

Integrative Mechanobiology

The first of its kind, this comprehensive resource integrates cellular mechanobiology with micro-nano techniques to provide unrivalled in-depth coverage of the field, including state-of-the-art methods, recent advances, and biological discoveries.

Structured in two parts, the first offers detailed analysis of innovative micro-nano techniques including FRET imaging, electron cryomicroscopy, micropost arrays, nanotopography devices, laser ablation, and computational image analysis. The second part of the book provides valuable insights into the most recent technological advances and discoveries in areas such as stem cell, heart, bone, brain, tumor, and fibroblast mechanobiology.

Written by a team of leading experts and well-recognized researchers, this is an essential resource for students and researchers in biomedical engineering.

Yu Sun is a Professor at the University of Toronto and is the Canada Research Chair in Micro and Nanoengineering Systems. He was inducted Fellow of ASME, IEEE, and CAE for his work on micro-nano devices and robotic systems. His awards include the 2010 IEEE Robotics and Automation Society Early Career Award and an NSERC E.W. R. Steacie Memorial Fellowship in 2013.

Deok-Ho Kim is a Professor in the Department of Bioengineering at the University of Washington. His awards include the Samsung Humantech Thesis Award (2009), the Harold M. Weintraub Award in Biological Sciences (2010), the American Heart Association National Scientist Development Award (2012), the KSEA Young Investigator Award (2013), and the BMES-CMBE Rising Star Award (2013).

Craig A. Simmons is a Professor at the University of Toronto. His research in cell mechanobiology, tissue engineering, and microtechnologies has been recognized with the Canada Research Chair in Mechanobiology, the McCharles Prize (2010), and the McLean Award (2012).

Integrative Mechanobiology

Micro- and Nano- Techniques in Cell Mechanobiology

EDITED BY

YU SUN

University of Toronto

DEOK-HO KIM

University of Washington

CRAIG A. SIMMONS

University of Toronto

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107078390

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-07839-0 Hardback

Additional resources for this publication at www.cambridge.org/9781107078390

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of contributors Preface	<i>page</i> vii xi
Part I:	Micro-nano techniques in cell mechanobiology	1
1	Nanotechnologies and FRET imaging in live cells Eddie Y. Chung, Qin Qin, Agamoni Bhattacharyya, Shaoying Lu, and Yingxiao Wang	3
2	Electron microscopy and three-dimensional single-particle analysis as tools for understanding the structural basis of mechanobiology Niels Volkmann and Dorit Hanein	15
3	Stretchable micropost array cytometry: a powerful tool for cell mechanics and mechanobiology research Yue Shao, Shinuo Weng, and Jianping Fu	32
4	Microscale generation of dynamic forces in cell culture systems Christopher Moraes, Luke A. MacQueen, Yu Sun, and Craig A. Simmons	47
5	Multiscale topographical approaches for cell mechanobiology studies Koichiro Uto, Elliot Fisher, Hong-Nam Kim, Chang Ho Seo, and Deok-Ho Kim	69
6	Hydrogels with dynamically tunable properties Murat Guvendiren and Jason A. Burdick	90
7	Microengineered tools for studying cell migration in electric fields Jiandong Wu and Francis Lin	110
8	Laser ablation to investigate cell and tissue mechanics in vivo Teresa Zulueta-Coarasa and Rodrigo Fernandez-Gonzalez	128
9	Computational image analysis techniques for cell mechanobiology Ge Yang and Hao-Chih Lee	148
10	Micro- and nanotools to probe cancer cell mechanics and mechanobiology Yasaman Nematbakhsh and Chwee Teck Lim	169
11	Stimuli-responsive polymeric substrates for cell-matrix mechanobiology	186

vi **Contents**

12	Forces of nature: understanding the role of mechanotransduction in stem cell differentiation	205
13	Andrew W. Holle, Jennifer L. Young, and Yu Suk Choi Mechanobiological stimulation of tissue engineered blood vessels Kyle G. Battiston, J. Paul Santerre, and Craig A. Simmons	227
14	Bone cell mechanobiology using micro- and nano-techniques Chao Liu, Kevin Middleton, and Lidan You	245
15	Molecular mechanisms of cellular mechanotransduction in wound healing Vincent F. Fiore, Dwight M. Chambers, and Thomas H. Barker	266
16	Micropost arrays as a means to assess cardiac muscle cells Andrea Leonard, Marita L. Rodriguez, and Nathan J. Sniadecki	295
17	Micro- nanofabrication for the study of biochemical and biomechanical regulation of T cell activation Hye Mi Kim and Junsang Doh	316
18	Study of tumor angiogenesis using microfluidic approaches Yoojin Shin, Sewoon Han, Hyo Eun Jeong, Jeong Ah Kim, Jessie S. Jeon, and Seok Chung	330
19	Neuromechanobiology of the brain: mechanics of neuronal structure, function, and pathophysiology Jerel Mueller and William Tyler	347
	Index	368

Contributors

Thomas H. Barker

Georgia Institute of Technology

Kyle G. Battiston

University of Toronto

Agamoni Bhattacharyya

University of California, San Diego

Jason A. Burdick

University of Pennsylvania

Dwight M. Chambers

Georgia Institute of Technology

Yu Suk Choi

University of Western Australia

Eddie Y. Chung

University of California, San Diego

Seok Chung

Korea University

Junsang Doh

Pohang University of Science and Technology

Mitsuhiro Ebara

National Institute for Materials Science (NIMS), Japan

Rodrigo Fernandez-Gonzalez

University of Toronto

Cambridge University Press

978-1-107-07839-0 - Integrative Mechanobiology: Micro- and Nano- Techniques in Cell Mechanobiology Edited by Yu Sun, Deok-ho Kim and Craig A. Simmons

Frontmatter

More information

viii List of contributors

Vincent F. Fiore

Georgia Institute of Technology

Elliot Fisher

University of Washington

Jianping Fu

University of Michigan

Murat Guvendiren

Rutgers University

Sewoon Han

University of California, Berkeley

Dorit Hanein

Sanford Burnham Medical Research Institute

Andrew W. Holle

Max Planck Institute for Intelligent Systems

Hyo Eun Jeong

Korea University

Jessie S. Jeon

Korea Advanced Institute of Science and Technology

Deok-Ho Kim

University of Washington

Hong-Nam Kim

Korea Institute of Science and Technology (KIST)

Hye Mi Kim

Pohang University of Science and Technology

Jeong Ah Kim

Korea Basic Science Institute

Hao-Chih Lee

Carnegie Mellon University

Andrea Leonard

University of Washington

Cambridge University Press

978-1-107-07839-0 - Integrative Mechanobiology: Micro- and Nano- Techniques in Cell Mechanobiology Edited by Yu Sun, Deok-ho Kim and Craig A. Simmons

Frontmatter

More information

List of contributors

İΧ

Chwee Teck Lim

National University of Singapore

Francis Lin

University of Manitoba

Chao Liu

University of Toronto

Shaoying Lu

University of California, San Diego

Luke A. MacQueen

University of Toronto

Kevin Middleton

University of Toronto

Christopher Moraes

McGill University

Jerel Mueller

Virginia Tech

Yasaman Nematbakhsh

National University of Singapore

Qin Qin

University of California, San Diego

Marita L. Rodriguez

University of Washington

J. Paul Santerre

University of Toronto

Chang Ho Seo

University of Tokyo

Yue Shao

University of Michigan

Yoojin Shin

Korea University

x List of contributors

Craig A. Simmons

University of Toronto

Nathan J. Sniadecki

University of Washington

Yu Sun

University of Toronto

William Tyler

Arizona State University

Koichiro Uto

University of Washington

Niels Volkmann

Sanford Burnham Medical Research Institute

Yingxiao Wang

University of California, San Diego

Shinuo Weng

University of Michigan

Jiandong Wu

University of Manitoba

Ge Yang

Carnegie Mellon University

Lidan You

University of Toronto

Jennifer L. Young

Max Planck Institute for Intelligent Systems

Teresa Zulueta-Coarasa

University of Toronto

Preface

Mechanical forces in cell microenvironments direct cellular and multicellular form and function. Cells sense the mechanical characteristics of their microenvironment and translate the mechanical cues to intracellular biochemical signals that regulate several cellular and molecular processes important in development, homeostasis, and disease. Much of our understanding of the molecular mechanisms underlying the ability of cells to sense and react to mechanical stimuli is largely based on traditional macroscale tissue culture assays. However, novel micro- and nanoscale techniques for investigating cellular mechanobiological processes in normal and pathophysiological contexts have been under intense development in recent years. These approaches are providing new insights into cell mechanotransduction and mechanobiological responses, leading to improved fundamental understanding of cell biology and new strategies for cell-based regenerative therapies. This book highlights many of those recent advances in integrative cellular mechanobiology, including new discoveries and micro- and nanoengineered technologies.

The two related themes in the book are "Micro-Nano Techniques in Cell Mechanobiology" and "Recent Progress in Cell Mechanobiology."

- Chapter 1 reviews micropatterning technologies for controlling input signals in cellular mechanosensing and FRET live-cell imaging for visualizing molecular networks.
- Chapter 2 discusses electron microscopy and three-dimensional single-particle analysis for discerning the molecular underpinnings of cellular processes.
- Chapter 3 describes stretchable micropost array cytometry for quantitative control and real-time measurement of both mechanical stimuli and cellular biomechanical responses with a high spatiotemporal subcellular resolution.
- Chapter 4 discusses micro-device arrays for applying dynamically controlled mechanical stimuli to cells cultured in 2-D and 3-D arrayed environments.
- Chapter 5 reviews micro-nano topographies mimicking native extracellular matrices for the regulation of cellular behaviors.
- Chapter 6 describes hydrolytically degradable hydrogels, protease-sensitive hydrogels with cell-controlled properties, and stimuli-responsive hydrogels with user-controlled properties.
- Chapter 7 reviews microengineered electrotaxis devices for directing cell migration.

xii Preface

- Chapter 8 reviews laser ablation in severing cellular structures and its application to the measurement of physical forces with minimal disruption of the cellular microenvironment.
- Chapter 9 discusses computational image analysis techniques that are used to analyze dynamic fluorescence microscopy images for cell mechanobiology applications.
- Chapter 10 highlights micro- and nanotools for investigating cell mechanics and mechanobiology with a focus on cancer cells.
- Chapter 11 reviews several types of stimuli-responsive polymeric materials that have been developed for directing cell fate.
- Chapter 12 discusses in vivo tissue level mechanical stimuli and in vitro stem cell mechanosensing.
- Chapter 13 discusses how mechanobiological stimulation aids in engineering vascular and valvular tissues, and the role for micro- and nanoscale technologies.
- Chapter 14 highlights micro- and nanoscaled in vitro testing platforms to better mimic the environment of bone cells and their applications to studying bone cell mechanobiology.
- Chapter 15 explains molecular mechanotransduction mechanisms involved in fibroblast mediation of wound healing and tissue fibrosis.
- Chapter 16 highlights recent studies using micropost array technologies to measure and manipulate the contractile response of stem cell derived cardiomyocytes.
- Chapter 17 reviews several micro-nano fabricated platforms applied to addressing T cell activation.
- Chapter 18 discusses microfluidics assays for investigating cellular morphogenesis in 3-D and tumor angiogenesis.
- Chapter 19 discusses recent progress and future directions regarding cellular mechanobiology as applied to neuronal function.

Many of the molecular mechanisms by which cells sense and respond to mechanobiological stimuli require further elucidation. It is likely that major advances to this end will come from powerful micro- and nanoengineered platforms and the creation of more physiologically relevant in vitro models of mechanotransduction. It is certain that we will witness more transformative techniques and intriguing new findings in cellular mechanobiology in the near future. We thank all of the chapter authors and reviewers, and hope this book contributes to the education of next-generation mechanobiologists and becomes a useful reference in the area of integrative cellular mechanobiology.

Yu Sun, Deok-Ho Kim, and Craig Simmons