surfaces, etc.) and of all the interactions between them is beyond the scope of any course or book. Here I provide only a relatively brief overview of the processes that rule the behaviour of the individual components. More detailed descriptions are provided in meteorology, oceanography and glaciology textbooks, for instance, with some suggestions for reading given in the reference section. *The focus of this book is on the interactions between the different elements of the climate system and on the main feedbacks that govern climate variability on all the time scales. On this basis, the first goal of this book is to analyse the dominant causes of past climate changes and to critically discuss the projections of climate change over the next centuries or millennia.*

Because of the complexity of the system, many analyses devoted to a quantitative estimate of climate change or climate variability rely on the use of comprehensive three-dimensional numerical models. Simple models are also widely applied to underline clearly the fundamental properties of the climate. *The second goal of this book is to give readers the basis on which to develop an understanding of how climate models are built and their specific interests and limitations and to provide key examples of their applications.*

This book is an extended version of an online resource available at www.climate.be/textbook. It was designed originally to support a course proposed to students in their first year of a master's program at the Université catholique de Louvain (Belgium). However, the book has been designed to also be followed by undergraduate students. Because the book covers a wide range of disciplines and is devoted to an audience with different backgrounds, some of the terms or concepts employed may not be familiar to everyone. An extensive

xi

xii

Preface

glossary thus is provided for readers who feel the need for specific explanations. The corresponding terms are highlighted in **bold** in the text. Some sections include limited mathematical developments, but understanding them in detail is not required to follow the main arguments, which are always developed using words or diagrams. More generally, this book includes an extensive index and many cross-references between the various sections where related topics are discussed. This allows for dynamic navigation inside the text that encourages readers to focus on certain specific parts of interest whilst skipping others or leaving them for a later reading.

The references to textbooks and scientific papers have been chosen to provide up-to-date information that is complementary to the material included herein at an adequate level of complexity. Consequently, they do not necessarily correspond to the historical development of the concepts, but interested readers can consult them to gain more insight into the history of the field. The number of references is also strongly variable between the sections, being larger for subjects in rapid development and smaller for subjects that are only briefly discussed in the present framework. Finally, review exercises are available at the end of each chapter. They include questions that provide an overview of the most important elements covered in the corresponding sections so that readers can directly evaluate their understanding of the text.

A comprehensive understanding of climate modelling requires one to perform simulations on one's own. A very useful exercise thus is to code some of the equations proposed in the various sections, starting from the simplest. Because this may require a significant amount of work, some interactive models are proposed online (www.climate.be/climatebook). They are related to the material covered in this book, but they focus on some specific examples. They offer the opportunity to test the influence on model results of changes in parameters or of forcing. Specific quizzes are also available online that can be answered using those models.

Acknowledgements

This book is based on a shorter online version that has been publicly available since 2008. I first want to thank Violette Zunz, Marie-France Loutre, Wouter Lefebvre, Pierre-Yves Barriat and Antoine Barthélemy, without whom the online version and thus this current printed version would not have been possible. Their essential contribution includes the production of several figures as well as very useful suggestions and comments. Furthermore, they took in charge all the technical aspects of the online version. Many of my colleagues have carefully read various sections of this book, or previous versions, and have proposed modifications that have improved the quality of the published material significantly. I would like to thank in particular Jean-Marie Beckers, André Berger, Olivier Boucher, Victor Brovkin, Sally Close, Matt Collins, Elisabeth Crespin, Michel Crucifix, Eric Deleersnijder, Anne de Montety, Anne de Vernal, Svetlana Dubinkina, Mike Evans, Thierry Fichefet, Pierre Francus, Pierre Friedlingstein, Yves Godderis, Jonathan Gregory, Joel Guiot, Ed Hawkins, François Klein, Olivier Lecomte, Ralph Lescroart, Gurvan Madec, Aurélien Mairesse, François Massonnet, Pierre Mathiot, Sébastien Moreau, Hans Renssen, Didier Roche, Yoann Sallaz-Damaz, Andrew Schrurer, Ted Shepherd, Benoit Tartinville, Axel Timmermann, Kevin Trenberth, Stephane Vannitsem, Jean-Pascal van Ypsersele, Koffi Warou and Quizhen Yin. I have benefitted from very constructive advice from Françoise Docq, Marcel Lebrun and Denis Smidts of the Institut de Pédagogie universitaire et des Multimédias of the Université catholique de Louvain (IPM, http://www.ipm.ucl.ac.be). The comments of master's students who have followed my lectures at the Université catholique de Louvain and the suggestions of users of the online version also were very valuable. A book such as this is based on the work of many scientists, and I want to thank them for their contributions and apologise for not being able to give more details on important aspects of climatology in the framework of this introductory study. I specifically want to acknowledge the organisations, publishers and scientists who have allowed me to reproduce their work. The online material has been supported by the Fonds de Développement Pédagogique of the Université catholique de Louvain in the framework of the project 'Réalisation de simulations interactives comme support à l'apprentissage dans le cadre du cours d'introduction à la physique du système climatique et à sa modélisation.'

xiii

© in this web service Cambridge University Press

Main Symbols and Acronyms, Including Typical Values for Constants

0	Albedo
α	Planetary albedo (around 0.3 for present-day conditions)
$lpha_p$	Thermal expansion coefficient (kg m ⁻³ K ⁻¹)
α_T	Concentration–carbon feedback parameter (PgC ppm ^{-1})
β_C	Haline contraction coefficient (kg m^{-3} psu ⁻¹)
$egin{smallmatrix} eta_{S}\ oldsymbol{\delta} \end{split}$	
δ^{13} C	Solar declination (in degrees or radians) Delta value for the relative abundance of ¹³ C in a
0.40	sample (%)
$\delta^{\scriptscriptstyle 18}{ m O}$	Delta value for the relative abundance of 18 O in a
0.0	
10	sample (‰) Radiative forcing (W m ⁻²)
$\Delta Q \\ \Delta R$	Radiative inbalance at the top of the atmosphere (W m^{-2})
$\Delta \kappa$ Δt	Time step
$\Delta t \Delta x$	Spatial step
$\frac{\Delta x}{\epsilon}$	Emissivity of an object
-	Obliquity (=23.45° presently)
\mathcal{E}_{obl}	True anomaly (in degrees or radians)
γ	Climate–carbon feedback parameter (PgC ppm ^{-1})
γ_c	Ocean heat uptake efficiency (W $m^{-2} K^{-1}$)
κ_c	Latitude (on Earth, in degrees or radians)
ϕ	Density (= $1,000 \text{ kg m}^{-3}$ for pure water, 917 kg m ⁻³ for ice,
ρ	around 1 kg m ⁻³ for air at sea-level pressure)
0	Climate resistance (W $m^{-2} K^{-1}$)
$ ho_f$	Solar zenith distance (in degrees or radians)
$egin{array}{c} eta_{s} \ \lambda \end{array}$	Longitude (on Earth, in degrees or radians)
	Climate feedback parameter
$egin{array}{c} \lambda_f \ \lambda_i \end{array}$	Climate feedback parameter for variable x_i
$\lambda_i \\ \lambda_t$	True longitude (in degrees or radians)
	Sea-surface elevation
$\eta \sigma$	Stefan-Boltzmann constant (= 5.67×10^{-8} W m ⁻² K ⁻⁴)
0 Г	Lapse rate (K m^{-1})
	Infrared transmissivity of the atmosphere
$egin{array}{c} au_a \ ilde{oldsymbol{\omega}} \end{array}$	Longitude of the perihelion measured from the vernal
ω	equinox (in degrees)
$\overrightarrow{\Omega}$	Angular velocity vector of the Earth ($\Omega = \vec{\Omega} = 7.292 \times$
	$10^{-5} \mathrm{s}^{-1})$
AABW	Antarctic bottom water

XV

© in this web service Cambridge University Press

xvi	_	Main Symbols and Acronyms, Including Typical Values for Constants
	AAIW	Antarctic intermediate water
	ACC	Antarctic circumpolar current
	A.D.	Anno Domini; year A.D. is the number of years since the
		beginning of the Christian (or Common) era
	AGCM	Atmospheric general circulation model
	AMO	Atlantic Multi-Decadal Oscillation
	AOGCM	Atmosphere-ocean general circulation model
	B.C.	Before Christ; year B.C. is the number of years before A.D. 1
	B.P.	Before present, that is, before A.D. 1950
	C	Condensation
	CDW	Circumpolar deep water
	CGCM	Coupled general circulation model
	C_m	Specific heat capacity of medium m (J K ⁻¹ kg ⁻¹)
	C_m	Effective heat capacity of medium m (J K ⁻¹ m ⁻²)
	CMIP	Coupled Model Inter-Comparison Project
	C_p	Specific heat at constant pressure (= $1,004 \text{ J K}^{-1} \text{ kg}^{-1}$ for
	*	dry air)
	CRE	Cloud radiative effect
	C_{v}	Specific heat at constant volume (= $717 \text{ J K}^{-1} \text{ kg}^{-1}$ for
		dry air)
	\mathcal{C}_{W}	Specific heat of water (=4,180 J $K^{-1} kg^{-1}$ for pure water
		at 0°C)
	DGVM	Dynamic global vegetation model
	DIC	Dissolved inorganic carbon
	DJF	December, January and February
	e	Partial pressure of water vapour (Pa)
		Evapotranspiration
	EBM	Energy-balance model
		Eccentricity (=0.0167 for present-day conditions)
	EMIC	Earth model of intermediate complexity
	ENSO	El Niño–Southern Oscillation
	ERF	Effective radiative forcing
	e_s ESM	Saturation vapour pressure (Pa) Earth system model
		Flux due to diffusion or conduction
	$F_{ m diff}$	Feedback factor
	$f_f \ F_{ m fric}$	Force due to friction
	$F_{IR\downarrow}$	Downward longwave radiation at the surface (W m^{-2})
	$F_{IR\downarrow}$ $F_{IR\uparrow}$	Upward longwave radiation at the surface (W m ^{-2})
	F_{LH}	Latent heat flux at the surface (W m^{-2})
	F_{SH}	Sensible heat flux at the surface ($W m^{-2}$)
	$F_{\rm SOL}$	Incoming solar radiation at the surface (W m ^{-2})
	g	Acceleration due to gravity at the Earth's surface
	<u> </u>	$(=9.8 \text{ m s}^{-2})$
	GCM	General circulation model

xvii		Main Symbols and Acronyms, Including Typical Values for Constants
	g_T	Total feedback gain
	GtC	Gigaton of carbon (10 ¹⁵ g of carbon)
	Η	Observation operator
	HA	Hour angle
	IPCC	Intergovernmental Panel on Climate Change
	IRD	Ice-rafted debris
	ITCZ	Intertropical Convergence Zone
	J	Joule
	JJA	June, July and August
	K	Kelvin
	ka	1000 years
	K_H	Solubility (of CO_2)
	kyr	1000 years
	L_f	Latent heat of fusion of water $(=334 \text{ kJ kg}^{-1} \text{ at } 0^{\circ}\text{C})$
	LGM	Last glacial maximum (around 21 kyr B.P.)
	L_v	Latent heat of vaporisation of water (= 2250 kJ kg^{-1} at 100°C, 2500 kJ kg ⁻¹ at 0°C)
	m	Metre
	MIP	Model Inter-Comparison Project
	MOC	Meridional overturning circulation
	MOS	Model output statistics
	NADW	North Atlantic deep water
	NAM	Northern Annular Mode
	NAO	North Atlantic Oscillation
	nm	Nanometre (10^{-9} m)
	NPO	North Pacific Oscillation
	NPP	Net primary production
	NPZD	Nutrient-phytoplankton-zooplankton-detritus model
	OGCM	Ocean general circulation model
	р	Pressure (Pa)
	Р	Precipitation
	Pa	Pascal
	PDE	Partial differential equation
	PDO	Pacific Decadal Oscillation
	PERH	Longitude of the perihelion measured from the autumn
		equinox (=102.04° in present-day conditions)
	PETM	Paleocene-Eocene thermal maximum
	PFT PcC	Plant functional type Patagrams of earlier (1015 g of earlier)
	PgC PMIP	Petagrams of carbon (10 ¹⁵ g of carbon) Palacelimate Modelling Inter Comparison Project
	PMIP PNA	Paleoclimate Modelling Inter-Comparison Project Pacific North American pattern
	ppb	Parts per billion
	ppm	Parts per million
	p_{s}	Surface pressure (Pa)
	P_s PSA	Pacific South American pattern
		real real real real real real real real

xviii		Main Symbols and Acronyms, Including Typical Values for Constants
		Drastical solipity upit
	psu PW	Practical salinity unit 10 ¹⁵ W
	q	Specific humidity (kg/kg)
	R^{4}	Earth's radius (=6,371 km)
	R^*	Universal gas constant (= $8.3143 \text{ J K}^{-1} \text{ mol}^{-1}$)
	RF	Radiative forcing
	RF _{TOA}	Net radiative flux at the top of the atmosphere (W m^{-2})
	R_{g}	Gas constant for a gas $g (= 287.0 \text{ J K}^{-1} \text{ kg}^{-1} \text{ for dry air})$
	RH	Relative humidity
	r _m	Mean distance between the Earth and the Sun
		$(=1.5 \times 10^{11} \mathrm{m})$
	RMS	Root mean square
	$R_{ m riv}$	River runoff
	R_{ν}	Gas constant for water vapour (= $461.4 \text{ J kg}^{-1} \text{ K}^{-1}$)
	S	Ocean salinity
	S_0	Mean total solar irradiance at mean Earth–Sun distance (1260 Wm^{-2})
	SAM	(~1,360 W m ⁻²) Southern Annular Mode
	SAM	
	S_m	Sea-level pressure (Pa) Soil moisture (metres of water)
	S _m SOI	Southern Oscillation index
	S_r	Mean total solar irradiance at a distance <i>r</i> from the Sun
	S_r Sv	Sverdrup (= $10^6 \text{ m}^3 \text{ s}^{-1}$)
	T	Temperature (K)
	t	Time
	T_a	Air temperature (K)
	TCR	Transient climate response
	T_{e}	Effective emission temperature of the Earth (K)
	T_s	Surface temperature (K)
	TSI	Total solar irradiance (W m ⁻²)
	U	Internal energy per unit mass (J kg ⁻¹)
	U_a	Wind velocity $(m s^{-1})$
	$\vec{U}_{ m ice}$	Horizontal velocity vector for ice (m s^{-1})
	V	Velocity vector
	W	Watt World Matagenelogical Organization
	WMO	World Meteorological Organisation
	yr 7	Year Altitude or depth measured from the bottom upwards
	Ζ	Altitude or depth, measured from the bottom upwards