

Bacterial Genomics

Genome Organization and Gene Expression Tools

Aswin Sai Narain Seshasayee

CAMBRIDGEUNIVERSITY PRESS

Cambridge House, 4381/4 Ansari Road, Daryaganj, Delhi 110002, India

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107079830

© Aswin Sai Narain Seshasayee 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

 $Seshasayee,\,Aswin SaiNarain,\,author.$

Bacterial genomics: genome organization and gene expression tools / AswinSaiNarainSeshasayee.

p.; cm.

Includes bibliographical references and index.

Summary: "Discusses the application of genomic tools in the study of bacterial adaptation and provides review of recent research in the field of bacterial research"--Provided by publisher.

ISBN 978-1-107-07983-0 (hardback)

I. Title

[DNLM: 1. Bacteria--genetics. 2. Genome, Bacterial--genetics. 3. Gene Expression Regulation, Bacterial. 4. Gene Expression. 5. Models, Genetic. QW 51]

QH434

572.8'6293--dc23

2014027746

ISBN 978-1-107-07983-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India

and

Dedicated to the memory of the ever-enchanting Professor K. S. Krishnan

Contents

List	of Fi	gures		ix
Ack	inowl	ledgem	ents	xiii
1.	Int	roduct	ion: Bacterial Genomes and Gene Expression	1
2.	Comparative Genomics in the Era of Sanger Sequencing			4
	2.1 Introduction			4
	2.2	The process of assembling and annotating bacterial genomes		6
		2.2.1	Genome assembly and gap closure	7
		2.2.2	Genome-scale computational identification of features	8
		2.2.3	Annotating genes with functions	13
	2.3	Case	studies	16
		2.3.1	The Escherichia coli complex and large-scale	
			horizontal gene acquisition	16
		2.3.2	Genome reduction in intracellular pathogens,	
			endosymbionts and marine α -proteobacteria	20
		2.3.3	7 8 17	
			Campylobacter jejuni	26
	2.4	Some	lessons learnt from studying 2,000 bacterial genomes	27
		2.4.1	Genome size	28
		2.4.2	Coding density	29
		2.4.3	Gene order conservation	30
		2.4.4	Comparative genomics of gene functions: Systematic	
			annotation	31
		2.4.5	Comparative genomics of gene functions: Scaling laws	33
	Summary		35	
3.	Studying Bacterial Genome Variation with Microarrays			
	3.1 Introduction			
	3.2	DNA	microarrays: The concept	36

vi Contents

	3.3	DNA	microarrays: From fluorescence intensities to information	38
		3.3.1	Background correction	39
		3.3.2	Normalisation	41
		3.3.3	Differences in signal from the same probe between	
			two samples	44
	3.4	Comp	arative genome hybridisation and bacterial	
		phylog	genomics	45
	3.5	Case s	etudies	46
		3.5.1	Comparative genome hybridisation studies of	
			Escherichia coli	47
		3.5.2	1 0 7	
			Staphylococcus aureus	52
		3.5.3	1 0 7	
			Helicobacter pylori	56
	Sun	nmary		59
4.	Stu	dying I	Bacterial Genomes using Next-Generation Sequencing	60
	4.1	Introd	luction	60
	4.2	Next-	generation sequencing technologies	61
		4.2.1		62
		4.2.2	Sequencing strategies	64
	4.3	Seque	ncing data processing for genome sequencing	
		and re	e-sequencing	66
		4.3.1	Genome assembly	66
		4.3.2	Aligning short reads to long genomes	70
	4.4	Case s	tudies	73
		4.4.1	Pyrosequencing-enabled complete genome sequence	
			of Acinetobacter baumanii	74
		4.4.2	On the track of pandemics: The genome of the	
			aetiological agent of Black Death	75
		4.4.3	1 8	
			single-cell genomes	80
		4.4.4	7	84
		4.4.5	Bacteria evolving in their biotic hosts	86
	Sun	nmary		88

				V		
5	Genome-Scale Analysis of Gene Expression and its Regulation in					
	Bacteria					
	5.1	Intro	duction	89		
	5.2	The p	process of transcription and the regulation of its			
		initiat	tion: An overview	90		
	5.3	Measi	uring gene expression on a genomic scale: Technologies	99		
	5.4	Next-	generation sequencing for gene expression			
		measu	urements: Data analysis	101		
		5.4.1	Transcriptome assembly	104		
		5.4.2	Measuring gene expression levels	110		
	5.5	Gene	expression at high temporal resolution using			
		fluore	escent reporters	114		
	5.6		tructing transcriptional regulatory networks:			
			-chip and ChIP-seq	117		
	5.7		studies	122		
		5.7.1	Experimental annotation of bacterial genomes	122		
		5.7.2	7	129		
		5.7.3	1 07 1 7 0 1	134		
		5.7.4	1 , 1	145		
		5.7.5	1 0 7			
			networks	154		
		5.7.6	7			
			alarmone ppGpp	186		
	_	5.7.7	RNA chaperones and their regulons	188		
	Sun	nmary		190		
6	DN	A Met	hylation in Bacteria: A Case for Bacterial Epigenetics	s 191		
	6.1	Intro	duction	191		
	6.2	DNA	methyltransferases in bacteria: From restriction-			
		modif	fication systems	192		
	6.3	Identi	ifying sites of DNA methylation on a genomic scale	195		
		6.3.1	Methylated DNA immunoprecipitation	195		
		6.3.2	Bisulphite sequencing	195		
		6.3.3	DNA cytosine methylation in laboratory E. coli	197		

Contents vii

viii	Contents

6.4 Dete	ecting DNA methylation by single-molecule		
	real-time sequencing		
6.4.	DNA adenine methylation in pathogenic <i>E. coli</i> by		
	SMRT sequencing	202	
6.4.2	Insight into the epigenetic control of Caulobacter		
	crescentus cell cycle from SMRT sequencing	203	
Summar	y	205	
Index		207	

List of Figures

∠.1	A seliciliatic overview of the process of sequeneing a bacterial	
	genome.	7
2.2	Base composition patterns.	9
2.3	A toy Markov model differentiating between genes and random	
	sequences.	11
2.4	Regulatory RNA secondary structures.	12
2.5	A schematic outline of the process of annotating a bacterial	
	genome.	13
2.6	The genome of <i>E. coli</i> K12 MG1655.	17
2.7	The two major forces of large-scale bacterial evolution.	19
2.8	Gene content of Rickettsia.	21
2.9	Gene content of Mycobacteria.	23
2.10	Metabolic potential of two co-operating bacteria.	25
2.11	Clusters of simple repeats in the genome of <i>H. pylori</i> genome.	27
2.12	Genome size and gene density in bacteria.	28
2.13	Gene order conservation.	30
2.14	Genes conserved across S. aureus prophages.	32
2.15	Scaling laws.	34
3.1	Steps involved in a typical microarray data processing pipeline.	38
3.2	Background subtraction for microarray data.	40
3.3	Methods for within-array normalisation of two-colour	
	microarray data.	42
3.4	Quantile normalisation.	43
3.5	A schematic representation of a CGH experiment.	46
3.6	Evolution of <i>E. coli</i> gene content.	48
3.7	Designing a multi-genome oligonucleotide probe for CGH	
	experiments.	52
3.8	Gene conservation in <i>Staphylococcus aureus</i> .	53
3.9	Gene content of <i>Helicobacter pylori</i> genomes.	57

x List of Figures

4.1	Sample preparation strategies for next-generation sequencers.	63
4.2	Sequencing strategies for next-generation sequencers.	65
4.3	de Bruijn graph for genome assembly.	67
4.4	Paired-end and mate-pair sequencing.	69
4.5	Burrows–Wheeler transform for read mapping.	71
4.6	Standard applications of next-generation sequencing.	73
4.7	A phylogenetic tree of <i>Yersinia pestis</i> .	77
4.8	Rapid genomic characterisation of an <i>E. coli</i> outbreak.	79
4.9	From communities to single-cell genomes.	82
4.10	Pathogen evolution in hosts.	87
5.1	Transcription in <i>E. coli</i> .	91
5.2	The promoter structure of <i>E. coli</i> .	92
5.3	DNA supercoiling.	94
5.4	σ -factors in <i>E. coli</i> .	95
5.5	Gene regulation by transcription factors.	96
5.6	Gene regulation by the small molecule-alarmone ppGpp.	97
5.7	Mechanisms of gene regulation by riboswitches.	98
5.8	Quantitative nature of deep-sequencing data.	103
5.9	Transcriptome assembly.	104
5.10	Gene expression quantification from RNA-seq experiment.	111
5.11	Fluorescence for promoter activity.	115
5.12	Chromatin immunoprecipitation.	118
5.13	Directionality in read alignments in ChIP-seq data.	121
5.14	Gene expression and RNA polymerase occupancy.	123
5.15	Overview of functional elements of <i>E. coli</i> from Ecocyc and	
	RegulonDB.	130
5.16	Effect of DNA supercoiling on gene expression in <i>E. coli</i> .	136
5.17	Schematic representation of a chromosome conformation	
	capture protocol.	140
5.18	Contact probability map of Caulobacter crescentus genome.	142
5.19	The σ -factor regulatory network of Geobacter sulfurreducens.	150
5.20	Transcriptional regulatory network of <i>E. coli</i> from the	
	RegulonDB database.	157
5.21	Transcription factor binding site position and type of regulation.	158
5.22	Degree distributions in the transcriptional regulatory network	
	of E. coli.	159
5.23	Transcription regulatory network motifs in <i>E. coli</i> .	163

	List of Figures	хi
5.24	Reconstructing transcriptional regulatory networks from	
	a compendium of gene expression data.	167
5.25	ChIP-seq signals for three sequence-specific nucleoid-associated	
	proteins in <i>E. coli</i> .	176
5.26	Agreement between the binding and measurable transcriptional	
	effects of NAPs.	176
5.27	Comparison of ChIP-seq profiles of two homologous	
	NAPs – IHF and HU.	178
5.28	Binding of H-NS to the <i>Salmonella Typhimurium</i> genome.	181
5.29	A NAP regulatory network of <i>E. coli</i> .	183
5.30	RNA targets of the RNA chaperone Hfq.	189
6.1	Restriction modification systems.	192
6.2	A model for the evolution of DNA methyltransferases in bacteria.	194
6.3	A schematic representation of deriving methylation calls from	
	bisulphite sequencing.	196
6.4	Variation in extent of cytosine methylation with growth phase	
	in E. coli.	198
6.5	IPD ratio distribution DNA methylation by SMRT sequencing.	201

Acknowledgements

I would like to thank my host institute, the National Centre for Biological Sciences (Bangalore, India), for providing me the resources and support to not only pursue research, but also to work on this book. All the members of my laboratory have been helpful and understanding during the times when I committed more hours to writing the book than to the lab. I would like to acknowledge the efforts of the two academic genomics core facilities that have enabled my research. These are the GeneCore facility at the European Molecular Biology Laboratory, Heidelberg, and the Next Generation Genomics Facility at the Centre for Cellular and Molecular Platforms, Bangalore. Thanks to the Department of Science and Technology (their research grants and the Ramanujan Fellowship scheme) and the Department of Biotechnology, Government of India, and CEFIPRA for funding our work.

Special thanks to Avantika Lal in the laboratory for designing and making several illustrations in this book. Aalap Mogre and Vittore Scolari from the lab also made illustrations for this work. Thanks to Hardik Gala (Institute of Stem Cell Biology and Regenerative Medicine, Bangalore) for contributing an illustration from his unpublished data. Many thanks to the large number of scientists worldwide who have published their high-quality work in open access journals, permitting free reproduction of important figures, which I could have never made otherwise. These, and others who gave permission to reuse copyrighted illustrations or data, are all acknowledged in the appropriate locations in the text. Of course, thanks to the entire community of researchers working in genomics and bacteriology!

Dasaradhi Palakodeti, Madan Babu Mohan, Subhajyoti De and Marco Cosentino Lagomarsino gave feedback on parts of the manuscript. This work would not have been possible without the efforts of Manish Chaudhari, my editor at CUP India.

Big thanks to Nicholas Luscombe, my PhD supervisor, for every great thing that a fantastic PhD supervisor does to his ward, in particular, give unbridled freedom to pursue one's interests in research.

xiv

Acknowledgements

My twin daughters were three months old when I started working on this book. They are now over two years old. A lot of credit to their impeccable behaviour and my wife Gayathri's efforts, which ensured that my work was not particularly affected by what was happening at home! Thanks, as always, to my parents for always being there.