

Workload Modeling for Computer Systems Performance Evaluation

Reliable performance evaluations require the use of representative workloads. This is no easy task because modern computer systems and their workloads are complex, with many interrelated attributes and complicated structures. Experts often use sophisticated mathematics to analyze and describe workload models, making these models difficult for practitioners to grasp. This book aims to close this gap by emphasizing the intuition and the reasoning behind the definitions and derivations related to the workload models. It provides numerous examples from real production systems, with hundreds of graphs. Using this book, readers will be able to analyze collected workload data and clean it if necessary, derive statistical models that include skewed marginal distributions and correlations, and consider the need for generative models and feedback from the system. The descriptive statistics techniques covered are also useful for other domains.

Dror G. Feitelson is a professor of computer science at the Hebrew University of Jerusalem. He is a founding co-organizer of a series of international workshops on job-scheduling strategies for parallel processing and of the ACM Experimental Computer Science Workshop. He maintains the Parallel Workloads Archive, a widely used community resource with logs of activity on parallel supercomputers.

WORKLOAD MODELING FOR COMPUTER SYSTEMS PERFORMANCE EVALUATION

Dror G. Feitelson

The Hebrew University of Jerusalem

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107078239

© Dror G. Feitelson 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Feitelson, Dror G.

Workload modeling for computer systems performance evaluation / Dror G. Feitelson, The Hebrew University of Jerusalem.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-07823-9 (hardback)

1. Electronic digital computers – Evaluation. 2. Electronic digital computers –

QA76.9.E94F43 2015

004-dc23 2014023640

ISBN 978-1-107-07823-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To T. P.,

Who taught me that one needs to be aware of one's limitations in order to make the load workable

Contents

Prej	face		page xiii
1	Intr	roduction	1
	1.1	The Importance of Workloads	2
	1.2	Types of Workloads	5
		1.2.1 Workloads in Different Domains	6
		1.2.2 Dynamic vs. Static Workloads	7
		1.2.3 Benchmarks	8
	1.3	Workload Modeling	10
		1.3.1 What It Is	10
		1.3.2 Why Do It?	11
		1.3.3 How It Is Done	16
	1.4	Roadmap	21
2	Workload Data		22
	2.1	Data Sources	22
		2.1.1 Using Available Logs	22
		2.1.2 Active Data Collection	29
	2.2	Data Usability	34
		2.2.1 Representativeness	34
		2.2.2 Stationarity	42
	2.3	Data Filtering and Cleaning	46
		2.3.1 Noise and Errors	47
		2.3.2 Multiclass Workloads	50
		2.3.3 Anomalous Behavior and Robots	52
		2.3.4 Workload Flurries and Flash Crowds	56
		2.3.5 Identifying Noise and Anomalies	60
	2.4	Educated Guessing	63
	2.5		64
		2.5.1 Data Formats	66

vii

viii Contents

		2.5.2 Data Volume	70
		2.5.3 Privacy	71
3	Sta	tistical Distributions	73
	3.1	Describing a Distribution	75
		3.1.1 Histograms, pdfs, and CDFs	76
		3.1.2 Central Tendency	86
		3.1.3 Dispersion	90
		3.1.4 Moments and Order Statistics	95
		3.1.5 Focus on Skew	98
	3.2	Some Specific Distributions	101
		3.2.1 The Exponential Distribution	102
		3.2.2 Phase-Type Distributions	106
		3.2.3 The Hyper-Exponential Distribution	107
		3.2.4 The Erlang Distribution	109
		3.2.5 The Hyper-Erlang Distribution	111
		3.2.6 Other Phase-Type Distributions	112
		3.2.7 The Normal Distribution	114
		3.2.8 The Lognormal Distribution	115
		3.2.9 The Gamma Distribution	118
		3.2.10 The Weibull Distribution	119
		3.2.11 The Pareto Distribution	120
		3.2.12 The Zipf Distribution	123
		3.2.13 Do It Yourself	128
4	Fitt	ting Distributions to Data	130
	4.1	Approaches to Fitting Distributions	131
	4.2	Parameter Estimation for a Single Distribution	131
		4.2.1 Justification	132
		4.2.2 The Method of Moments	133
		4.2.3 The Maximum Likelihood Method	134
		4.2.4 Estimation for Specific Distributions	136
		4.2.5 Sensitivity to Outliers	138
		4.2.6 Variations in Shape	140
	4.3	Parameter Estimation for a Mixture of Distributions	141
		4.3.1 Examples of Mixtures	141
		4.3.2 The Expectation-Maximization Algorithm	142
	4.4	Re-Creating the Shape of a Distribution	145
		4.4.1 Using an Empirical Distribution	145
		4.4.2 Modal Distributions	148
		4.4.3 Constructing a Hyper-Exponential Tail	151
	4.5	Tests for Goodness of Fit	155
		4.5.1 Using Q-Q Plots	155
		4.5.2 The Kolmogorov-Smirnov Test	159
		4.5.3 The Anderson-Darling Test	160
		4.5.4 The χ^2 Method	161
	4.6	Software Packages for Distribution Fitting	161

			Contents	ix
5	Ноз	vy Tails	163	
3	5.1		164	
	J.1	5.1.1 Power-Law Tails	164	
		5.1.2 Properties of Power Laws	165	
		5.1.3 Alternative Definitions	172	
	5.2	The Importance of Heavy Tails	175	
	3.2	5.2.1 Conditional Expectation	175	
		5.2.2 Mass-Count Disparity	178	
	53	Testing for Heavy Tails	185	
		Modeling Heavy Tails	193	
	J. T	5.4.1 Estimating the Parameters of a	1)3	
		Power-Law Tail	193	
		5.4.2 Generalization and Extrapolation	200	
		5.4.3 Generative Models	206	
		5.4.5 Generative Models	200	
6		relations in Workloads	213	
	6.1	J r	213	
	6.2	1 ,	215	
		6.2.1 Definitions	215	
		6.2.2 Statistical Measures of Locality	217	
		6.2.3 The Stack Distance and Temporal Locality	218	
		6.2.4 Working Sets and Spatial Locality	222	
		6.2.5 Measuring Skewed Distributions	222	
		and Popularity	223	
		6.2.6 Modeling Locality	223	
		6.2.7 System Effects on Locality	231	
	6.3		231	
		6.3.1 Examples and Visualization	232	
		6.3.2 Quantification	235	
		6.3.3 Properties	240	
		6.3.4 Importance	240	
		6.3.5 Modeling	242	
	6.4	Cross-Correlation	245	
		6.4.1 Joint Distributions and Scatterplots	245	
		6.4.2 The Correlation Coefficient and Linear	• 40	
		Regression	249	
		6.4.3 Distributional Correlation	258	
		6.4.4 Modeling Correlations by Clustering	262	
		6.4.5 Modeling Correlations with Distributions	269	
		6.4.6 Dynamic Workloads vs. Snapshots	270	
	6.5		272	
		6.5.1 Periodicity and the Diurnal Cycle	273	
		6.5.2 Trends	280	
7		-Similarity and Long-Range Dependence		
	7.1	Poisson Arrivals	284	
		7.1.1 The Poisson Process	284	

x Contents

			Nonhomogeneous Poisson Process	285
		7.1.3	Batch Arrivals	285
	7.2		Phenomenon of Self-Similarity	287
			Examples of Self-Similarity	287
			Self-Similarity and Long-Range Dependence	289
			The Importance of Self-Similarity	291
			Focus on Scaling	292
	7.3		nematical Definitions	294
			Data Manipulations	295
			Exact Self-Similarity	297
			Focus on the Covariance	299
			Long-Range Dependence	300
			Asymptotic Second-Order Self-Similarity	303
			The Hurst Parameter and Random Walks	306
	7.4		suring Self-Similarity	309
			Testing for a Poisson Process	309
			The Rescaled Range Method	310
			The Variance Time Method	316
			Measuring Long-Range Dependence Directly	318
			Using Wavelets and Logscale Diagrams	319
		7.4.6	Spectral Methods: The Periodogram and Whittle	225
		7.47	Estimator	325
			Comparison of Results	337
			Validation	338
	75		Software for Analyzing Self-Similarity	339
	7.5		eling Self-Similarity	340
			Classical Long-Range Dependent Models Multiscale Wavelet-Based Construction	340 345
			Bias Models	343
			The M/G/∞ Queueing Model	350
			Merged On-Off Processes	353
	76		c Complex Scaling Behavior	356
	7.0	WIOIC	Complex Scannig Benavior	330
8	Hie	rarchic	al Generative Models	357
	8.1	Loca	lity of Sampling and Users	358
	8.2	Hiera	archical Workload Models	359
		8.2.1	Hidden Markov Models	359
		8.2.2	Motivation for User-Based Models	362
		8.2.3	The Three-Level User-Based Model	366
		8.2.4	Other Hierarchical Models	367
	8.3	User-	-Based Modeling	370
		8.3.1	Modeling the User Population	370
			Modeling User Sessions	374
			Modeling User Activity within Sessions	383
			User Resampling	389
	8.4	Perfo	ormance Feedback	391

		Contents
Cas	e Studies	399
9.1	Human User Behavior	399
	9.1.1 Sessions and Job Arrivals	400
	9.1.2 Interactivity and Think Times	401
	9.1.3 Daily Activity Cycle	403
	9.1.4 Patience	405
	9.1.5 Mobility	406
	9.1.6 Runtime Estimates	407
9.2	Desktop and Workstation Workloads	410
	9.2.1 Process Runtimes	410
	9.2.2 Application Behavior	412
	9.2.3 Multimedia Applications and Games	420
	9.2.4 Benchmark Suites vs. Workload Models	421
	9.2.5 Predictability	423
	9.2.6 Operating Systems	424
	9.2.7 Virtualization Workloads	425
9.3		426
7.5	9.3.1 The Distribution of File Sizes	426
	9.3.2 File System Access Patterns	429
	9.3.3 Feedback	431
	9.3.4 I/O Operations and Disk Layout	432
	9.3.5 Parallel File Systems	434
0 4	Network Traffic and the Web	434
∕.⊤	9.4.1 Internet Traffic	434
	9.4.2 Email	441
	9.4.3 Web Server Load	441
	9.4.4 User Sessions	448
	9.4.5 E-Commerce	449
	9.4.6 Search Engines	451
	9.4.7 Media and Streaming	457
	9.4.8 Peer-to-Peer File Sharing	459
	9.4.9 Online Gaming	460
	9.4.10 Web Applications and Web 2.0	461
	9.4.11 User Types	462
	9.4.12 Feedback	463
	9.4.13 Malicious Traffic	464
9.5	Data-Centric Workloads	465
7.5	9.5.1 Database Systems	465
	9.5.2 Information Retrieval	468
	9.5.3 Big Data	469
9.6	Parallel Jobs	473
7.0	9.6.1 Arrivals	474
	9.6.2 Rigid Jobs	474
	9.6.3 Speedup	480
	9.6.4 Parallel Program Behavior	482
	7.0.4 I aranci Frogram Denavior	402

xii Contents

		Load Manipulation and System Size Grid Workloads	485 488		
10	Summary and Outlook				
Арр	endix: Data	Sources	. 495		
	liography x		501 541		

Preface

In 1994 I wrote a long survey about parallel job scheduling [229]. This work described and classified the scheduling schemes of 76 systems, as well as many others that were proposed but never implemented, backed by 638 references. In retrospect, one of the things that struck me was that practically any paper that proposed a new scheme also proved it to be better than competing schemes. On reflection, my conclusion was that the source of the problem was in different assumptions and mindsets, including about the properties of the workloads that would run on these systems. The operational conclusion was that it may be more important to understand the workloads than to design new scheduling schemes.

At about the same time, in work on parallel I/O, I was exposed to the Charisma I/O traces collected by David Kotz and Nils Nieuwejaar [516]. Among the voluminous data on I/O operations were a few records about the jobs to which they belonged. This led to an interaction with Bill Nitzberg who provided me with data regarding three months of jobs from the NASA Ames iPSC/860 system, and then to the publication of the first analysis of such a workload log [244]. Several years later, this log became one of the first to be included in the Parallel Workloads Archive [533]. This archive has been instrumental in facilitating research based on real data rather than on baseless assumptions.

Fast forward to 2014. It is now widely accepted that workload characterization and workload modeling are very important for reliable performance evaluations of computer systems. If the workload is wrong, the results will be wrong too – not in the mathematical sense, but in the sense that they will not apply to the situation at hand. Regrettably, workloads are sometimes (and maybe often) still treated as an afterthought, despite a lot of work that has been done on this topic.

At least part of the problem is that there is a gap between what is studied in basic probability and statistics courses and what needs to be used in workload modeling and performance evaluation. In particular, topics such as heavy-tailed distributions and self-similarity are advanced statistical concepts that are not covered in basic courses. To make matters worse, books and research papers on these topics tend

xiii

xiv Preface

to start at a level of mathematical sophistication that is beyond that achieved in basic probability and statistics courses. This makes much of the relevant material inaccessible to many practitioners who want to use the ideas but not spend a lot of time studying the underlying theory.

One goal of this book is to fill this gap. Specifically, I attempt to make definitions and techniques accessible to practitioners by emphasizing the intuition behind them. Although math is used to avoid misunderstandings and explain derivations, this is typically done at a rather elementary level, forgoing mathematical rigor in the interest of making the material more understandable. The book does assume a basic working knowledge of probability, and beyond that it provides a relatively detailed discussion that does not assume the reader can fill in the details. Moreover, we specifically avoid a full and detailed discussion of all the latest bleeding-edge research on advanced statistics.

Another problem with the workloads used in performance evaluation studies is that they are often based on assumptions rather than measurements. Therefore, another goal of this book is to encourage and promote the experimental aspects of computer science. To further this goal, the book emphasizes the use of real data and contains numerous examples based on real datasets. The datasets used are listed in the Appendix and linked from the book's website.

Using real data to illustrate various concepts is also a means to help build an intuition of what definitions mean and how real data behaves – including cases where data tends to misbehave. This is extremely important, because mathematical techniques will provide some sort of results even when they are misapplied. Developing an intuition regarding your data is therefore an important first step in successful evaluations, and knowing how to look at the data and, in particular, how to create illuminating statistical graphs is an important skill.

In developing my ideas about computer workloads and their modeling I was privileged to work with several outstanding students. The ones who contributed the most to this subject were Uri Lublin, Dan Tsafrir, David Talby, Edi Shmueli, Yoav Etsion, and Netanel Zakay.

By far the most mathematically advanced material is contained in Chapter 7 on self-similarity. In writing about this material (and understanding it myself) I received immense help from Benjamin Yakir, both in explaining the mathematical procedures and in bringing to light the insights behind them. Thanks also to Thomas Mikosch for setting me straight in some places. Daniel Nevo did his best to proofread the statistical parts of the text and tried to convince me to make it more rigorous. Naturally errors and misrepresentations remain my responsibility.

Heartfelt thanks are due to all those who have made their workload data available on the Internet for the benefit of the research community. I hope that in the future this will be taken for granted, and much more data will be available for use. The book's website is at http://www.cs.huji.ac.il/%7Efeit/wlmod and includes links to data sources. Updates and errata will be posted there as well.

The book can be used as the basis for a course on workload modeling or as a supplementary text for a course on performance evaluation. However, it is intended for use by practitioners no less than by academics. I wrote it because I found no source

Preface xv

from which I myself could learn and understand the more advanced concepts, based on data and intuition rather than formal proofs. I do not know of any other book like it. I hope you find it useful.

Dror G. Feitelson Jerusalem, February 2014