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Abstract. We describe an innovative statistical approach for the ab initio simultaneous analy-
sis of the formation history and morphology of the large-scale structure of the inhomogeneous
Universe. Our algorithm explores the joint posterior distribution of the many millions of param-
eters involved via efficient Hamiltonian Markov Chain Monte Carlo sampling. We describe its
application to the Sloan Digital Sky Survey data release 7 and an additional non-linear filtering
step. We illustrate the use of our findings for cosmic web analysis: identification of structures
via tidal shear analysis and inference of dark matter voids.
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1. Introduction

How did the Universe begin? How do we understand the shape of the present-day cos-
mic web? Within standard cosmology, we have an observationally well-supported model
for the initial conditions (ICs) – a Gaussian random field – and the evolution and growth
of cosmic structures is well-understood in principle. It is therefore natural to analyze
large-scale structure (LSS) surveys in terms of the simultaneous constraints they place
on the statistical properties of the initial conditions of the Universe and on the shape of
the cosmic web. Due to the computational challenge and to the lack of detailed physical
understanding of the non-Gaussian and non-linear processes that link galaxy formation
to the large-scale dark matter distribution, the current state of the art of statistical anal-
yses of LSS surveys is far from this ideal and these problems are addressed in isolation.
Here, we describe progress towards the full reconstruction of four-dimensional states and
illustrate the use of these results for cosmic web classification.

2. Statistical approach

2.1. Why Bayesian inference?

Cosmological observations are subject to a variety of intrinsic and experimental un-
certainties (incomplete observations – survey geometry and selection effects –, cosmic
variance, noise, biases, systematic effects), which make the inference of signals a funda-
mentally ill-posed problem. For this reason, no unique recovery of the initial conditions
and of the shape of the present-day cosmic web is possible; it is more relevant to quantify
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a probability distribution for such signals, given the observations. Adopting this point of
view for large-scale structure surveys, Bayesian forward modeling (gravitational struc-
ture formation is the generative model for the complex final state, starting from a simple
initial state – Gaussian or nearly-Gaussian ICs) offers a conceptual basis for dealing
with the problem of inference in presence of uncertainty (e.g. Jasche & Wandelt 2013a;
Kitaura 2013; Wang et al. 2013).

2.2. High-dimensionality

Statistical analysis of LSS surveys requires to go from the few parameters describing
the homogeneous Universe to a point-by-point characterization of the inhomogeneous
Universe. The latter description typically involves tens of millions of parameters: the
density in each voxel of the survey volume. No obvious reduction of the problem size
exists. “Curse of dimensionality” phenomena (Bellman 1961) are therefore the significant
obstacle in this high-dimensional data analysis problem. They refer to the problems
caused by the exponential increase in volume associated with adding extra dimensions
to a mathematical space, and therefore in sparsity given a fixed amount of sampling
points. Numerical representations of high-dimensional probability distribution functions
(pdfs) will tend to have very peaked features and narrow support, which means that
traditional sampling methods will fail. However, gradients of these functions carry capital
information, as they indicate the direction to high-density regions, permitting fast travel
through a very large volume in parameter space.

2.3. Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo algorithm (Duane et al. 1987) is an algorithm for exploring
parameter spaces with particles (samples). The general idea is to use classical mechanics
to solve statistical problems. The algorithm interprets the negative logarithm of the pdf to
sample from, P(x), as a potential, ψ ≡ − ln(P(x)), and integrates Hamilton’s equation in
parameter space. Due to the conservation of energy in classical mechanics, the theoretical
acceptance rate is always unity. Therefore, HMC beats the “curse of dimensionality” by
exploiting gradients (∂ψ(x)/∂x in Hamilton’s equations) and using conserved quantities.

3. Physical reconstructions

3.1. Bayesian large-scale structure inference in the SDSS DR7

The full-scale Bayesian inference code borg (Bayesian Origin Reconstruction from Galax-
ies, Jasche & Wandelt 2013a) uses HMC for four-dimensional inference of density fields
in the linear and mildly non-linear regime. The (approximate) physical model for grav-
itational dynamics included in the likelihood is second-order Lagrangian perturbation
theory (2LPT), linking initial density fields (at a scale factor a = 10−3) to the presently
observed large-scale structure (at a = 1). The galaxy distribution is modeled as a Pois-
son sample from these evolved density fields. The algorithm also accounts for luminosity
dependent galaxy biases (Jasche & Wandelt 2013b). In Jasche et al. (2015), we apply
the borg code to 463,230 galaxies from the Sample dr72 of the New York University
Value Added Catalogue (NYU-VAGC, Blanton et al. 2005), based ot the final data re-
lease (DR7) of the Sloan Digital Sky Survey (SDSS, Adelman-McCarthy et al. 2008;
Padmanabhan et al. 2008).

Each inferred sample (Fig. 1, left) is a “possible version of the truth” in the form
of a full physical realization of dark matter particles. The variation between samples
(Fig. 1, right) quantifies joint and correlated uncertainties inherent to any cosmological
observation and accounts for all non-linearities and non-Gaussianities involved.
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Figure 1. Bayesian LSS inference with borg in the SDSS DR7. Slices through one sample of
the posterior for the initial and final density fields (left) and posterior mean in the initial and
final conditions (right). The input galaxies are overplotted on the final conditions as red dots.

Figure 2. N -body filtering of a borg sample (left), to produce a non-linear data-constrained
realization of the redshift-zero large-scale structure (right).

3.2. Non-linear filtering

Building upon these results, it is possible to post-process the samples using fully non-
linear dynamics as an additional filtering step (Leclercq et al. 2015a). We generate a
set of data-constrained realizations of the present large-scale structure: some samples of
inferred initial conditions are evolved with 2LPT to z = 69, then with a fully non-linear
cosmological simulation (using gadget-2) from z = 69 to z = 0. This filtering step yields
a much more precise view of the deeply non-linear regime of cosmic structure formation,
sharpening overdense, virialized structures and resolving more finely the substructure of
voids (Fig. 2).

4. Cosmic web analysis

4.1. Tidal shear classification

The results presented in § 3.1 form the basis of the analysis of Leclercq et al. (2015b),
where we classify the cosmic large scale structure into four distinct web-types (voids,
sheets, filaments and clusters) and quantify corresponding uncertainties. We follow the
dynamic cosmic web classification procedure proposed by Hahn et al. (2007), based on
the eigenvalues λ1 < λ2 < λ3 of the tidal tensor Tij , Hessian of the rescaled gravitational
potential: Tij ≡ ∂2Φ/∂xi ∂xj , where Φ follows the Poisson equation (∇2Φ = δ). A voxel
is in a cluster (resp. in a filament, in a sheet, in a void) if three (resp. two, one, zero) of
the λs are positive.

By applying this classification procedure to all density samples, we are able to estimate
the posterior of the four different web-types, conditional on the observations. The means
of these pdfs are represented in Fig. 3.
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Figure 3. Mean of the posterior pdf for the four different web-types in the SDSS DR7.

4.2. Dark matter voids

In Leclercq et al. (2015a), we apply computational geometry tools (vide: the Void IDen-
tification and Examination pipeline, Sutter et al. 2015) to the constrained parts of the
non-linear realizations described in § 3.2. We find physical cosmic voids in the field traced
by the dark matter particles, probing a level deeper in the mass distribution hierarchy
than galaxies. Due to the high density of tracers, we find about an order of magnitude
more voids at all scales than the voids directly traced by the SDSS galaxies. In this fash-
ion, we circumvent the issues due to the conjugate and intricate effects of sparsity and
biasing on galaxy void catalogs (Sutter et al. 2014) and drastically reduce the statistical
uncertainty. For usual void statistics (number count, radial density profiles, ellipticities),
all the results we obtain are consistent with N -body simulations prepared with the same
setup.
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Abstract. The standard Bayesian model formalism comparison cannot be applied to most
cosmological models as they lack well-motivated parameter priors. However, if the data-set
being used is separable, then it is possible to use some of the data to obtain the necessary
parameter distributions, the rest of the data being retained for model comparison. While such
methods are not fully prescriptive, they provide a route to applying Bayesian model comparison
in cosmological situations where it could not otherwise be used.
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1. Introduction

Much of observational cosmology can be thought of as an attempt to use astronomi-
cal data to discriminate between the different cosmological models under consideration.
Given both the inevitably imperfect data and the intrinsically stochastic nature of many
cosmological measurements (i.e., cosmic variance), it is generally impossible to come to
absolute conclusions about the various candidate models; the best that can be hoped for
is to evaluate the probabilities, conditional on the the available data, that each of the
candidate models is the correct description of the Universe. The fact that there is, as
far as is known, just a single observable Universe (i.e., there is no ensemble from which
it has been drawn), means that such probabilities cannot be frequency-based, and must
instead must represent a degree of implication. Self-consistency arguments then require
(Cox 1946) that these probabilities be manipulated and inverted using Bayes’s theorem.

Taken together, the above facts imply that Bayesian model comparison (Section 2)
should be used to assess how well different cosmological models explain the available
data, although the fact that most such models have unspecified parameters is a significant
difficulty for this approach (Section 3). This problem can be solved for separable data-sets
as it is possible to use a two-step method of model comparison (Section 4), illustrated
here with high-redshift supernova (SN) data (Section 5).

2. Bayesian model comparison

Given that one of a set of N models, {M1 ,M2 , . . . ,MN }, is assumed to be true, the
state of knowledge conditional on all the available (and relevant) information, I, is fully
summarised by the probabilities Pr(M1 |I),Pr(M2 |I), . . . ,Pr(MN |I), where Pr(Mi |I) is
the probability that the i’th model is correct (and i ∈ {1, 2, . . . , N}). In the light of
some new data, d, that has not already been included in the above probabilities, Bayes’s
theorem gives the updated probability that model i is correct as

Pr(Mi |d, I) =
Pr(Mi |I) Pr(d|Mi , I)

∑N

j=1 Pr(Mj |I) Pr(d|Mj , I)
, (2.1)

where Pr(d|Mi , I) is the marginal likelihood under model Mi .

5

www.cambridge.org/9781107078567
www.cambridge.org


Cambridge University Press
978-1-107-07856-7 — Statistical Challenges in 21st Century Cosmology (IAU S306)
Edited by Alan Heavens , Jean-Luc Starck , Alberto Krone-Martins 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 D. J. Mortlock

If model Mi has Ni unspecified parameters {θi} = {θi,1 , θi,2 , . . . , θi,N i
} then the model-

averaged likelihood is obtained by marginalising over these parameters to give

Pr(d|Mi , I) =

∫
Pr({θi}|Mi , I) Pr(d|{θi},Mi , I) dθi,1 dθi,2 . . .dθi,N i

, (2.2)

where Pr({θi}|Mi , I) is the prior distribution of the parameter values in this model. This
expression demonstrates that the full specification of a model requires not just an explicit
parameterisation, but a distribution for those parameters as well; two mathematically
identical descriptions with different parameter priors are, in fact, different models.

3. Comparison of models without parameter priors

Equations 2.1 and 2.2 together summarise a self-consistent method for assessing which
of a set of models is better supported by the available information, provided that the
parameter priors for all the models are explicitly defined and unit-normalised. In par-
ticular, while it is often possible to obtain sensible parameter constraints based on an
improper prior, such as Pr({θi}|Mi , I) constant for all {θi}, the resultant marginal likeli-
hood is meaningless (Dickey 1961). Unfortunately, it is commonly the case in astronomy
and cosmology that there is no compelling form for the models’ parameter priors and,
further, that the natural uninformative prior distributions are improper and cannot be
normalised. The apparent implication is that Bayesian model comparison, at least in the
form described in Section 2, cannot be used in cosmology, an idea that has been explored
previously by, e.g., Efstathiou (2008) and Jenkins & Peacock (2011). The disturbing
corollary would be that there is no self-consistent method to choose between the avail-
able cosmological models, even if they are completely quantitative and mathematically
well-defined.

4. Model comparison with separable data

The idea that the relative degree of support for models with unspecified parameters is
undefined is at odds with the marked – and data-driven – progress that has been made
in cosmology over the last century. Clearly it is possible to use data to choose sensibly
between models even if they do not have well-motivated parameter priors; but can this be
formalised in a way that satisfies Bayes’s theorem and is hence logically self-consistent?

One possibility is, for separable data-sets (such as those which consist of measurements
of many astronomical sources), to use some of the available data to obtain the necessary
parameter priors and to then use the remaining data for model comparison. This is an
old concept, dating back at least to Lempers (1971) and explored subsequently by, e.g.,
Spiegelhalter & Smith (1982) and O’Hagan (1995). The central idea is to partition the
data as d = (d1 , d2), with the first partition of training data used to obtain the (partial)
posterior distribution for the parameters of i’th model as

Pr({θi}|d1 ,Mi , I) =
Pr({θi}|Mi , I) Pr(d1 |{θi},Mi , I)∫

Pr({θ′i}|Mi , I) Pr(d1 |{θ′i},Mi , I) dθ′i,1 dθ′i,2 . . .dθ′i,N i
,
, (4.1)

where Pr({θi}|Mi , I), which need not be normaliseable, should be a highly uninforma-
tive prior. This posterior distribution can then be used as the prior needed to obtain a
meaningful marginal likelihood, which can then be evaluated for the testing data as

Pr(d2 |d1 ,Mi , I) =

∫
Pr({θi}|d1 ,Mi , I) Pr(d2 |{θi},Mi , I) dθi,1 dθi,2 . . .dθi,N i

. (4.2)
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Figure 1. (left) The posterior distribution of Ωm and ΩΛ implied by from the Perlmutter et al.
(1999) SCP SN data and a uniform prior with Ωm � 0. Highest posterior density contours
enclosing 68.3%, 95.4% and 99.7% of the posterior probability are shown. Also shown are the
prior distributions of the accelerating model and matter only model for Ωmax = 3. (right) The
dependendence of Pr(accel.|d, I) on Ωmax , shown for different prior probabilities, Pr(accel.|I).

This marginal likelihood is coherent, in the sense that it provides self-consistent up-
dated posterior probabilities when inserted into Equation 2.1, but there is also ambiguity:
there is no compelling scheme for partitioning the data. It is tempting to average over the
possible partitions, but this approach does not have a rigorous motivation. Despite these
ambiguities, this two-step method of Bayesian model comparison for separable data does
satisfy the Cox (1946) self-consistency requirements and so provide a means of calculating
posterior probabilities for cosmological models with unspecified parameter priors.

5. Example: late-time acceleration and supernovae

One of the most significant recent cosmological discoveries was that the Universe’s ex-
pansion rate is increasing, a result which is often linked most strongly to the observations
of distant SNe made by Riess et al. (1998) and Perlmutter et al. (1999). The comparative
faintness of the SNe, given their redshifts and light-curve decay timescales, indicated that
the (normalised) cosmological constant, ΩΛ , is sufficiently large to override the deceler-
ation caused by the (normalised) matter density, Ωm . Riess et al. (1998) and Perlmutter
et al. (1999) used their SNe measurements, d, to obtain posterior distributions of the
form Pr(ΩΛ ,Ωm |d, I), under the assumption of unimformative (and improper) uniform
priors of the form Pr(Ωm ,ΩΛ) ∝ Θ(Ωm ), where Θ(x) is the Heaviside step function. The
posterior distribution for the 42 SCP SNe from Perlmutter et al. (1999), reproduced in
Fig. 1, reveals that most of the models that are consistent with the data correspond to
an accelerating universe (i.e., ΩΛ > Ωm/2).

But do these data provide quantitive evidence of cosmological acceleration? Riess et al.

(1998) approached this question by calculating the fraction of the posterior with ΩΛ >
Ωm/2, which is an apparently compelling 0.997 for the case shown in Fig. 1. The relevant
Bayesian calculation (c.f. Drell et al. 2000) should, however, be based on the marginal
likelihoods of an accelerating model (for which the prior is non-zero only for ΩΛ > Ωm/2)
and a decelerating model (for which the obvious option is a matter-only model with
ΩΛ = 0). Such models can be fully specified (in the sense defined in Section 2) by adding
the restrictions that 0 � Ωm � Ωmax and 0 � ΩΛ � min[Ωmax ,ΩΛ ,BB(Ωm )] (defined to
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Figure 2. The distribution of Pr(accel.|d2 , I) obtained from different partitions of the Perlmut-
ter et al. (1999) SN data set with training sets of 10 (left) and 21 (right) SNe. The open symbols
indicate the prior values (of, from left to right, 0.01, 0.05, 0.1 and 0.5) and the solid symbols
show the posterior values given by training and testing samples that alternate in redshift.

reject models that did not begin with a Big Bang), where Ωmax � 0 is an unspecified
“hyper-parameter”. Figure 1 shows the dependence of the posterior probability of the
accelerating model, Pr(accel.|d, I), on Ωmax . Even the peak values of Pr(accel.|d, I) are
considerably lower than the posterior fraction quoted above, and the dependence on the
unknown value of Ωmax is significant as well.

Rather than introducing an arbitrary new parameter, another option is to adopt the
two-step method described in Section 4, using some of the SN data to obtain a partial
posterior in Ωm and ΩΛ for both the accelerating and matter-only models and then
using the remainder to perform model comparison. The results of doing so are shown in
Fig. 2 for several different partitioning options. These results again illustrate the standard
Bayesian result that the better-fitting accelerating model is not favoured so decisively
over the more predictive (i.e., “simpler”) matter-only model, a result that robust to prior
choice.

This two-step approach to model comparison could be applied to a variety of problems
in astrophysics and cosmology (e.g., Bailer-Jones 2012, Khanin & Mortlock 2014).
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Abstract. In astronomical and cosmological studies one often wishes to infer some properties of
an infinite-dimensional field indexed within a finite-dimensional metric space given only a finite
collection of noisy observational data. Bayesian inference offers an increasingly-popular strategy
to overcome the inherent ill-posedness of this signal reconstruction challenge. However, there
remains a great deal of confusion within the astronomical community regarding the appropriate
mathematical devices for framing such analyses and the diversity of available computational
procedures for recovering posterior functionals. In this brief research note I will attempt to
clarify both these issues from an “applied statistics” perpective, with insights garnered from my
post-astronomy experiences as a computational Bayesian / epidemiological geostatistician.

Keywords. Methods: data analysis–methods: statistical

1. Introduction

The potential afforded by Bayesian techniques for inferring the properties of infinite-
dimensional mathematical structures, such as random fields (to be understood here as
random functions defined at each point of some finite-dimensional metric space), has long
been recognised by both probability theorists, e.g. O’Hagan (1978), and practitioners:
with the first wave of practical applications in geoscience (e.g. Omre (1987), Handcock
& Stein (1993)) and machine learning (e.g. Rasmussen & Williams (1996), Neal (1997))
contemporaneous with the advent of sufficiently powerful desktop computers. Cosmol-
ogists were at this time notable as ‘early adopters’ and pioneers of the new techniques
for field inference. Indeed, the Monte Carlo methods for constrained simulation from
Gaussian random fields developed by Bertschinger (1987) and Hoffman & Ribak (1991)
remain key tools for efficient conditional simulation, cf. Doucet (2010).

However, over the past decade the sophistication of statistical analysis techniques
brought to bear on the study of cosmological fields has not kept pace with progress
outside of astronomy. With modern tools such as the Integrated Nested Laplace Approx-
imation (INLA; Rue et al. (2009)), ‘variational inference’ (Hensman et al. (2013)), particle
filtering (Del Moral et al. (2007)), and Approximate Bayesian Computation (ABC; Mar-
joram et al. (2003)) almost entirely ignored to-date by the cosmological community we
have, in my opinion, become the ‘laggards’ of the technology adoption lifecycle.

There are multiple factors seemingly to blame for this divergence: (i) the emergence of
an isolationist attitude to the practice of cosmological statistics; (ii) an over-emphasis on
the path integration-based conceptulisation of random fields, rather than the measure-
theory-based mathematics of mainstream statistics; and (iii) an under-appreciation of
the potential for stochastic process priors (including, but not limited to, the Gaussian
process) as flexible modelling components within the hierarchical Bayesian framework.
With the first already being well fought back against by inter-disciplinary programming
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in conferences such as the IAUS306 and the SCMA series I will therefore focus in this
proceedings (as in my contributed talk) on the latter two. In particular, I aim to clarify
a number of mathematical concepts crucial to a high-level understanding of Bayesian
inference over random fields and measures (Section 2), and then to highlight just a few
of the exciting techniques to have recently emerged in this area (Section 3).

2. The Mathematics of Bayesian Field Inference

Cosmologists and astronomers already well-versed in the practice and theory of Bayesian
statistics in the finite-dimensional setting will typically have one of two contrasting ex-
periences upon first attempting to extend these ideas to infinite-dimensional inference
problems. The pragmatist will happily observe that the mechanics of computation are
little changed (e.g. the Gaussian random field at finite sample points is distributed just
as the familiar multivariate Gaussian), while the cautious theorist will more likely be
overwhelmed by a first acquaintance with measure-theoretic probability (i.e., probability
triples and the algebra of sets). But ideally one will have both experiences, since each
offers an equally important perspective, as I discuss in this Section.

2.1. Distributions over Infinite-Dimensional Space

In formal statistics the core of probabilistic computation is framed within the language of
measure theory: the key object being the ‘probability triple’ of (i) a sample space, Ω, i.e.,
some non-empty set; (ii) a σ-algebra, Σ, i.e., a collection of subsets of Ω with ∅,Ω ∈ Σ,
closed under the formation of complements, countable unions and intersections; and (iii)
a probability measure, P , i.e., a countably additive set function from Σ to [0,1] for which
P (∅) = 0 and P (Ω) = 1. In this context Carathéodory’s Extension Theorem provides
the theorist with the machinary to build complex probability triples and forge a rigorous
notion of random variables as measures on the pre-images of Borel σ-algebra sets of the
real numbers; and from this to the familiar mechanics of probability densities defined with

respect to the Lebesgue measure (e.g. the standard Normal with f(x) = 1
√

2π
exp−x2

2 dx).

Nevertheless, with the Lebesgue measure behaving intuitively as a product measure in
Rn , and with Lebesgue and Riemann integration interchangable in practice for all but
a few rare cases, the pragmatist can safely ignore these theoretical foundations in the
study of ‘real-world’ problems in finite-dimensional settings.

In the context of probabilistic inference over fields, however, one must proceed with care
as there exists no equivalent to the Lebesgue measure to serve as a natural reference for
defining densities in an infinite-dimensional Banach space (e.g. the Lp function spaces).
Hence, for Bayesian analysis in infinite-dimensional space we must be deliberate in our
choice of reference measure, which we encode into the prior. Typically we will do this
indirectly by assigning as prior the implicit measure (or ‘law’) belonging to a given
stochastic process (e.g. a Gaussian process, or Poisson process) having sample paths
within the field space under study. Although quite technical the distinction between
this formal statistical approach and the path integration-based language of cosmological
papers, e.g. Enßlin et al. (2009), Kitching & Taylor (2011), is important if we are to
connect with, and thereby benefit from, the rich body of applied statistics literature on
infinite-dimensional inference. Worth noting also is that the measure-theoretic equivalent
of the probability density is the ‘Radon-Nikodym (R-N) derivative’, with a trivial but
illustrative example being that of the R-N derivative of posterior against prior given by
the likelhood function divided by the marginal likelihood, c.f. Cotter et al. (2009).

Finally, the measure theoretic definition of a stochastic process is a collection of ran-
dom variables indexed by a set; here all points of the physical metric space over which
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