

Electricity and Magnetism for Mathematicians

This text is an introduction to some of the mathematical wonders of Maxwell's equations. These equations led to the prediction of radio waves, the realization that light is a type of electromagnetic wave, and the discovery of the special theory of relativity. In fact, almost all current descriptions of the fundamental laws of the universe can be viewed as deep generalizations of Maxwell's equations. Even more surprising is that these equations and their generalizations have led to some of the most important mathematical discoveries of the past thirty years. It seems that the mathematics behind Maxwell's equations is endless.

The goal of this book is to explain to mathematicians the underlying physics behind electricity and magnetism and to show their connections to mathematics. Starting with Maxwell's equations, the reader is led to such topics as the special theory of relativity, differential forms, quantum mechanics, manifolds, tangent bundles, connections, and curvature.

THOMAS A. GARRITY is the William R. Kenan, Jr. Professor of Mathematics at Williams, where he was the director of the Williams Project for Effective Teaching for many years. In addition to a number of research papers, he has authored or coauthored two other books, *All the Mathematics You Missed [But Need to Know for Graduate School]* and *Algebraic Geometry: A Problem Solving Approach*. Among his awards and honors is the MAA Deborah and Franklin Tepper Haimo Award for outstanding college or university teaching.

ELECTRICITY AND MAGNETISM FOR MATHEMATICIANS

A Guided Path from Maxwell's Equations to Yang-Mills

THOMAS A. GARRITY

Williams College, Williamstown, Massachusetts with illustrations by Nicholas Neumann-Chun

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107435162

© Thomas A. Garrity 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data Garrity, Thomas A., 1959– author.

Electricity and magnetism for mathematicians: a guided path from Maxwell's equations to Yang-Mills / Thomas A. Garrity, Williams College, Williamstown, Massachusetts; with illustrations by Nicholas Neumann-Chun.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-07820-8 (hardback) – ISBN 978-1-107-43516-2 (paperback)

1. Electromagnetic theory–Mathematics–Textbooks. I. Title.

QC670.G376 2015

537.01′51-dc23

2014035298

ISBN 978-1-107-07820-8 Hardback ISBN 978-1-107-43516-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

List	t of Syr	nbols	page xi
Ack	nowle	dgments	xiii
1	A Bı	rief History	1
	1.1	Pre-1820: The Two Subjects of Electricity and Magnetism	1 1
	1.2	1820–1861: The Experimental Glory Days of	
		Electricity and Magnetism	2
	1.3	Maxwell and His Four Equations	2
	1.4	Einstein and the Special Theory of Relativity	2
	1.5	Quantum Mechanics and Photons	3
	1.6	Gauge Theories for Physicists:	
		The Standard Model	4
	1.7	Four-Manifolds	5
	1.8	This Book	7
	1.9	Some Sources	7
2	Maxwell's Equations		
	2.1	A Statement of Maxwell's Equations	9
	2.2	Other Versions of Maxwell's Equations	12
		2.2.1 Some Background in Nabla	12
		2.2.2 Nabla and Maxwell	14
	2.3	Exercises	14
3	Elec	tromagnetic Waves	17
	3.1	The Wave Equation	17
	3.2	Electromagnetic Waves	20
	3.3	The Speed of Electromagnetic Waves Is Constant	21
		3.3.1 Intuitive Meaning	21

vi Contents

		3.3.2 Changing Coordinates for the Wave Equation	22
	3.4	Exercises	25
4	Spec	cial Relativity	27
	4.1	Special Theory of Relativity	27
	4.2	Clocks and Rulers	28
	4.3	Galilean Transformations	31
	4.4	Lorentz Transformations	32
		4.4.1 A Heuristic Approach	32
		4.4.2 Lorentz Contractions and Time Dilations	35
		4.4.3 Proper Time	36
		4.4.4 The Special Relativity Invariant	37
		4.4.5 Lorentz Transformations, the Minkowski Met	tric,
		and Relativistic Displacement	38
	4.5	Velocity and Lorentz Transformations	43
	4.6	Acceleration and Lorentz Transformations	45
	4.7	Relativistic Momentum	46
	4.8	Appendix: Relativistic Mass	48
		4.8.1 Mass and Lorentz Transformations	48
		4.8.2 More General Changes in Mass	51
	4.9	Exercises	52
5	Mechanics and Maxwell's Equations		
	5.1	Newton's Three Laws	56
	5.2	Forces for Electricity and Magnetism	58
		$5.2.1 F = q(E + v \times B)$	58
		5.2.2 Coulomb's Law	59
	5.3	Force and Special Relativity	60
		5.3.1 The Special Relativistic Force	60
		5.3.2 Force and Lorentz Transformations	61
	5.4	Coulomb + Special Relativity	
		+ Charge Conservation = Magnetism	62
	5.5	Exercises	65
6	Mec	chanics, Lagrangians, and the Calculus of Variations	70
	6.1	Overview of Lagrangians and Mechanics	70
	6.2	Calculus of Variations	71
		6.2.1 Basic Framework	71
		6.2.2 Euler-Lagrange Equations	73
		6.2.3 More Generalized Calculus of Variations Pro	blems 77
	63		78

		Contents	vii
	6.4 6.5 6.6	Conservation of Energy from Lagrangians Noether's Theorem and Conservation Laws Exercises	83 85 86
7	Potentials		88
•	7.1	Using Potentials to Create Solutions for Maxwell's Equations	88
	7.2	Existence of Potentials	89
	7.3	Ambiguity in the Potential	91
	7.4	Appendix: Some Vector Calculus	91
	7.5	Exercises	95
8	Lagr	angians and Electromagnetic Forces	98
	8.1	Desired Properties for the Electromagnetic Lagrangian	98
	8.2	The Electromagnetic Lagrangian	99
	8.3	Exercises	101
9	Differential Forms		103
	9.1	The Vector Spaces $\Lambda^k(\mathbb{R}^n)$	103
		9.1.1 A First Pass at the Definition	103
		9.1.2 Functions as Coefficients	106
		9.1.3 The Exterior Derivative	106
	9.2	Tools for Measuring	109
		9.2.1 Curves in \mathbb{R}^3	109
		9.2.2 Surfaces in \mathbb{R}^3	111
		9.2.3 k -manifolds in \mathbb{R}^n	113
	9.3	Exercises	115
10	The Hodge ★ Operator		119
	10.1	The Exterior Algebra and the ★ Operator	119
	10.2	Vector Fields and Differential Forms	121
	10.3	The ★ Operator and Inner Products	122
	10.4	Inner Products on $\Lambda(\mathbb{R}^n)$	123
	10.5	The ★ Operator with the Minkowski Metric	125
	10.6	Exercises	127
11	The l	Electromagnetic Two-Form	130
	11.1	The Electromagnetic Two-Form	130
	11.2	Maxwell's Equations via Forms	130
	11.3		131
		Maxwell's Equations via Lagrangians	132
	11.5		
		Lagrangian	136
	11.6	Exercises	139

viii Contents

12	Some	e Mathematics Needed for Quantum Mechanics	142
	12.1	Hilbert Spaces	142
	12.2	Hermitian Operators	149
	12.3	The Schwartz Space	153
		12.3.1 The Definition	153
		12.3.2 The Operators $q(f) = xf$ and $p(f) = -i df/dx$	155
		12.3.3 $S(\mathbb{R})$ Is Not a Hilbert Space	157
	12.4	Caveats: On Lebesgue Measure, Types of Convergence,	
		and Different Bases	159
	12.5	Exercises	160
13	Some	e Quantum Mechanical Thinking	163
		The Photoelectric Effect: Light as Photons	163
		Some Rules for Quantum Mechanics	164
		Quantization	170
		Warnings of Subtleties	172
	13.5	Exercises	172
14	Quar	ntum Mechanics of Harmonic Oscillators	176
	14.1	The Classical Harmonic Oscillator	176
	14.2	The Quantum Harmonic Oscillator	179
	14.3	Exercises	184
15	Quar	ntizing Maxwell's Equations	186
	15.1	Our Approach	186
	15.2	The Coulomb Gauge	187
	15.3	The "Hidden" Harmonic Oscillator	193
		Quantization of Maxwell's Equations	195
	15.5	Exercises	197
16	Manifolds		201
	16.1	Introduction to Manifolds	201
		16.1.1 Force = Curvature	201
		16.1.2 Intuitions behind Manifolds	201
	16.2	Manifolds Embedded in \mathbb{R}^n	203
		16.2.1 Parametric Manifolds	203
		16.2.2 Implicitly Defined Manifolds	205
	16.3	Abstract Manifolds	206
		16.3.1 Definition	206
		16.3.2 Functions on a Manifold	212
	16.4	Exercises	212

		Contents	ix
17	Vecto	or Bundles	214
	17.1	Intuitions	214
	17.2	Technical Definitions	216
		17.2.1 The Vector Space \mathbb{R}^k	216
		17.2.2 Definition of a Vector Bundle	216
	17.3	Principal Bundles	219
	17.4	Cylinders and Möbius Strips	220
	17.5	5 Tangent Bundles	
		17.5.1 Intuitions	222
		17.5.2 Tangent Bundles for Parametrically Defined	
		Manifolds	224
		17.5.3 $T(\mathbb{R}^2)$ as Partial Derivatives	225
		17.5.4 Tangent Space at a Point of an Abstract Mani	fold 227
		17.5.5 Tangent Bundles for Abstract Manifolds	228
	17.6	Exercises	230
18	Connections		232
	18.1	Intuitions	232
	18.2	Technical Definitions	233
		18.2.1 Operator Approach	233
		18.2.2 Connections for Trivial Bundles	237
	18.3	Covariant Derivatives of Sections	240
	18.4	Parallel Transport: Why Connections Are Called	
		Connections	
	18.5	18.5 Appendix: Tensor Products of Vector Spaces	
		18.5.1 A Concrete Description	247
		18.5.2 Alternating Forms as Tensors	248
		18.5.3 Homogeneous Polynomials as Symmetric Ter	nsors 250
		18.5.4 Tensors as Linearizations of Bilinear Maps	251
	18.6	Exercises	253
19	Curvature		257
	19.1	Motivation	257
	19.2	Curvature and the Curvature Matrix	258
	19.3	Deriving the Curvature Matrix	260
	19.4	Exercises	
20	Maxv	well via Connections and Curvature	263
	20.1	Maxwell in Some of Its Guises	263
	20.2	Maxwell for Connections and Curvature	264
	20.3	Exercises	266

x Contents

21	The Lagrangian Machine, Yang-Mills, and Other Forces		267
	21.1	The Lagrangian Machine	267
	21.2	U(1) Bundles	268
	21.3	Other Forces	269
	21.4	A Dictionary	270
	21.5	Yang-Mills Equations	272
Bibl	liograp	hy	275
Inde	ex		279

Color plates follow page 215

List of Symbols

Symbol	Name
∇	nabla
Δ	Laplacian
T	transpose
\in	element of
$O(3,\mathbb{R})$	orthogonal group
\mathbb{R}	real numbers
$\rho(\cdot,\cdot)$	Minkowski metric
$\wedge^k(\mathbb{R}^n)$	k -forms on \mathbb{R}^n
\wedge	wedge
0	composed with
*	star operator
\mathcal{H}	Hilbert space
$\langle \cdot, \cdot \rangle$	inner product
\mathbb{C}	complex numbers
$L^2[0,1]$	square integrable functions
*	adjoint
\subset	subset of
S	Schwartz space
h	Planck constant
\cap	set intersection
U	set union
$GL(k,\mathbb{R})$	general linear group
C_p^{∞}	germ of the sheaf of differentiable functions
$\Gamma(E)$	space of all sections of E
∇	connection
\otimes	tensor product
\odot	symmetric tensor product

Acknowledgments

There are many people who have helped in the preparing of this book. First off, an earlier draft was used as the text for a course at Williams College in the fall of 2009. In this class, Ben Atkinson, Ran Bi, Victoria Borish, Aaron Ford, Sarah Ginsberg, Charlotte Healy, Ana Inoa, Stephanie Jensen, Dan Keneflick, Murat Kologlu, Edgar Kosgey, Jackson Lu, Makisha Maier, Alex Massicotte, Merideth McClatchy, Nicholas Neumann-Chun, Ellen Ramsey, Margaret Robinson, Takuta Sato, Anders Schneider, Meghan Shea, Joshua Solis, Elly Tietsworth, Stephen Webster, and Qiao Zhang provided a lot of feedback. In particular Stephen Webster went through the entire manuscript again over the winter break of 2009–2010. I would like to thank Weng-Him Cheung, who went through the whole manuscript in the fall of 2013. I would also like to thank Julia Cline, Michael Mayer, Cesar Melendez, and Emily Wickstrom, all of whom took a course based on this text at Williams in the fall of 2013, for helpful comments.

Anyone who would like to teach a course based on this text, please let me know (tgarrity@williams.edu). In particular, there are write-ups of the solutions for many of the problems. I have used the text for three classes, so far. The first time the prerequisites were linear algebra and multivariable calculus. For the other classes, the perquisites included real analysis. The next time I teach this course, I will return to only requiring linear algebra and multivariable calculus. As Williams has fairly short semesters (about twelve to thirteen weeks), we covered only the first fifteen chapters, with a brief, rapid-fire overview of the remaining topics.

In the summer of 2010, Nicholas Neumann-Chun proofread the entire manuscript, created its diagrams, and worked a lot of the homework problems. He gave many excellent suggestions.

My Williams colleague Steven Miller also carefully read a draft, helping tremendously. Also from Williams, Lori Pedersen went through the text a few

xiii

xiv

Acknowledgments

times and provided a lot of solutions of the homework problems. Both William Wootters and David Tucker-Smith, from the Williams Physics Department, also gave a close reading of the manuscript; both provided key suggestions for improving the physics in the text.

Robert Kotiuga helped with the general exposition and especially in giving advice on the history of the subject.

I would like to thank Gary Knapp, who not only went through the whole text, providing excellent feedback, but who also suggested a version of the title. Both Dakota Garrity and Logan Garrity caught many errors and typos in the final draft. Each also gave excellent suggestions for improving the exposition.

I also would like to thank my editor, Lauren Cowles, who has provided support through this whole project.

The referees also gave much-needed advice.

I am grateful for all of their help.