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REPRESENTATION THEORY:
A COMBINATORIAL VIEWPOINT

This book discusses the representation theory of symmetric groups, the theory
of symmetric functions and the polynomial representation theory of general
linear groups. The first chapter provides a detailed account of necessary
representation-theoretic background. An important highlight of this book is an
innovative treatment of the Robinson–Schensted–Knuth correspondence and its
dual by extending Viennot’s geometric ideas. Another unique feature is an
exposition of the relationship between these correspondences, the representation
theory of symmetric groups and alternating groups and the theory of symmetric
functions. Schur algebras are introduced very naturally as algebras of distributions
on general linear groups. The treatment of Schur–Weyl duality reveals the
directness and simplicity of Schur’s original treatment of the subject. This book is
suitable for graduate students, advanced undergraduates and non-specialists with
a background in mathematics or physics.

Amritanshu Prasad is a mathematician at The Institute of Mathematical
Sciences, Chennai. He obtained his PhD from the University of Chicago, where he
worked on automorphic forms and representations of p-adic groups. His current
research interests include representation theory, combinatorics, harmonic analysis
and number theory. Prasad has extensive experience in teaching mathematics to
undergraduate and graduate students in the US, Canada and India. He has been an
associate of the Indian Academy of Sciences and was awarded the Young Scientist
Medal by the Indian National Science Academy.
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Preface

This book is based on courses taught to graduate students at The Institute of
Mathematical Sciences, Chennai, and undergraduates of Chennai Mathematical
Institute. It presents important combinatorial ideas that underpin contemporary
research in representation theory in their simplest setting: the representation theory
of symmetric groups, the theory of symmetric functions and the polynomial
representation theory of general linear groups. Readers who have a knowledge
of algebra at the level of Artin’s book [1] (undergraduate honours level) should
find this book quite easy to read. However, Artin’s book is not a strict pre-requisite
for reading this book. A good understanding of linear algebra and the definitions
of groups, rings and modules will suffice.

A Chapterwise Description

The first chapter is a quick introduction to the basic ideas of representation theory
leading up to Schur’s theory of characters. This theory is developed using an
explicit Wedderburn decomposition of the group algebra. The irreducible charac-
ters emerge naturally from this decomposition. Readers should try and get through
this chapter as quickly as possible; they can always return to it later when needed.
Things get more interesting from Chapter 2 onwards.

Chapter 2 focusses on representations that come from group actions on sets.
By constructing enough such representations and studying intertwiners between
them, the irreducible representations of the first few symmetric groups are
classified. A combinatorial criterion for this method to work in general is also
deduced.

The combinatorial criterion of Chapter 2 is proved using the Robinson–
Schensted–Knuth correspondence in Chapter 3. This correspondence is
constructed by generalizing Viennot’s light-and-shadows construction of the
Robinson–Schensted algorithm. The classification of irreducible representations

ix
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x Preface

of S n by partitions of n along with a proof of Young’s rule are the main results of
this chapter.

Chapter 4 introduces the sign character of a symmetric group and shows that
twisting by the sign character takes the irreducible representation correspond-
ing to a partition to the representation corresponding to its conjugate partition.
Young’s construction of the irreducible representations of S n is deduced, and the
relationship between these results and the dual RSK correspondence is explained.
A light-and-shadows type construction for the dual RSK correspondence is also
provided. In the last section of this chapter, the irreducible representations of the
alternating groups An are classified, and some ideas involved in computing their
character tables are outlined with the help of examples. The complete determina-
tion of the character table of An is postponed to Chapter 5.

Chapter 5 concerns the algebra of symmetric functions. Bases of this algebra
consisting of monomial symmetric functions, elementary symmetric functions,
complete symmetric functions, power sum symmetric functions and Schur func-
tions are introduced. Combinatorial interpretations of the transition matrices
between these bases are provided. The RSK correspondence and its dual are
used to understand and organize these transition matrices. Three different for-
mulae for Schur functions are provided: Kostka’s combinatorial definition using
semistandard Young tableaux, Cauchy’s bi-alternant formula and the formulae of
Jacobi and Trudi. Frobenius’s beautiful formula for characters of a symmetric
group using symmetric functions is a highlight of this chapter. This result moti-
vates the definition of Frobenius’s characteristic function, which associates sym-
metric functions to class functions on S n. Frobenius’s characteristic function is
used to deduce branching rules for the restriction of representations of S n to
S n−1 and to provide a representation-theoretic interpretation of the Littlewood–
Richardson coefficients. Combining the characteristic function with the Jacobi–
Trudi identity allows for the deduction of the recursive Murnaghan–Nakayama
formula, which is a fast algorithm for computing a character value of a symmetric
group. With the help of the recursive Murnaghan–Nakayama formula, the charac-
ter tables of alternating groups are computed.

Chapter 6 treats the polynomial representation theory of general linear groups.
Schur algebras are introduced as algebras of homogeneous polynomial distribu-
tions on general linear groups. The modules of Schur algebras are shown to cor-
respond to polynomial representations of general linear groups. By interpreting
Schur algebras as endomorphism algebras for the actions of symmetric groups
on tensor spaces (Schur–Weyl duality), their simple modules are classified. It is
shown that polynomial representations of general linear groups are determined by
their character values on diagonal matrices or by their restrictions to the subgroup
of diagonal matrices (weight spaces). A combinatorial interpretation of the weight
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Preface xi

space decomposition of a simple polynomial representation of a general linear
group is provided.

About the Exercises

Exercises are interspersed with the text throughout this book. Sometimes impor-
tant steps in proofs are left as exercises. This gives the reader a chance to think
about them carefully. In such cases, unless the exercise is very straightforward,
at least a sketch of the solution is always provided. Many other exercises also
come with solutions. Readers should make multiple attempts to solve an exercise
before looking at the solution. Sometimes reading ahead to the end of the chapter
or rereading relevant sections may help in solving them.

Exercises are assigned difficulty levels from 0 to 5, indicated in square brackets
at the beginning. Roughly speaking the difficulty levels are decided based on the
following key:

[0] trivial
[1] routine and almost immediate
[2] follows from a careful understanding of the material presented
[3] a new idea is needed
[4] a clever application of a theorem from the text or elsewhere is needed
[5] needs sustained work with several new ideas
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xii Preface
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