
1
Basic Concepts of Representation Theory

This chapter contains a fairly self-contained account of the representation theory
of finite groups over a field whose characteristic does not divide the order of the
group (the semisimple case). The reader who is already familiar with represen-
tations, the group algebra, Schur’s lemma, characters, and Schur’s orthogonality
relations could move on to Chapter 2. However, the treatment of these topics in
this book may have some new insights for some readers. For instance, the reader
will find a careful explanation of why it is that characters (traces of representa-
tions) play such an important role in the theory.

1.1 Representations and Modules

Let K be a field and G be a finite group. For a K-vector space V , let GL(V) denote
the group of all invertible K-linear maps V → V .

Definition 1.1.1 (Representation). A representation of G is a pair (ρ,V), where
V is a K-vector space and ρ : G → GL(V) is a homomorphism of groups.

Definition 1.1.2 (Multiplicative character). A multiplicative character of G is
a homomorphism χ : G → K∗. Here, K∗ denotes the multiplicative group of
non-zero elements of K.

Example 1.1.3. The simplest example of a multiplicative character χ : G → K∗

is given by χ(g) = 1 for all g ∈ G. This is called the trivial character of G. A
non-trivial character is any character that is different from the trivial character.

Each multiplicative character χ gives rise to a representation as follows: take V
to be the one-dimensional vector space K and take ρ to be the homomorphism
which takes g ∈ G to the linear automorphism of K, which multiplies each
element by χ(g). Conversely, every one-dimensional representation comes from a
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2 Basic Concepts of Representation Theory

multiplicative character. The representation corresponding to the trivial character
of G is called the trivial representation of G.

[1] Exercise 1.1.4. Show that each multiplicative character of G contains [G,G]
in its kernel (and therefore descends to a multiplicative character G/[G,G]→ K∗).
Here, [G,G] denotes the subgroup of G generated by elements of the form
xyx−1y−1 as x and y run over all elements of G.

[3] Exercise 1.1.5. Let χ : G → K∗ be a non-trivial multiplicative character.
Show that ∑

g∈G

χ(g) = 0.

Representations of groups can be viewed as modules for certain special types
of rings called group algebras. It is assumed that the reader is familiar with the
definition of rings, ideals and modules. If not, a quick look at the relevant defini-
tions in a standard textbook (for example, Artin [1, Chapter 12, Section 1]) should
suffice.

Definition 1.1.6 (K-algebra). A K-algebra is a ring R whose underlying additive
group is a K-vector space and whose multiplication operation R × R → R is K-
bilinear. Only unital K-algebras will be considered here, namely those with a
multiplicative unit.

Example 1.1.7. The space Mn(K) of n × n matrices with entries in K is a unital
K-algebra. If V is an n-dimensional vector space over K, then a choice of basis
for V identifies Mn(K) with the algebra EndKV of K-linear maps V → V .

A left ideal of a K-algebra R is a linear subspace of R which is closed under
multiplication on the left by elements of R. Similarly, a right ideal is a linear
subspace of R which is closed under multiplication on the right by elements of R.
A two-sided ideal is a subspace of R which is both a left and a right ideal.

Example 1.1.8. Let W ⊂ Kn be a linear subspace. Then

{A ∈ Mn(K) | Ax ∈ W for all x ∈ Kn}

is a right ideal in Mn(K), while

{A ∈ Mn(K) | Ax = 0 for all x ∈ W}

is a left ideal in Mn(K).

[3] Exercise 1.1.9. Show that Mn(K) has no two-sided ideals except for the two
obvious ones, namely {0} and Mn(K).
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1.1 Representations and Modules 3

[1] Exercise 1.1.10. Show that if R is a K-algebra and I is a two-sided ideal in
R, then the product operation of R descends to a bilinear map R/I × R/I → R/I
which makes it a K-algebra.

Example 1.1.11. The polynomial algebra K[x1, . . . , xn] is an infinite dimen-
sional commutative unital K-algebra. Every finitely generated1 commutative K-
algebra is a quotient of a polynomial algebra by one of its ideals. The free algebra2

K〈x1, . . . , xn〉 is an infinite dimensional non-commutative algebra. Every finitely
generated algebra is a quotient of such an algebra by a two-sided ideal.

A K-algebra homomorphism is a homomorphism of rings, which is also
K-linear.

The usual definition of modules for a ring can be adapted to K-algebras:

Definition 1.1.12 (Module). For a K-algebra R, an R-module is a pair (ρ̃,V),
where V is a K-vector space and ρ̃ : R → EndKV is a K-algebra homomorphism.
We will always assume that ρ̃ maps the unit of R to the unit of EndKV (such
modules are called unital modules).

The notion of an R-module in Definition 1.1.12 requires the K-linearity of ρ̃ and
is therefore a little stronger than the general definition of a module for a ring (see,
for example, [1, Chapter 12, Section 1]). But the definition above is exactly what
is needed to make the correspondence between representations of G and modules
of a certain K-algebra K[G] associated to G, as we shall soon see.

Example 1.1.13. Every left ideal of R is an R-module. Any subspace of an
R-module M, which is closed under the action of R on M, can be viewed as an
R-module in its own right and is called a submodule. A quotient of an R-module
by a submodule is also an R-module.

Example 1.1.14. The vector space Kn is an Mn(K)-module when vectors in Kn

are written as columns and Mn(K) acts by matrix multiplication on the left.

The group algebra K[G] of the group G is a K-algebra whose additive group is
the K-vector space with basis

{1g|g ∈ G}

and whose product is defined by bilinearly extending

1g1h = 1gh for all g, h ∈ G. (1.1)

1 A subset S of an algebra R is said to be a generating set if R is the smallest algebra containing S .
An algebra is said to be finitely generated if it has a finite generating subset.

2 The free algebra K〈x1, . . . , xn〉 has as basis words xi1 xi2 · · · xim in the symbols x1, x2, . . . , xm.
Basis elements are multiplied by concatenating the corresponding words.
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4 Basic Concepts of Representation Theory

Another useful way of thinking about the group algebra is as the algebra of
K-valued functions on G with the product given by convolution: if f1 and f2 are
two K-valued functions on G, their convolution f1 ∗ f2 is defined by

f1 ∗ f2(g) =
∑
xy=g

f1(x) f2(y) for all g ∈ G. (1.2)

[2] Exercise 1.1.15. Identify 1g with the function whose value at g is 1 and
which vanishes everywhere else. Under this identification, show that the two def-
initions of the group algebra given above are equivalent.

[3] Exercise 1.1.16. Let n > 1 be an integer. Show that K[Z/nZ] is isomorphic
to K[t]/(tn − 1) as an algebra. Here, (tn − 1) denotes the ideal in K[t] generated by
tn − 1.

If ρ : G → GL(V) is a representation, and one defines a K-algebra homomor-
phism ρ̃ : K[G]→ EndK(V) by

ρ̃ : f 7→
∑
g∈G

f (g)ρ(g) (1.3)

for each f ∈ K[G], then (ρ̃,V) is a K[G]-module.
Conversely, suppose that ρ̃ : K[G] → EndK(V) is a K[G]-module. Note that

if e denotes the identity element of G, then 1e is the multiplicative unit of K[G].
Since we have assumed that ρ̃(1e) = idV (such a module is called unital), then for
any g ∈ G,

ρ̃(1g)ρ̃(1g−1 ) = ρ̃(1e) = idV ,

so ρ̃(1g) ∈ GL(V). Define a representation ρ of G by

ρ(g) = ρ̃(1g). (1.4)

The prescriptions (1.3) and (1.4) define an equivalence between representations
of G and unital K[G]-modules. This correspondence makes it possible to use con-
cepts from ring theory in the study of group representations.

Example 1.1.17 (Regular representation). For each r ∈ R, define L̃(r) to be the
linear endomorphism of R obtained by left multiplication by r. This turns R into
an R-module, which is known as the left regular R-module.

Let us examine the above construction in the case where R = K[G]. The group
ring K[G] becomes a representation of G if we define L(g) : K[G]→ K[G] by

L(g)1x = L̃(1g)1x = 1gx.

This representation is known as the left regular representation of G. If we define
R : G → GL(K[G]) by

R(g)1x = 1xg−1 ,
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1.2 Invariant Subspaces and Simplicity 5

we get another representation of G on K[G], which is known as the right regular
representation of G.

[1] Exercise 1.1.18. If K[G] is viewed as the space of K-valued functions on G
(as in Exercise 1.1.15), then

(L(g) f )(x) = f (g−1x) and (R(g) f )(x) = f (xg).

1.2 Invariant Subspaces and Simplicity

Definition 1.2.1 (Invariant subspace). A subspace W of V is called an invariant
subspace for a representation ρ : G → GL(V) if ρ(g)W ⊂ W for all g ∈ G.

Similarly, a subspace W of V is called an invariant subspace for an R-module
ρ̃ : R→ EndKV if ρ̃(r)W ⊂ W for all r ∈ R. 3

Example 1.2.2. For the left regular representation (L,K[G]), the subspace of
constant functions is a one-dimensional invariant subspace. The subspace

K[G]0 =
{
f : G → K |

∑
g∈G

f (g) = 0
}

is an invariant subspace of dimension |G| − 1.

[3] Exercise 1.2.3. The subspace K[G]0 has an invariant complement in (L,K[G])
if and only if |G| is not divisible by the characteristic of K (this includes the case
where K has characteristic zero).

[1] Exercise 1.2.4. Let G = Z/2Z and let K be a field of characteristic two.
Show that the subspace of K[G] spanned by 10 + 11 is the only non-trivial proper
invariant subspace for the left (or right) regular representation of G.

[3] Exercise 1.2.5. Show that if every representation of a group is a sum of
one-dimensional invariant subspaces, then the group is abelian. Hint: Use
Exercise 1.1.4 and the regular representation.

Definition 1.2.6 (Simplicity). A representation or module is said to be simple
(or irreducible) if it has no non-trivial proper invariant subspaces. As a convention,
the representation or module of dimension zero is not considered to be simple.4

Example 1.2.7. Every one-dimensional representation is simple.

[3] Exercise 1.2.8. Every simple module for a finite-dimensional K-algebra is
finite dimensional.

3 An invariant subspace of a representation is often called a subrepresentation, and an invariant
subspace of a module is usually called a submodule.

4 This is a little bit like 1 not being considered a prime number.
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6 Basic Concepts of Representation Theory

[5] Exercise 1.2.9. If K is algebraically closed, and G is abelian, then every sim-
ple representation of G is of dimension one. Hint: Show that for any commuting
family of matrices in an algebraically closed field, there is a basis with respect to
which all the matrices in that family are upper triangular.5

Example 1.2.10. The hypothesis that K is algebraically closed is necessary in
Exercise 1.2.9. Take for example, G = Z/4Z and ρ : G → GL2(R) the represen-

tation which takes a generator of Z/4Z to the matrix
(

0 1
−1 0

)
. Since this matrix

is a rotation by π/2, no line in R2 is left invariant by it, and so the abelian group
Z/4Z admits a simple two-dimensional representation over real numbers.

Definition 1.2.11 (Intertwiners). Let (ρ1,V1) and (ρ2,V2) be representations
of G. A linear transformation T : V1 → V2 is called an intertwiner (or a
G-homomorphism) if

T ◦ ρ1(g) = ρ2(g) ◦ T for all g ∈ G. (1.5)

The space of all intertwiners V1 → V2 is denoted HomG(V1,V2).
Similarly, for R-modules (ρ̃1,V1) and (ρ̃2,V2), an intertwiner is a linear trans-

formation T : V1 → V2 such that

T ◦ ρ̃1(r) = ρ̃2(r) ◦ T for all r ∈ R.

The space of all such intertwiners is denoted by HomR(V1,V2).

The intertwiner condition (1.5) can be visualized as a commutative diagram:

V1
T //

ρ1(g)
��

	

V2

ρ2(g)
��

V1 T
// V2

If one begins with an element in the top-right corner of this diagram, the images
obtained by applying the functions along either of the two paths to the bottom-
right corner are the same.

[1] Exercise 1.2.12. The kernel of an intertwiner is an invariant subspace of its
domain, and the image is an invariant subspace of its codomain.

Theorem 1.2.13 (Schur’s lemma I). If K is algebraically closed and V is
a finite-dimensional simple representation of G, then every self-intertwiner
T : V → V is a scalar multiple of the identity map. In other words, EndGV = KidV

(EndGV denotes HomG(V,V), the self-intertwiners of V, which are also called
G-endomorphisms of V).

5 Exercise 1.2.9 becomes much easier if Schur’s lemma (Theorem 1.2.13) is used instead of the hint.
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1.3 Complete Reducibility 7

Proof. Since K is algebraically closed, any self-intertwiner T : V → V has an
eigenvalue, say λ. Now T − λidV is also an intertwiner. Moreover, it has a non-
trivial kernel. Since its kernel is an invariant subspace (Exercise 1.2.12), it must
(by the simplicity of V) be all of V . Therefore, T = λidV . �

A similar statement (with the same proof) holds for simple modules of a
K-algebra.

[1] Exercise 1.2.14 (Central character). When K is algebraically closed, show
that the centre Z(G) of G acts on any simple representation by scalar matrices
(if g ∈ Z(G) acts by the scalar matrix λ(g)I, then g 7→ λ(g) is a homomorphism
Z(G)→ K∗, which is called the central character of the representation).

[1] Exercise 1.2.15 (Schur’s lemma for arbitrary fields). Let K be any field (not
necessarily algebraically closed). Show that any non-zero self-intertwiner of a
simple representation (or module) is invertible.

Definition 1.2.16 (Isomorphism). We say that representations (or modules) V1

and V2 are isomorphic (and write V1 � V2 or ρ1 � ρ2) if there exists an invertible
intertwiner V1 → V2 (its inverse will be an intertwiner V2 → V1).

Theorem 1.2.17 (Schur’s lemma II). If V1 and V2 are simple, then every non-
zero intertwiner T : V1 → V2 is an isomorphism. Consequently, either V1 � V2 or
there are no non-zero intertwiners V1 → V2.

Proof. If T is a non-zero intertwiner, then its kernel is an invariant subspace of
V1. Since this kernel cannot be all of V1, it is trivial; hence, T is injective. Its
image, being a non-trivial invariant subspace of V2, must be all of V2; therefore,
T is an isomorphism. �

An easy consequence of the two previous results is

Corollary 1.2.18. If K is algebraically closed, V1 and V2 are simple and
T : V1 → V2 is any non-trivial intertwiner, then HomG(V1,V2) = KT.

Proof. T is invertible by Schur’s Lemma II. If S : V1 → V2 is another intertwiner,
then T−1 ◦ S is a self-intertwiner of V1. By Schur’s Lemma I, T−1S = λidV1 for
some λ ∈ K, whence S = λT . �

1.3 Complete Reducibility

Definition 1.3.1 (Completely reducible module). An R-module is said to be
completely reducible if it is a direct sum of simple modules.

We have already seen (Exercises 1.2.3 and 1.2.4) that not all modules are
completely reducible. From now on, in order to not get distracted by issues that
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8 Basic Concepts of Representation Theory

are interesting, but ultimately incidental to the subject matter of this book, we will
only consider finite-dimensional K-algebras and their finite-dimensional modules
until Chapter 6.

[2] Exercise 1.3.2. Assume that every invariant subspace of an R-module V
admits an invariant complement. Let W be an invariant subspace of V . Show that
every invariant subspace of W admits an invariant complement in W and that every
invariant subspace of V/W admits an invariant complement in V/W.

[3] Exercise 1.3.3. Show that an R-module is completely reducible if and only
if every invariant subspace has an invariant complement.

[3] Exercise 1.3.4. Show that if the left regular R-module is completely re-
ducible, then every R-module is completely reducible.

If V is a finite-dimensional completely reducible R-module, then

V � V⊕m1
1 ⊕ V⊕m2

2 ⊕ · · · ⊕ V⊕mr
r , (1.6)

where (by grouping the simple subspaces of V which are isomorphic together)
V1,V2, . . . ,Vr is a collection of pairwise non-isomorphic simple R-modules. The
number mk is called the multiplicity of Vk in V . We shall refer to (1.6) as the
decomposition of V into simple modules with multiplicities. Let W be another
finite-dimensional completely reducible module whose decomposition into sim-
ple modules with multiplicities is

W � V⊕n1
1 ⊕ V⊕n2

2 ⊕ · · ·V⊕nr
r (1.7)

(by allowing some of the nk’s and mk’s to be 0, we may assume that the underlying
collection V1,V2, . . . ,Vr of simple modules is the same for V and W). Since there
are no intertwiners Vi → V j for i , j, any T ∈ HomR(W,V) can be expressed as

T =
⊕

k

Tk,

where Tk : V⊕nk
k → V⊕mk

k is an intertwiner. Represent an element x ∈ V⊕nk
k as

a vector (x1, . . . , xnk ) and y ∈ V⊕mk
k as y = (y1, . . . , ymk ), with each xi, yi ∈ Vk.

Writing these vectors as columns, the intertwiner Tk can itself be expressed as an
mk × nk matrix Tk = (Ti j) (where Ti j ∈ EndRVk) using

T (x)1

T (x)2
...

T (x)mk

 =


T11 T12 · · · T1nk

T21 T22 · · · T2nk

...
...

. . .
...

Tmk1 Tmk2 · · · Tmknk




x1

x2
...

xnk

 .
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1.3 Complete Reducibility 9

Thus, the entries of the matrix, being scalar multiples of the identity idVk , can
themselves be thought of as scalars, allowing us to write

HomR(W,V) =

r⊕
k=1

Mmk×nk (K),

where Mmk×nk denotes the set of mk × nk matrices with entries in K. One easily
checks that composition of intertwiners expressed as matrices in the above manner
corresponds to multiplication of matrices.

Theorem 1.3.5. If K is algebraically closed and V and W have decompositions
into sums of simple modules with multiplicities given by (1.6) and (1.7), then

dim HomR(V,W) = dim HomR(W,V) =
∑

i

mini.

In the special case where W = V , we obtain

Theorem 1.3.6. Let K be an algebraically closed field and R be a K-algebra.
If the R-module V is a sum of non-isomorphic simple modules with multiplicities
given by (1.6), then EndRV is a sum of matrix algebras (with componentwise
multiplication):

EndRV �
r⊕

i=1

Mmi (K),

where the right-hand side should be interpreted as a sum of algebras.

Sum of algebras

The notion of a sum of algebras will come up often and therefore deserves a
short discussion.

Definition 1.3.7 (Sum of algebras). If R1,R2, . . . ,Rk are algebras, their
sum is the algebra whose underlying vector space is the direct sum
R := R1 ⊕ R2 ⊕ · · · ⊕ Rk, with multiplication defined componentwise:

(r1 + r2 + · · · + rk)(s1 + s2 + · · · + sk) = r1s1 + r2s2 + · · · + rk sk

Thus, each Ri is a subalgebra of R for each i. If each of the algebras Ri is
unital with unit 1i, then the sum

1 := 11 + 12 + · · · + 1k

is the multiplicative unit for R. In particular, R is also unital. If (ρ̃i,Mi) is a
unital Ri module (meaning that ρ̃i(1i) = idMi ), then

M = M1 ⊕ M2 ⊕ · · · ⊕ Mk
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10 Basic Concepts of Representation Theory

is also a unital R-module when ρ̃ : R→ EndK M is defined by

ρ̃(r1 + r2 + · · · + rk) := ρ̃1(r1) + ρ̃2(r2) + · · · + ρ̃k(rk).

The Mi’s can be recovered from M by Mi = ρ̃(1i)M. Thus, R-modules corre-
spond precisely to collections of Ri-modules (one for each i).

On a purely combinatorial level

Theorem 1.3.8. Assume that K is algebraically closed. If the R-module V is a
sum of non-isomorphic simple modules with multiplicities given by (1.6), then

dim EndRV =

r∑
i=1

m2
i .

Recall that the centre of a K-algebra R consists of those elements which com-
mute with every element of R.

We all know that the centre of a matrix algebra consists of scalar matrices. The
centre of a direct sum of algebras is the direct sum of their centres. It follows that
the dimension of the centre of

⊕r
i=1 Mmi (K) is the number of i such that mi > 0.

Thus, a consequence of Theorem 1.3.6 is

Theorem 1.3.9. Let R be a K-algebra, with K algebraically closed. If the
R-module V is a sum of non-isomorphic simple modules with multiplicities given
by (1.6) with all the multiplicities mi > 0, then the dimension of the centre of
EndRV is r.

The next exercise is a trivial consequence of Theorem 1.3.8

[0] Exercise 1.3.10. Let R be a K-algebra, where K is an algebraically closed
field. Show that a completely reducible R-module V is simple if and only if

dim EndRV = 1.

And similarly, Theorem 1.3.5 can be used to solve the following:

[0] Exercise 1.3.11. Assume that K is algebraically closed, V is simple and W
is completely reducible. Then, dim HomR(V,W) is the multiplicity of V in W.

For the following exercise, use Theorem 1.3.6

[1] Exercise 1.3.12. Assume that K is algebraically closed. A completely
reducible R-module V has a multiplicity-free decomposition (meaning that its
decomposition into simple modules with multiplicities is of the form (1.6) with
mi = 1 for all i) if and only if its endomorphism algebra EndRV is commutative.
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