

Advances in Multi-Band Microstrip Filters

The first of its kind, this work offers a detailed insight into a range of design procedures for dual-band and tri-band microstrip filters, from theory to practical design. Originating from the FP7 MultiWaveS project, this comprehensive resource includes the most recent results from several well-established research groups as well as detailed coverage of competing approaches ranging from the conventional approach, to advanced multilayer fabrication technologies, and the development and application of several novel geometries and concepts. In-depth coverage of basic theoretical foundations, detailed design procedures and rules, and comparisons of measured and simulated results enable you to select the optimal approach for your purposes and designs, making this an invaluable resource for both students and industry professionals in the field of microwave engineering.

Vesna Crnojević-Bengin is Associate Professor at the University of Novi Sad, Serbia, as well as leader of the European Microwave Association's topical group MAGEO and Associate Editor of the *International Journal of Electronics*. In 2005 she received the Yugoslav Microwave Theory and Techniques Award for Scientific Contribution.

EuMA High-frequency Technologies Series

Series Editor Peter Russer, Technical University of Munich

Homayoun Nikookar, Wavelet Radio

Thomas Zwick, Werner Wiesbeck, Jens Timmermann and Grzegorz Adamiuk (Eds.), *Ultra-wideband RF System Engineering*

Er-Ping Li and Hong-Son Chu, Plasmonic Nanoelectronics and Sensing

Luca Roselli (Ed.), *Green RFID Systems*Vesna Crnojevic-Bengin, *Advances in Multi-band Microstrip Filters*

Forthcoming

Peter Russer, Johannes Russer, Uwe Siart, and Andreas Cangellaris, *Interference and Noise in Electromagnetics*

Maurizio Bozzi, Apostolos Georgiadis, and Ke Wu, Substrate Integrated Waveguides George Deligeorgis, Graphene Device Engineering

Luca Pierantoni and Fabio Coccetti, *Radiofrequency Nanoelectronics Engineering* Alexander Yarovoy, *Introduction to UWB Wireless Technology and Applications* Natalia Nikolova, *Introduction to Microwave Imaging*

Philippe Ferrari, Rolf Jakoby, Onur Karabey, and Gustavo Rehder, *Reconfigurable Circuits and Technologies for Smart Millimeter-Wave Systems*

Advances in Multi-Band Microstrip Filters

VESNA CRNOJEVIĆ-BENGIN

University of Novi Sad

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107081970

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-08197-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

		List of contributors List of abbreviations			
1	Intro	oduction	1		
•		Vesna Crnojević-Bengin			
2	Design methods of multi-band filters				
	Nikolina Janković, Vesna Crnojević-Bengin, Petrie Meyer, and Jia-Sheng Hong				
	2.1	Introduction	5		
	2.2	Design based on the classical filter design theory	6		
	2.3	Design by introducing transmission zeros	15		
	2.4		19		
		2.4.1 Multi-band filters with dual-mode resonators with perturbation	20		
		2.4.2 Multi-band filters with stepped-impedance multi-mode resonators	25		
		2.4.3 Multi-band filters with stub-loaded resonators	35		
		2.4.4 Multi-band filters with stepped-impedance,			
		stub-loaded resonators	39		
		Design by cascading independent single-band or dual-band filters	41		
			47		
	2.7	Multi-band bandstop filters	50		
	2.8	Conclusion	52		
	Refe	erences	54		
3		nniques for the synthesis of multi-band transfer functions as Gerhardus Brand, Riana Helena Geschke, and Petrie Meyer	67		
			67		
	3.1	Introduction	67 68		
	3.2	Basic transfer function theory	68		
		3.2.1 Basic low-pass transfer functions	08		
		3.2.2 Transfer function synthesis of multi-band filters through transformation	71		
		3.2.3 Transfer function synthesis of multi-band filters	/ 1		
		through optimization	73		
		unough optimization	13		

vi **Contents**

	3.3	General synthesis of transfer functions using optimization of			
		poles and zeros	74		
		3.3.1 Qualitative description of approximation algorithm	74		
		3.3.2 Identification of critical points	77		
		3.3.3 Pole and zero adjustment formulas	78		
		3.3.4 General algorithm	80		
		3.3.5 Example 1	80		
		3.3.6 Example 2	86		
	3.4	Synthesis of transfer functions using reactance-based mapping functions	90		
		3.4.1 Transfer functions for coupled-resonator filters	90		
		3.4.2 Low-pass to intermediate multi-band transformation	92		
		3.4.3 Intermediate to final multi-band transformation	97		
		3.4.4 Implementation as coupled-resonator structure	97		
		3.4.5 Example 1	99		
		3.4.6 Example 2	104		
	3.5	Conclusion	107		
	Refe	erences	107		
4	Com	pact microwave multi-band bandpass filters based			
		uarter-wavelength resonators	110		
	Nikoli	na Janković and Vesna Crnojević-Bengin			
	4.1	Introduction	110		
	4.2	Quarter-wavelength resonator and its properties	111		
	4.3	Dual-band and tri-band filters based on quarter-wavelength resonators	114		
	4.4	Dual-band filter with $\lambda/4$ resonators	116		
		4.4.1 Configuration and behavior of dual-band filter	116		
		4.4.2 Illustration of the applicability of the proposed design approach	125		
		4.4.3 Fabrication and measurement results	128		
		4.4.4 Comparison to other published dual-band filters	129		
	4.5	Tri-band filter based on λ 4 resonators	130		
		4.5.1 Configuration and analysis of the behavior of tri-band filter	130		
		4.5.2 Fabrication and measurement results	134		
		4.5.3 Comparison to other published results	135		
	4.6	Conclusion	136		
	Refe	erences	137		
5	Dual	l-band filters based on grounded patch resonators	140		
	Vasa Radonić, Riana Helena Geschke, and Vesna Crnojević-Bengin				
	5.1	Introduction	140		
	5.2	Grounded-patch resonator	141		
		5.2.1 Resonator design	141		
		5.2.2 Perturbed grounded-patch resonator	152		
	5.3	Application of grounded patch resonators in filter design	154		

		5.3.1	Single-band stopband filters based on grounded-patch resonators	154		
		5.3.2 5.3.3	Single-band bandpass filters based on grounded-patch resonators Dual-band filters with independent passbands based on perturbed	161		
			grounded patch resonators	172		
	5.4	Concl	usion	187		
	Refe	erences		189		
6	Fractal-based multi-band microstrip filters Nikolina Janković, Kiril Zemlyakov, Riana Helena Geschke, Irina Vendik, and Vesna Crnojević-Bengin					
	6.1	Introd	uction	191		
	6.2	Fracta	l curves and their application in filter design	191		
		6.2.1	e	192		
		6.2.2	Properties of fractal curves	194		
		6.2.3	Application of fractal curves	196		
	6.3	Dual-b	band bandpass filters based on dual-mode Hilbert fractal resonator	198		
		6.3.1	Hilbert fractal resonator configuration	199		
		6.3.2	Dual-band filter design	203		
	6.4	_	act tri-band bandpass and bandstop filters based on Hilbert-fork			
		resona	***	211		
			Hilbert-fork resonator configuration	212		
		6.4.2	Tri-band bandpass filter based on Hilbert-fork resonator	217		
		6.4.3	Tri-band bandstop filter based on Hilbert-fork resonator	221		
	6.5	Concl	usion	224		
	Refe	erences		226		
7	Multi-band microstrip filters based on near-zero metamaterials					
	Vesna	a Crnojevio	ć-Bengin, Norbert Cselyuszka, Nikolina Janković, and Riana Helena Geschke			
	7.1	Introd		229 230		
		7.2 A short introduction to metamaterials				
	7.3		zero metamaterials	234		
		7.3.1	Permittivity-near-zero case	235		
			Permeability-near-zero case	237		
	7.4		zero propagation in quasi-TEM circuits	238		
		7.4.1	Permittivity-near-zero case	238		
		7.4.2	Permeability-near-zero case	243		
		7.4.3	Design of bandpass filters based on permeability-near-zero	251		
	7.5	M 1.1	propagation	251		
	7.5					
	7.6		usion	261 261		
	References					

Contents

Vİİ

viii Contents

8	Miniature microwave filters using multi-layer technologies Irina Vendik, Dmitry Kholodnyak, Viacheslav Turgaliev, Alexander Rusakov, Shilong Qian, Jia Ni, and Jia-Sheng Hong			265
	8.1	Introduction		265
	8.2	Multilayer technology as a base for miniature filter design		265
		8.2.1	Multilayer structures using low-temperature co-fired ceramics	
			(LTCC)	266
		8.2.2	Multilayer liquid crystal polymer (LCP) technology	269
	8.3	Design of miniature microwave filters based on RH/LH transmission		
		lines u	sing multi-layer technology	272
		8.3.1	Characteristics of right/left-handed (R/LH) artificial	
			transmission lines	273
		8.3.2	Design of multi-mode resonators based on a combination of	
			R/LH TL sections	278
		8.3.3	Compact bandpass filter based on transversal signal-interference	
			technique using RH/LH TL sections	282
		8.3.4	Ultra-wide-band filters based on composite R/LH transmission line	286
	8.4	Dual-band microwave filters based on RH/LH transmission lines		
		_	multi-layer LTCC technology	290
		8.4.1	Two-mode resonators and dual-band filters based on a	
			combination of R/LH TL sections	291
			Dual-band immittance inverter	294
		8.4.3	Tuneable two-mode resonators and tuneable dual-band filters	
			based on a combination of RH/LH TL sections	295
	8.5	Miniature single-band and dual-band filters using capacitively loaded		298
		8.5.1	Single- and multi-mode resonators on capacitively loaded cavities	300
		8.5.2	Miniature microwave filters using capacitively loaded cavities	301
		8.5.3	Two-mode resonators and dual-band filters based on capacitively	205
	0.6	G 1	loaded cavities	305
	8.6	Conclu	usion	309
	Refe	erences		309
	Inde	x		315

Contributors

Tobias Gerhardus Brand

Stellenbosch University

Vesna Crnojević-Bengin

University of Novi Sad

Norbert Cselyuszka

University of Novi Sad

Riana Helena Geschke

University of Cape Town

Jia-Sheng Hong

Heriot-Watt University

Nikolina Janković

University of Novi Sad

Dmitry Kholodnyak

St. Petersburg Electrotechnical

University LETI

Petrie Meyer

Stellenbosch University

Jia Ni

Heriot-Watt University

Shilong Qian

Heriot-Watt University

Vasa Radonić

University of Novi Sad

Alexander Rusakov

St. Petersburg Electrotechnical

University LETI

Viacheslav Turgaliev

St. Petersburg Electrotechnical

University LETI

Irina Vendik

St. Petersburg Electrotechnical

University LETI

Kiril Zemlyakov

St. Petersburg Electrotechnical

University LETI

Abbrevations

2D: two-dimensional3D: three-dimensional

AWR MWO: Advancing the Wireless Revolution Microwave Office

BPF: bandpass filter BW: bandwidth

CDMA: code division multiple access
CLC: capacitively loaded cavities
CRLH: composite right/left-handed

CSRR: complementary split ring resonator CST: computer simulation technology CTE: coefficient of thermal expansion D-CRLH: dual composite right/left-handed

DGS: defected ground structure

DNG: double-negative
DPS: double-positive
EM: electromagnetic
ENZ: epsilon-near-zero
FBW: fractional bandwidth

FCC: Federal Communications Commission

GPR: grounded patch resonator

GSM: global system for mobile communications

HFSS: high-frequency structure simulator
HTCC: high-temperature cofired ceramics
HTS: high-temperature superconductor

I/O: input/output

IEEE: Institute of Electrical and Electronics Engineers

IFS: iterated function system LAN: local area network LCP: liquid crystal polymer

LH: left-handed LPF: lowpass filter

LTCC: low-temperature cofired ceramics

LTE: long-term evolution

MEMS: microelectromechanical system

Χ

Abbrevations

χİ

MIC: monolithic integrated circuits

MNZ: mue-near-zero

MROP: microstrip rectangular open-loop

NZ: near-zero

PCB: printed circuit board

PGPR: perturbed grounded patch resonator

RF: radio frequency

RFID: radio frequency identification

RGPR: rectangular grounded patch resonator

RH: right-handed

SI-SLR: stepped impedance stub-loaded resonator

SIR: stepped impedance resonator

SLR: stub-loaded resonator SNG: single-negative SoP: system-on-package SRR: split ring resonator

TBCCO: thallium barium calcium copper oxide

TE: transverse electric

TEM: transverse electromagnetic

TL: transmission line TM: transverse magnetic

UMTS: universal mobile telecommunications system

UWB: ultra-wideband

WiFi: wireless local area network product based on the IEEE 802.11

standards

WiMAX: worldwide interoperability for microwave access

WLAN: wireless local area network YBCO: yttrium barium copper oxide

 $\lambda/2$: half-wavelength $\lambda/4$: quarter-wavelength