
1 Introduction
Z. Chen

1.1 A brief overview of state space analysis

1.1.1 Mathematical background

In probability theory and statistics, a random variable is a variable whose value is subject
to variations due to chance. A random variable can take on a set of possible different
values. The mathematical function describing the possible values of a random variable
and their associated probabilities is known as a probability distribution. Random vari-
ables can be discrete, that is, taking any of a specified finite or countable list of values,
endowed with a probability mass function (pmf); or continuous, taking any numerical
value in an interval or collection of intervals, via a probability density function (pdf);
or a mixture of both types. From either the pmf or the pdf, one can characterize the
cumulant or moment statistics of the random variables, such as the mean, variance,
covariance, skewness and kurtosis.

To represent the evolution of the random variable over time, a random process is
further introduced. A stochastic process is a collection of random values, which is the
probabilistic counterpart to a deterministic process. Whereas the deterministic process
is governed by an ordinary differential equation, there is some indeterminacy in the
stochastic process: given the identical initial condition, the evolution of the process
may vary due to the presence of noise. In discrete time, a stochastic process involves
a sequence of random variables and the time series associated with these random vari-
ables. A stochastic process is said strictly stationary if the joint probability distribution
does not change when shifted in time; whereas a stochastic process is said wide-sense
stationary (WSS) if its first moment and covariance statistics do not vary with respect to
time. Any strictly stationary process which has a mean and a covariance is also WSS.

A Markov chain (or Markov process), named after Russian mathematician Andrey
Markov (1856–1922), is a random process that undergoes transitions from one state
to another on a state space. The Markov chain is memoryless: namely, the next state
depends only on the current state and not on the sequence of events that preceded it.
This specific kind of memoryless property is called a Markovian property.

1.1.2 Unobserved variables and stochastic dynamical systems

A random variable of a system is either observed (or measured) or unobserved (or
latent). In the context of a dynamical system, the unobserved variable is termed as the
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2 Introduction

state variable, and the observation is a form of time series. In general, the stochastic
dynamical systems can be written as two equations: state equation and observation
equation. For simplicity, let us start with an example of a linear stochastic dynamical
system.

1.1.2.1 State equation
Assume that an n-dimensional hidden state process xt+1 ∈ R

n follows a first-order
Markovian dynamics, as it only depends on the previous state at time t and is corrupted
by a state noise process nt+1 (which can be either correlated or uncorrelated between
individual components)

xt+1 = Axt + nt+1, (1.1)

where A is an n × n state-transition matrix. The state equation describes the state space
evolution of a stochastic dynamical system. Equation (1.1) defines a first-order vector
autoregressive (AR) process.

1.1.2.2 Observation equation
In a simple form, the m-dimensional observation yt ∈ R

m is subject to a linear transfor-
mation of the hidden state xt and is further corrupted by a measurement noise process vt

yt = Cxt + vt. (1.2)

A stochastic dynamical system with the form of state and observation equations is also
called the state space model (SSM).

Note 1: If the noise processes nt and vt are both Gaussian with zero mean and
respective covariance matrices Q and R, then yt will be also a Gaussian process (GP).
The GP is a specific stochastic process whose realizations consist of random vari-
ables that follow a Gaussian distribution. Moreover, every finite collection of those
random variables has a multivariate Gaussian distribution. From the operator theory
and nonparametric Bayesian viewpoint, the GP can be viewed as an infinite-dimensional
generalization of the multivariate Gaussian distribution.

Note 2: A linear SSM may have a time-varying driving input or control input ut ∈ R
r.

For instance,

xt+1 = Axt + But+1 + nt+1, (1.3)

yt = Cxt + Dut + vt. (1.4)

In the control setup, this is equivalent to a standard linear quadratic Gaussian (LQG)
control system (Bertsekas 2005).

Note 3: In a general setup, the SSM is characterized by two probability distributions

xt+1
∣∣xt ∼ P(xt+1|xt), (1.5)

yt
∣∣xt ∼ P(yt|xt). (1.6)

where the first equation specifies a state transition probability distribution, and the
second equation specifies the conditional probability distribution of the observations
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1.1 A brief overview of state space analysis 3

given the state variable. These two probability distributions are often associated with a
parametric or nonparametric statistical model, characterized by a specific parameter θ .
For instance, P(yt|xt) can be defined by the family of generalized linear model (GLM)
(McCullagh & Nelder 1989; Fahrmeir & Tutz 2001).

1.1.3 Observability, controllability and stability

To estimate unobserved state variables of stochastic dynamical systems, it is impor-
tant to understand the conditions of observability and controllability in systems the-
ory (Kalman 1960). Specifically, in order to infer the latent variables of the dynami-
cal system under observations, the system must be observable; in order to maneuver
the dynamical system under control input, the system must be controllable. In linear
discrete-time system, observability and controllability are linked to the rank of certain
matrices.

For the above discrete-time linear Gaussian system (equations 1.1 and 1.2), it is
observable if and only if the rank of the following (nm) × n observability matrix is
equal to the dimensionality of the state, n:

rank

⎡⎢⎢⎢⎢⎢⎢⎣
C
CA
CA2

...
CAn−1

⎤⎥⎥⎥⎥⎥⎥⎦ = n.

For the above discrete-time linear Gaussian system with control input (equation 1.4), it
is controllable if and only if the rank of the following (nr)× n controllability matrix is
equal to the dimensionality of the state, n:

rank

[
B

... AB
... · · · ... An−1B

]
= n.

In addition, to assure the stability of the linear system, the eigenvalues of the transi-
tion matrix A have to be within the unit circle, namely 0 < |λi| < 1 (i = 1, . . . , n).

It should be emphasized that for nonlinear stochastic systems, however, all of these
conditions no longer hold.

1.1.4 Bayes’ rule

The foundation of Bayesian estimation is given by Bayes’ rule, which consists of two
rules: product rule and sum rule (Bernardo & Smith 1994). Bayes’ rule provides a way
to compute the conditional, joint and marginal probabilities. Specifically, if we let X and
Y be two continuous random variables, the conditional probability p(X|Y) is written as

p(X|Y) = p(X, Y)

p(Y)
= p(Y|X)p(X)∫

p(Y|X)p(X)dX
. (1.7)
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4 Introduction

If X = {Xi} is discrete, then equation (1.7) is rewritten as

p(Xi|Y) = p(Xi, Y)

p(Y)
= p(Y|Xi)p(Xi)∑

j p(Y|Xj)p(Xj)
. (1.8)

In Bayesian language, p(Y|X), p(X) and p(X|Y) are referred to as the likelihood, prior
and posterior, respectively. The Bayesian machinery consists of three types of basic
operations: normalization, marginalization and expectation, all of which involve inte-
gration. Except for very few scenarios (i.e., Gaussianity), most integrations are analyti-
cally intractable when dealing with high-dimensional problems.

1.1.5 Recursive Bayesian estimation

Two fundamental goals in time series analysis are estimation (i.e., filtering or smoothing
of the present or past) and prediction (of the future). The variables of estimation or
prediction interest are often related to the observations that may be corrupted by noise.
The SSM provides a generic framework for analyzing time series data, with any form
of filtering, smoothing or prediction. The objective of state space analysis is to compute
the optimal estimate of the hidden state given the observed data, which can be derived
by a recursive form of Bayes’ rule.

Without loss of generality, let xt denote the state at discrete time t and y0:t denote
the cumulative observations up to time t. The filtered posterior distribution of the state,
conditional on the observations y0:t, bears a form of recursive Bayesian estimation

p(xt|y0:t) = p(xt)p(y0:t|xt)

p(y0:t)
= p(xt)p(yt, y0:t−1|xt)

p(yt, y0:t−1)

= p(xt)p(yt|xt, y0:t−1)p(y0:t−1|xt)

p(yt|y0:t−1)p(y0:t−1)

= p(xt)p(yt|xt, y0:t−1)p(xt|y0:t−1)p(y0:t−1)

p(yt|y0:t−1)p(y0:t−1)p(xt)

= p(yt|xt, y0:t−1)p(xt|y0:t−1)

p(yt|y0:t−1)
= p(yt|xt)p(xt|y0:t−1)

p(yt|y0:t−1)
, (1.9)

where the first four steps are derived from Bayes’ rule, and the last equality of equa-
tion (1.9) assumes the conditional independence between the observations. The one-step
state prediction, also known as the Chapman–Kolmogorov equation, is given by

p(xt+1|y0:t) =
∫

p(xt+1|xt)p(xt|y0:t)dxt, (1.10)

where the probability distribution (or density) p(xt+1|xt) describes a state transition
equation, and the probability distribution (or density) p(yt|xt) is the observation equa-
tion. Together equations (1.9) and (1.10) provide the fundamental relations to conduct
state space analyses. The above formulation of recursive Bayesian estimation holds for
both continuous and discrete variables, for either x or y or both. When the state variable
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1.1 A brief overview of state space analysis 5

is discrete and countable (in which we use St to replace xt), the SSM is also referred to
as a finite-state HMM, with associated p(St|St−1) and p(yt|St).

When the hidden state consists of both continuous and discrete variables, the SSM
is referred to as a switching SSM, with associated p(xt|xt−1, St) and p(yt|xt, St)

(Barber 2012; Ghahramani 1998). In this case, the inference or prediction involves
multiple integrals or summations. For example, the prediction equation (1.10) will be
rewritten as

p(xt+1|y0:t, S0:t) =
∫ ∑

St

p(xt+1|xt, St+1)p(St+1|St)p(xt|y0:t, S0:t)dxt. (1.11)

Extensions of the SSM, such as higher-order Markovian dependence or factorial depen-
dence of Markov chains (Ghahramani & Jordan 1997; Saul & Jordan 1999), will not be
discussed here.

1.1.6 Two illustrated examples

Example 1: Motor neuroprosthetics. A motor neuroprosthetic device, or brain machine
interface (BMI), is a machine that takes the signal inputs (such as the spike activity or
local field potentials) from certain areas of the brain (such as primary motor or premotor
cortex), extracts and transforms the information into overt device control such that it
reflects the intension of the user’s brain; or a computational machine turning thoughts
into action (Hatsopoulos & Donoghue 2009). Some neurons from the primary motor
cortex (M1) encode the kinematic information of the movement, such as the direction,
position and velocity.

Let xt = [M�
t , V�

t ]� denote the augmented state vector that consists of three-
dimensional (3D) hand position and velocity vectors (where the superscript � denotes a
vector or matrix transpose operator); let yt,c denote the spike count observation at time
t from the c-th neuron, with a tuning function λc. A discrete-time SSM for kinematics
and spiking activity can be formulated as follows (Brockwell et al. 2007)

xt =
[

Mt

Vt

]
=
[

I3×3 �tI3×3

0 0.98I3×3

]
xt−1 +

[
0
et

]
, (1.12)

yt,c ∼ Poisson
(
λc
(
Mt-lag, Vt-lag, σcεt,c

))
, (1.13)

where �t = 10 ms denotes the temporal bin size, et denotes zero-mean white Gaus-
sian noise with a 3 × 3 diagonal covariance matrix: diag{0.009, 0.009, 0.009}, εt,c is
a collection of independent standard Gaussian random variables, and σc is a scaling
constant. The time lag varies between −250 and +250 ms. Depending on the modeling
need, the M1 neuronal tuning curve λc may have a general function form with respect to
the position, velocity, or direction (Georgopoulos et al. 1986; Hatsopoulos et al. 2007).
Figure 1.1 shows some spike rasters of two motor neurons during a 3D reach-to-grasp
task (Saleh et al. 2012).

Example 2: Sleep-stage scoring. A typical 8-hour night sleep for healthy human
adults consists of four or five sleep cycles; each cycle lasts approximately 90 minutes
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6 Introduction
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Figure 1.1 (a–c) Motor neuroprosthetics for a 3D reach-to-grasp task for five objects at seven
locations. (d) Spike raster of one M1 neuron recorded from multiple trials. (e) Simultaneous
recordings of M1 neuronal population spike data from one trial (data courtesy of Professor
Nichos Hatsopoulos).

and comprises several different stages: light sleep, deep sleep (slow wave sleep) and
rapid eye movement (REM) sleep (Mahowald & Schenck 2005). To diagnose sleep
problems, all-night polysomnographic (PSG) recordings including EEG, electrooculo-
gram (EOG) and electromyogram (EMG), are collected from the patient and scored by
human experts. However, visual sleep scoring is a time-consuming and highly subjective
process. In contrast, computational algorithms can be developed to automatically score
the sleep stages (Wake, NREM stages 1 through 3, and REM). Each sleep stage is
associated with specific physiological features in EEG, EOG and EMG. In state space
analysis, for example, one can design an HMM or hidden semi-Markov model (HSMM)
to classify five discrete states that correspond to distinct sleep stages. The state transition
can be displayed by a constrained Markov chain (Figure 1.2), which is described by the
invariant transition probability Pij = Pr(St = j|St−1 = i) and self-transition probability
Pii = Pr(St = i|St−1 = i). The observation probability P(yt|St = i) describes the
observed likelihood conditional on a specific sleep stage.
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1.2 Inference and learning 7
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Figure 1.2 (a) A five-state Markov chain that describes the sleep stage transition. S1: Wake; S2:
NREM stage 1; S3: NREM stage 2; S4: NREM stage 3; S5: REM stage. (b) Graphical
illustration of a SSM or HMM. The circles denote random variables, and the observed variable
is in gray. The arrows indicate the probabilistic dependency.

1.2 Inference and learning

In statistics, a likelihood is a function of the parameters of a statistical model. The
likelihood of a set of parameter values, θ , given observations, is equal to the probability
of those observed data conditional on those parameter values, that is L(θ |D) = P(D|θ).
In the case of SSM, the complete data consists of observed and latent variables accumu-
lated within a time interval (0, T]; and the complete data likelihood is specified by the
joint probability distribution of these variables. In the example of the linear Gaussian
SSM (equations 1.1 and 1.2), the likelihood function is

p(X, Y|θ) = 1

(2π)
n
2 |Q| 1

2

exp

{
T−1∑
t=1

− (xt+1 − Axt)
�Q−1(xt+1 − Axt)

2

}

+ 1

(2π)
m
2 |R| 1

2

exp

{
T∑

t=1

− (yt − Cxt)
�R−1(yt − Cxt)

2

}
, (1.14)

where the augmented variable θ = {A, C, Q, R, x0} includes the initial state condition
and parameters that fully characterize the linear Gaussian SSM.

There are two fundamental approaches to the inference problem: the likelihood
approach and the Bayesian approach. The likelihood approach computes a point esti-
mate by maximizing the likelihood function and represents the uncertainty of estimate
via confidence intervals (Pawitan 2001). The maximum likelihood estimate (m.l.e.) is
asymptotically consistent, normal and efficient, and it is invariant to reparameterization
(i.e., functional invariance). By setting ∂L

∂θ
= 0, one can derive the m.l.e. for the

unknown parameter θ , which has the property

θm.l.e. ∼ N (θ , �), (1.15)
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8 Introduction

where N (θ , �) denotes a multivariate Gaussian distribution with mean θ and covariance
matrix �; and the covariance is also related to the negative inverse of the Fisher infor-

mation matrix, i.e., � = −
[

∂L
∂θ∂θ�

]−1
. In many cases there is no closed-form solution

to ∂L
∂θ

= 0, and one has to rely on iterative optimization procedures to obtain either the
global or local m.l.e. optimum.

It shall be cautioned that the m.l.e. may suffer from overfitting; namely, there is no
constraint imposed on the parameter space for the solution. Depending on the sample
size and model complexity, such extra freedom used in model fitting may not necessarily
lead to a good predictive performance on unseen data (i.e., poor generalization); there-
fore, regularization and model selection is required in statistical data analyses (Murphy
2012). In contrast, the Bayesian philosophy lets data speak for themselves and models
the unknowns (parameters, latent variables and missing data) and uncertainties (which
are not necessarily random) with probabilities or probability densities. The Bayesian
approach computes the full posterior of the unknowns based on the rules of probability
theory; the Bayesian approach can resolve the overfitting problem in a principled way
(Bernardo & Smith 1994; Gelman et al. 2004; Barber 2012).

Consider a state and parameter (joint) estimation problem. Bayesian inference aims
to infer the joint posterior of the state and the parameter using Bayes’ rule,

p(X, θ |Y) ≈ p(X|Y)p(θ |Y) = p(Y|X, θ)p(X)p(θ)

p(Y)

= p(Y|X, θ)p(X)p(θ)∫ ∫
p(Y|X, θ)p(X)p(θ)dXdθ

, (1.16)

where the first equation assumes a factorial form of the posterior for the state and
the parameter (first-stage approximation), and p(X) and p(θ) denote the prior distri-
butions for the state and parameter, respectively. The denominator of equation (1.16) is
a normalizing constant known as the partition function. When dealing with a prediction
problem for unseen data Y∗, we compute the posterior predictive distribution

p(Y∗|Y) =
∫ ∫

p(Y∗|Y , θ , X)p(X|Y)p(θ |Y)dXdθ , (1.17)

or its expected mean

Ŷ∗ = Ep(Y∗|Y)[Y∗] =
∫ ∫ ∫

Y∗p(Y∗|Y , θ , X)p(X|Y)p(θ |Y)dXdθdY∗. (1.18)

Alternatively, Bayesian inference may optimize an alternate criterion, such as the
marginal likelihood (also known as “evidence”) p(Y),

p(Y) =
∫ ∫

p(Y|X, θ)p(X)p(θ)dXdθ . (1.19)

Methods for likelihood or Bayesian inference will be covered in many chapters of this
book, especially in Chapters 2 and 6.
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1.3 Applications in neuroscience and medicine 9

1.3 Applications in neuroscience and medicine

In the literature, numerous applications of SSM to dynamic analyses of neuroscience
and clinical data have been found (Chen et al. 2010; Paninski et al. 2010), which
cover a wide range of neural and clinical data, such as EEG, MEG, ECoG (electrocor-
ticography), fMRI, NIRS (near-infrared spectroscopy), calcium imaging, DTI (diffusion
tensor imaging), ECG (electrocardiogram) and other physiological signals. According
to the nature of the task, we summarize the representative applications in the following
categories:

• Inverse problems: Applications include solving EEG or MEG inverse problems
(Galka et al. 2004; Lamus et al. 2012), deconvolving fMRI time series (Penny
et al. 2005) and deconvolving spike trains from calcium imaging (Vogelstein et al.
2009, 2010). As an example, Chapter 3 will present a detailed study of MEG
source reconstruction problem.

• Population neuronal decoding of ensemble spikes: Applications include decod-
ing the movement kinematics from nonhuman primate M1 neurons in neural
prosthetics (Brockwell et al. 2004; Srinivasan et al. 2006, 2007; Yu et al. 2007;
Kulkarni & Paninski 2007; Wu et al. 2006, 2009), or goal-directed movement
control (Srinivasan & Brown 2007; Shanechi et al. 2012, 2013), or decoding rat’s
spatial location from hippocampal ensemble spike trains (Brown et al. 1998;
Barbieri et al. 2004; Ergun et al. 2007). In human primate studies, Truccolo
and colleagues applied the first point-process state space analysis to decode M1
neuronal spike trains recorded in patients with tetraplegia (Truccolo et al. 2008).
As examples, Chapters 8 and 9 will present studies on neural decoding of rodent
hippocampal and primate M1 neurons, respectively.

• Analysis of single neuronal plasticity or dynamics: Applications include track-
ing the receptive field of rat hippocampal neurons in navigation (Brown et al.
2001) and analyzing between-trial monkey hippocampal neuronal dynamics dur-
ing associative learning experiments (Czanner et al. 2008). As an example, Chap-
ter 7 will present a study of inferring latent stepping and ramping models of single
neuronal dynamics in decision making.

• Identification of the state of neuronal ensembles: Applications include detecting
stimulus-driven cortical state during behavior (Jones et al. 2007; Kemere et al.
2008) or detecting intrinsic cortical up/down states during slow wave sleep (Chen
et al. 2009). Chapter 6 will discuss methods for estimating the state and model
parameters of SSM for spike trains data.

• Assessment of learning behavior of experimental subjects: Applications include
characterizing dynamic behavioral responses in neuroscience experiments (Smith
et al. 2004, 2005, 2007; Prerau et al. 2009). Chapter 10 will revisit some of those
examples.

• Data smoothing and visualization: Data smoothing and high-dimensional data
visualization has become an increasingly important topic in neuroscience. The
SSM has provided a powerful framework to characterize the temporal structure
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10 Introduction

of time series, such as the smoothness and sparsity (Yu et al. 2009; Cunningham
& Yu 2014; Ba et al. 2014).

• Classification, prediction and diagnosis of clinical data: An important direction
for eHealthCare is clinical data mining, such as data classification, prediction,
prognosis or diagnosis (Kennedy & Turley 2011; Liu et al. 2012; van der Heijden
et al. 2014). As examples, Chapters 11 and 12 will present studies of applying
advanced SSMs for analyzing real-life physiological data collected from inten-
sive care unit (ICU).

• Clinical monitoring: Applications of SSM for monitoring physiological states of
patients in laboratory or ICU is an important research topic in clinical practice. As
examples, Chapters 13 through 15 will present studies of clinical applications in
cardiovascular modeling and monitoring, modeling and control of medical coma,
and physiological signal quality monitoring.
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