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Preface

1. The study of characteristic exponents originated from the fundamental work

of Aleksandr Mikhailovich Lyapunov [85] on the stability of solutions of dif-

ferential equations. Consider a linear equation

v̇(t) = B(t) · v(t) (1)

where B(·) is a bounded function from R to the space of d×d matrices. By the

general theory of differential equations, there exists a so-called fundamental

matrix At , t ∈R such that v(t) = At ·v0 is the unique solution of (1) with initial

condition v(0) = v0. If the characteristic exponents

λ (v) = limsup
t→∞

1

t
log‖At · v‖ (2)

are negative, for all v �= 0, then the trivial solution v(t) ≡ 0 is asymptotically

stable, and even exponentially asymptotically stable. The stability theorem of

Lyapunov asserts that, under an additional regularity condition, stability re-

mains valid for nonlinear perturbations

ẇ(t) = B(t) ·w(t)+F(t,w) with ‖F(t,w)‖ ≤ const‖w‖1+ε .

That is, the trivial solution w(t)≡ 0 is still exponentially asymptotically stable.

The regularity condition of Lyapunov means, essentially, that the limit in

(2) does exist, even if one replaces vectors v by l-vectors v1 ∧ ·· · ∧ vl ; that

is, elements of the k-exterior power of Rd , for any 0 ≤ l ≤ d. This is usually

difficult to check in specific situations. But the multiplicative ergodic theorem

of Oseledets asserts that Lyapunov regularity holds with full probability, in

great generality. In particular, it holds on almost every flow trajectory, relative

to any probability measure invariant under the flow.

2. The work of Furstenberg, Kesten, Oseledets, Kingman, Ledrappier, Guiv-

arc’h, Raugi, Gol’dsheid, Margulis and other mathematicians, mostly in the

xi
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xii Preface

1960s–80s, built the study of Lyapunov characteristic exponents into a very

active research field in its own right, and one with an unusually vast array of in-

teractions with other areas of Mathematics and Physics, such as stochastic pro-

cesses (random matrices and, more generally, random walks on groups), spec-

tral theory (Schrödinger-type operators) and smooth dynamics (non-uniform

hyperbolicity), to mention just a few.

My own involvement with the subject goes back to the late 20th century

and was initially motivated by my work with Christian Bonatti and José F.

Alves on the ergodic theory of partially hyperbolic diffeomorphisms and, soon

afterwards, with Jairo Bochi on the dependence of Lyapunov exponents on the

underlying dynamical system. The way these two projects unfolded very much

inspired the choice of topics in the present book.

3. A diffeomorphism f : M → M is called partially hyperbolic if there exists

a D f -invariant decomposition

T M = Es ⊕Ec ⊕Eu

of the tangent bundle such that Es is uniformly contracted and Eu is uniformly

expanded by the derivative D f , whereas the behavior of D f along the center

bundle Ec lies somewhere in between. It soon became apparent that to improve

our understanding of such systems one should try to get a better hold of the

behavior of D f | Ec and, in particular, of its Lyapunov exponents. In doing

this, we turned to the classical linear theory for inspiration.

That program proved to be very fruitful, as much in the linear context (e.g.

the proof of the Zorich–Kontsevich conjecture, by Artur Avila and myself) as

in the setting of partially hyperbolic dynamics we had in mind originally (e.g

the rigidity results by Artur Avila, Amie Wilkinson and myself), and remains

very active to date, with important contributions from several mathematicians.

4. Before that, in the early 1980s, Ricardo Mañé came to the surprising conclu-

sion that generic (a residual subset of) volume-preserving C1 diffeomorphisms

on any surface have zero Lyapunov exponents, or else they are globally hyper-

bolic (Anosov); in fact, the second alternative is possible only if the surface is

the torus T2. This discovery went against the intuition drawn from the classical

theory of Furstenberg.

Although Mañé did not write a complete proof of his findings, his approach

was successfully completed by Bochi almost two decades later. Moreover, the

conclusions were extended to arbitrary dimension, both in the volume-preserv-

ing and in the symplectic case, by Bochi and myself.
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Preface xiii

5. In this monograph I have sought to cover the fundamental aspects of the

classical theory (mostly in Chapters 1 through 6), as well as to introduce some

of the more recent developments (Chapters 7 through 10).

The text started from a graduate course that I taught at IMPA during the

(southern hemisphere) summer term of 2010. The very first draft consisted of

lecture notes taken by Carlos Bocker, José Régis Varão and Samuel Feitosa.

The unpublished notes [9] and [28], by Artur Avila and Jairo Bochi were im-

portant for setting up the first part of the course.

The material was reviewed and expanded later that year, in my seminar,

with the help of graduate students and post-docs of IMPA’s Dynamics group.

I taught the course again in early 2014, and I took that occasion to add some

proofs, to reorganize the exercises and to include historic notes in each of the

chapters. Chapter 10 was completely rewritten and this preface was also much

expanded.

6. The diagram below describes the logical connections between the ten chap-

ters. The first two form an introductory cycle. In Chapter 1 we offer a glimpse

of what is going to come by stating three main results, whose proofs will ap-

pear, respectively, in Chapters 3, 6 and 10. In Chapter 2 we introduce the no-

tion of linear cocycle, upon which is built the rest of the text. We examine more

closely the particular case of hyperbolic cocycles, especially in dimension 2,

as this will be useful in Chapter 9.

3 4 6

7 8 9

Ch. 1Ch. 2

Ch. 5

Ch. 10

In the next four chapters we present the main classical results, including

the Furstenberg–Kesten theorem and the subadditive ergodic theorem of King-

man (Chapter 3), the multiplicative ergodic theorem of Oseledets (Chapter 4),

Ledrappier’s exponent representation theorem, Furstenberg’s formula for ex-

ponents of irreducible cocycles and Furstenberg’s simplicity theorem in dimen-

sion 2 (Chapter 6). The proof of the multiplicative ergodic theorem is based on

the subadditive ergodic theorem and also heralds the connection between Lya-
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xiv Preface

punov exponents and invariant/stationary measures that lies at the heart of the

results in Chapter 6. In Chapter 5 we provide general tools to develop that

connection, in both the invertible and the non-invertible case.

7. The last four chapters are devoted to more advanced material. The main

goal there is to provide a friendly introduction to the existing research litera-

ture. Thus, the emphasis is on transparency rather than generality or complete-

ness. This means that, as a rule, we choose to state the results in the simplest

possible (yet relevant) setting, with suitable references given for stronger state-

ments.

Chapter 7 introduces the invariance principle and exploits some of its con-

sequences, in the context of locally constant linear cocycles. This includes

Furstenberg’s criterion for λ− = λ+, that extends Furstenberg’s simplicity the-

orem to arbitrary dimension. The invariance principle has been used recently

to analyze much more general dynamical systems, linear and nonlinear, whose

Lyapunov exponents vanish. A finer extension of Furstenberg’s theorem ap-

pears in Chapter 8, where we present a criterion for simplicity of the whole

Lyapunov spectrum.

Then, in Chapter 9, we turn our attention to the contrasting Mañé–Bochi

phenomenon of systems whose Lyapunov spectra are generically not sim-

ple. We prove an instance of the Mañé–Bochi theorem, for continuous linear

cocycles. Moreover, we explain how those methods can be adapted to con-

struct examples of discontinuous dependence of Lyapunov exponents on the

cocycle, even in the Hölder-continuous category. Having raised the issue of

(dis)continuity, in Chapter 10 we prove that for products of random matrices

in GL(2) the Lyapunov exponents do depend continuously on the cocycle data.

8. Each chapter ends with set of notes and a list of exercises. Some of the ex-

ercises are actually used in the proofs. They should be viewed as an invitation

for the reader to take an active part in the arguments. Throughout, it is assumed

that the reader is familiar with the basic ideas of Measure Theory, Differential

Topology and Ergodic Theory. All that is needed can be found, for instance,

in my book with Krerley Oliveira, Fundamentos da Teoria Ergódica [114]; a

translation into English is under way.

I thank David Tranah, of Cambridge University Press, for his interest in

this book and for patiently waiting for the writing to be completed. I am also

grateful to Vaughn Climenhaga, and David himself, for a careful revision of

the manuscript that very much helped improve the presentation.

Rio de Janeiro, March, 2014

Marcelo Viana
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