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Preliminaries

Valérie Berthé and Michel Rigo

1.1 Conventions

Let us briefly start with some basic notation used throughout this book. The set of

non-negative integers (respectively integers, rational numbers, real numbers, com-

plex numbers) is N (respectively Z, Q, R, C). In particular, the set N is {0,1,2, . . .}.
We use the notation [[i, j]] for the set of integers {i, i+ 1, . . . , j}.The floor of a real

number x is �x�= sup{z∈ Z | z≤ x}, whereas {x}= x−�x� stands for the fractional

part of x.

1.2 Words

This section is only intended to give basic definitions about words. For material not

covered in this book, classical textbooks on finite or infinite words and their proper-

ties are (Lothaire, 1983, 2002, 2005), (Allouche and Shallit, 2003), and (Queffélec,

1987). See also the chapter (Choffrut and Karhumäki, 1997) or the tutorial (Berstel

and Karhumäki, 2003). The book (Rigo, 2014) can also serve as introductory lecture

notes on the subject.

1.2.1 Finite words

An alphabet is a finite, non-empty set. Its elements are referred to as symbols or

letters. In this book, depending on the specific context or conventions of a given

chapter, alphabets will be denoted by capital letters like Σ or A.

Definition 1.2.1 A (finite) word over Σ is a finite sequence of letters from Σ. The

empty sequence is called the empty word and it is denoted by ε . The sets of all finite

words, finite non-empty words and infinite words over Σ are denoted by Σ∗, Σ+ and

Σω , respectively. A word w = w0w2 · · ·wn where wi ∈ Σ, 0 ≤ i≤ n, can be seen as a

function w : {0,1, . . . ,n}→ Σ in which w(i) = wi for all i.
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2 V. Berthé and M. Rigo

Definition 1.2.2 Let S be a set equipped with a single binary operation

� : S×S→ S.

It is convenient to call this operation a multiplication over S, and the product of x,y∈
S is usually denoted by xy. If this multiplication is associative, i.e., for all x,y,z ∈ S,

(xy)z = x(yz), then the algebraic structure given by the pair (S,�) is a semigroup.

If, moreover, multiplication has an identity element, i.e., there exists some element

1∈ S such that, for all x∈ S, x1 = x = 1x, then (S,�) is a monoid. In addition if every

element x ∈ S has an inverse, i.e., there exists y∈ S such that xy = 1 = yx, then (S,�)
is a group.

Let u = u0 · · ·um−1 and v = v0 · · ·vn−1 be two words over Σ. The concatenation of

u and v is the word w = w0 · · ·wm+n−1 defined by wi = ui if 0≤ i < m, and wi = vi−m

otherwise. We write u · v or simply uv to express the concatenation of u and v. The

concatenation (or catenation) of words is an associative operation, i.e., given three

words u, v and w, (uv)w = u(vw). Hence, parenthesis can be omitted. In particular,

the set Σ∗ (respectively, Σ+) equipped with the concatenation product is a monoid

(respectively, a semigroup).

Concatenating a word w with itself k times is abbreviated by wk. In particular,

w0 = ε . Furthermore, for an integer m and a word w = w1w2 · · ·wn, where wi ∈ Σ for

1≤ i≤ n, the rational power

wm/n

is wqw1w2 · · ·wr, where m = qn+ r for 0≤ r < n. For instance, we have

(abbab)9/5 = abbababba. (1.1)

The length of a word w, denoted by |w|, is the number of occurrences of the letters

in w. In other words, if w = w0w2 · · ·wn−1 with wi ∈ Σ, 0 ≤ i < n, then |w| = n. In

particular, the length of the empty word is zero. For a ∈ Σ and w ∈ Σ∗, we write |w|a
for the number of occurrences of a in w. Therefore, we have

|w|= ∑
a∈Σ
|w|a.

A word u is a factor of a word v (respectively, a prefix, or a suffix), if there exist

words x and y such that v = xuy (respectively, v = uy, or v = xu). A factor (respec-

tively, prefix, suffix) u of a word v is called proper if u 
= v and u 
= ε . Thus, for

example, if w = concatenation, then con is a prefix, ate is a factor, and nation

is a suffix.

The mirror (sometimes called reversal) of a word u = u0 · · ·um−1 is the word ũ =

um−1 · · ·u0. It can be defined inductively on the length of the word by ε̃ = ε and

ãu = ũa for a ∈ Σ and u ∈ Σ∗. Notice that for u,v ∈ Σ∗, ũv = ṽũ. A palindrome is a

word u such that ũ = u. For instance, the palindromes of length at most 3 in {0,1}∗
are ε,0,1,00,11,000,010,101,111.
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Preliminaries 3

1.2.2 Infinite words

Definition 1.2.3 An (one-sided right) infinite word is a map from N to Σ. If w is an

infinite word, we often write

w = a0a1a2 · · · ,
where each ai ∈ Σ. The set of all infinite words of Σ is denoted Σω (one can also find

the notation ΣN).

The notions of factor, prefix or suffix introduced for finite words can be extended

to infinite words. Factors and prefixes are finite words, but a suffix of an infinite word

is also infinite.

Definition 1.2.4 A two-sided or bi-infinite word is a map from Z to Σ. The set of

all bi-infinite words is denoted ωΣω (one can also find the notation ΣZ).

Example 1.2.5 Consider the infinite word x = x0x1x2 · · · where the letters xi ∈
{0, . . . ,9} are given by the digits appearing in the usual decimal expansion of π− 3,

π− 3 =
+∞

∑
i=0

xi 10−i−1,

i.e., x = 14159265358979323846264338327950288419 · · · is an infinite word.

Definition 1.2.6 An infinite word x = x0x1 · · · is (purely) periodic if there exists a

finite word u = u0 · · ·uk−1 
= ε such that x = uω , i.e., for all n ≥ 0, we have xn = ur

where n = dk+ r with r ∈ {0, . . . ,k− 1}. An infinite word x is eventually periodic

(or, ultimately periodic) if there exist two finite words u,v ∈ Σ∗, with v 
= ε such that

x = uvvv · · ·= uvω . Notice that purely periodic words are special cases of eventually

periodic words. For any eventually periodic word x, there exist words u,v of shortest

length such that x = uvω , then the integer |u| (respectively |v|) is referred to as the

preperiod (respectively period) of x. An infinite word is said to be non-periodic if it

is not ultimately periodic.

Definition 1.2.7 The language of the infinite word x is the set of all its factors. It

is denoted by L(x). The set of factors of length n occurring in x is denoted by Ln(x).

Definition 1.2.8 An infinite word x is recurrent if all its factors occur infinitely

often in x. It is uniformly recurrent (also called minimal), if it is recurrent and for

every factor u of x, if Tx(u) =
{

i
(u)
1 < i

(u)
2 < i

(u)
3 < · · ·

}
is the infinite set of positions

where u occurs in x, then there exists a constant Cu such that, for all j ≥ 1,

i
(u)
j+1− i

(u)
j ≤Cu.

Definition 1.2.9 One can endow Σω with a distance d defined as follows. Let x,y

be two infinite words over Σ. Let x∧y denote the longest common prefix of x and y.

Then the distance d is given by

d(x,y) :=

{
0, if x = y,

2−|x∧y|, otherwise.
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4 V. Berthé and M. Rigo

It is obvious to see that, for all x,y,z ∈ Σω , d(x,y) = d(y,x), d(x,z) ≤ d(x,y)+

d(y,z) and d(x,y)≤max(d(x,z),d(y,z)). This last property is not required to have

a distance, but when it holds, the distance is said to be ultrametric. Note that we

obtain an equivalent distance if we replace 2 with any real number r > 1.

This notion of distance extends to ΣZ. Notice that the topology on Σω is the prod-

uct topology (of the discrete topology on Σ). The space Σω is a compact Cantor set,

that is, a totally disconnected compact space without isolated points. Since Σω is a

(complete) metric space, it is therefore relevant to speak of convergent sequences of

infinite words. The sequence (zn)n≥0 of infinite words over Σ converges to x ∈ Σω ,

if for all ε > 0, there exists N ∈ N such that, for all n ≥ N, d(zn,x) < ε . To ex-

press the fact that a sequence of finite words (wn)n≥0 over Σ converges to an infinite

word y, it is assumed that Σ is extended with an extra letter c 
∈ Σ. Any finite word

wn is replaced with the infinite word wnccc · · · and if the sequence of infinite words

(wnccc · · ·)n≥0 converges to y, then the sequence (wn)n≥0 is said to converge to y.

Let (un)n≥0 be a sequence of non-empty finite words. If we define, for all � ≥ 0,

the finite word v� as the concatenation u0u1 · · ·u�, then the sequence (v�)�≥0 of finite

words converges to an infinite word. This latter word is said to be the concatenation

of the elements in the infinite sequence of finite words (un)n≥0. In particular, for a

constant sequence un = u for all n≥ 0, v� = u�+1 and the concatenation of an infinite

number of copies of the finite word u is denoted by uω .

1.3 Morphisms

Particular infinite words of interest can be obtained by iterating morphisms (or ho-

momorphisms of free monoids). Morphisms are also called substitutions. A map

h : Σ∗ → Δ∗, where Σ and Δ are alphabets, is called a morphism if h satisfies h(xy) =

h(x)h(y) for all x,y ∈ Σ∗. A morphism may be specified by providing the values h(a)

for all a ∈ Σ. For example, we may define a morphism h : {0,1,2}∗ → {0,1,2}∗ by

0 �→ 01201

1 �→ 020121 (1.2)

2 �→ 0212021.

This domain of a morphism is easily extended to (one-sided) infinite words.

A morphism h : Σ∗ → Σ∗ such that h(a) = ax for some a ∈ Σ and x ∈ Σ∗ with

hi(x) 
= ε for all i is said to be prolongable on a; we may then repeatedly iterate h to

obtain the infinite fixed point

hω(a) = axh(x)h2(x)h3(x) · · · .
This infinite word is said to be purely morphic. The morphism h given by (1.2) above

is prolongable on 0, so we have the fixed point

hω(0) = 01201020121021202101201020121 · · · .
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Preliminaries 5

A morphism h is non-erasing if h(a) 
= ε for all a ∈ Σ. Otherwise it is erasing. A

morphism is k-uniform if |h(a)|= k for all a ∈ Σ; it is uniform if it is k-uniform for

some k.

Example 1.3.1 (Thue–Morse word) For example, if the morphism μ : {0,1}∗ →
{0,1}∗ is defined by

0 �→ 01

1 �→ 10,

then μ is 2-uniform. This morphism is often referred to as the Thue–Morse mor-

phism. The fixed point

t = μω(0) = 0110100110010110 · · ·
is known as the Thue–Morse word.

Example 1.3.2 (Fibonacci word) Another significant example of a purely morphic

word is the Fibonacci word. It is obtained from the non-uniform morphism defined

over the alphabet {0,1} by σ : 0 �→ 01,1 �→ 0,

σω (0) = (xn)n≥0 = 0100101001001010010100100101001001010010100 · · · .
It is a Sturmian word and can be obtained as follows. Let φ = (1+

√
5)/2 be the

Golden Ratio. For all n ≥ 1, if �(n+ 1)φ� − �nφ� = 2, then xn−1 = 0, otherwise

xn−1 = 1.

1.4 Languages and machines

Formal languages theory is mostly concerned with the study of the mathematical

properties of sets of words. For an exhaustive exposition on regular languages and

automata theory, see (Sakarovitch, 2003) and (Perrin and Pin, 2004) for the con-

nections with infinite words. Also see the chapter (Yu, 1997), or (Sudkamp, 1997),

(Hopcroft and Ullman, 1979) and the updated revision (Hopcroft et al., 2006) for

general introductory books on formal languages theory.

1.4.1 Languages of finite words

Let Σ be an alphabet. A subset L of Σ∗ is said to be a language. Note for instance

that this terminology is consistent with the one of Definition 1.2.7. Since a language

is a set of words, we can apply all the usual set operations like union, intersection

or set difference: ∪, ∩ or \. The concatenation of words can be extended to define

an operation on languages. If L,M are languages, LM is the language of the words

obtained by concatenation of a word in L and a word in M, i.e.,

LM = {uv | u ∈ L,v ∈M}.
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6 V. Berthé and M. Rigo

We can of course define the concatenation of a language with itself, so it permits us

to introduce the power of a language. Let n ∈ N, Σ be an alphabet and L ⊆ Σ∗ be a

language. The language Ln is the set of words obtained by concatenating n words in

L. We set L0 := {ε}. In particular, we recall that Σn denotes the set of words of length

n over Σ, i.e., concatenations of n letters in Σ. The (Kleene) star of the language L is

defined as

L∗ =
⋃
i≥0

Li.

Otherwise stated, L∗ contains the words that are obtained as the concatenation of an

arbitrary number of words in L. Notice that the definition of Kleene star is compatible

with the notation Σ∗ introduced to denote the set of finite words over Σ. We also write

L≤n as a shorthand for

L≤n =
n⋃

i=0

Li.

Note that if the empty word belongs to L, then L≤n = Ln. We recall that Σ≤n is the

set of words over Σ of length at most n. More can be found in Section 6.3.1 where

the notion of code is introduced.

Example 1.4.1 Let L = {a,ab,aab} and M = {a,ab,ba} be two finite languages.

We have

L2 = {aa,aab,aaab,aba,abab,abaab,aaba,aabab,aabaab}
and

M2 = {aa,aab,aba,abab,abba,baa,baab,baba}.
One can notice that Card(L2) = (CardL)2 but Card(M2) < (CardM)2. This is due

to the fact that all words in L2 have a unique factorisation as concatenation of two

elements in L but this is not the case for M, where (ab)a = a(ba). We can notice that

L∗ = {a}∗ ∪{ai1bai2b · · ·ainbain+1 | ∀n≥ 1, i1, . . . , in ≥ 1, in+1 ≥ 0}.
Since languages are sets of (finite) words, a language can be either finite or infinite.

For instance, a language L differs from /0 or {ε} if, and only if, the language L∗ is

infinite. Let L be a language, we set L+ = LL∗. The mirror operation can also be

extended from words to languages: L̃ = {ũ | u ∈ L}.
Definition 1.4.2 A language is prefix-closed (respectively suffix-closed) if it con-

tains all prefixes (respectively suffixes) of any of its elements. A language is factorial

if it contains all factors of any of its elements.

Obviously, any factorial language is prefix-closed and suffix-closed. The converse

does not hold. For instance, the language {anb | n > 0} is suffix-closed but not fac-

torial.
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Preliminaries 7

Example 1.4.3 The set of words over {0,1} containing an even number of 1s is the

language

E = {w ∈ {0,1}∗ | |w|1 ≡ 0 (mod 2)}
= {ε,0,00,11,000,011,101,110,0000,0011, . . .}.

This language is closed under mirror, i.e., L̃ = L. Notice that the concatenation

E{1}E is the language of words containing an odd number of 1s and E ∪E{1}E =

E({ε}∪{1}E) = {0,1}∗. Notice that E is neither prefix-closed, since 1001 ∈ E but

100 
∈ E , nor suffix-closed. See also Example 8.1.3 and Example 9.2.9.

If a language L over Σ can be obtained by applying to some finite languages a finite

number of operations of union, concatenation and Kleene star, then this language is

said to be a regular language. This generation process leads to regular expressions

which are well-formed expressions used to describe how a regular language is built

in terms of these operations. From the definition of a regular language, the following

result is immediate.

Theorem 1.4.4 The class of regular languages over Σ is the smallest subset of 2Σ
∗

(for inclusion) containing the languages /0, {a} for all a∈ Σ and closed under union,

concatenation and Kleene star.

Example 1.4.5 For instance, the language L over {0,1} whose words do not con-

tain the factor 11 is regular. It is called the Golden mean shift, see also Example 9.2.1.

This language can be described by the regular expression L = {0}∗{1}{0,01}∗ ∪
{0}∗. Otherwise stated, it is generated from the finite languages {0}, {0,01} and

{1} by applying union, concatenation and star operations. Its complement in Σ∗ is

also regular and is described by the regular expression Σ∗{11}Σ∗. The language

E from Example 1.4.3 is also regular, we have the following regular expression

{0}∗({1}{0}∗{1}{0}∗)∗ describing E .

1.4.2 Automata

As we shall briefly explain in this section, the regular languages are exactly the lan-

guages recognised by finite automata.

Definition 1.4.6 A finite automaton is a labelled graph given by a 5-tuple A =

(Q,Σ,E, I,T ) where Q is the (finite) set of states, E ⊆ Q×Σ∗ ×Q is the finite set of

edges defining the transition relation, I ⊆Q is the set of initial states and T is the set

of terminal (or final) states. A path in the automaton is a sequence

(q0,u0,q1,u1, . . . ,qk−1,uk−1,qk)

such that, for all i ∈ {0, . . . ,k− 1}, (qi,ui,qi+1) ∈ E , u0 · · ·uk−1 is the label of the

path. Such a path is successful if q0 ∈ I and qk ∈ T . The language L(A ) recognised

(or accepted) by A is the set of labels of all successful paths in A .

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07702-7 - Combinatorics, Words and Symbolic Dynamics
Edited by Valérie Berthé and Michel Rigo
Excerpt
More information

http://www.cambridge.org/9781107077027
http://www.cambridge.org
http://www.cambridge.org


8 V. Berthé and M. Rigo

Any finite automaton A gives a partition of Σ∗ into L(A ) and Σ∗ \L(A ). When

depicting an automaton, initial states are marked with an incoming arrow and termi-

nal states are marked with an outgoing arrow. A transition like (q,u,r) is represented

by a directed edge from q to r with label u, q
u−→ r.

Example 1.4.7 In Figure 1.1 the automaton has two initial states p and r, three

terminal states q, r and s. For instance, the word ba is recognised by the automa-

ton. There are two successful paths corresponding to the label ba: (p,b,q,a,s) and

(p,b, p,a,s). For this latter path, we can write p
b−→ p

a−→ s. On the other hand, the

word baab is not recognised by the automaton.

p q

r s

b

b

a
a

a

b

a
a

Figure 1.1 A finite automaton.

Example 1.4.8 The automaton in Figure 1.2 recognises exactly the language E of

the words having an even number of 1 from Example 1.4.3.

p q

1

1

0 0

Figure 1.2 An automaton recognising words with an even number of 1.

Definition 1.4.9 Let A = (Q,Σ,E, I,T ) be a finite automaton. A state q ∈ Q is

accessible (respectively co-accessible) if there exists a path from an initial state to

q (respectively from q to some terminal state). If all states of A are both accessible

and co-accessible, then A is said to be trim.

Definition 1.4.10 A finite automaton A = (Q,Σ,E, I,T ) is said to be deterministic

(DFA) if it has only one initial state q0, if E is a subset of Q×Σ×Q and for each

(q,a) ∈ Q×Σ there is at most one state r ∈ Q such that (q,a,r) ∈ E . In that case,
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Preliminaries 9

E defines a partial function δA : Q×Σ→ Q that is called the transition function

of A . The adjective partial means that the domain of δA can be a strict subset of

Q×Σ. To express that the partial transition function is total, the DFA can be said to

be complete. To get a total function, one can add to Q a new ‘sink state’ s and, for

all (q,a) ∈ Q×Σ such that δA is not defined, set δA (q,a) := s. This operation does

not alter the language recognised by A . We can extend δA to be defined on Q×Σ∗
by δA (q,ε) = q and, for all q ∈ Q, a ∈ Σ and u ∈ Σ∗, δA (q,au) = δA (δA (q,a),u).

Otherwise stated, the language recognised by A is L(A ) = {u∈ Σ∗ | δA (q0,u)∈ F}
where q0 is the initial state of A . If the automaton is deterministic, it is sometimes

convenient to refer to the 5-tuple A = (Q,Σ,δA , I,T ).

As explained by the following result, for languages of finite words, finite automata

and deterministic finite automata recognise exactly the same languages.

Theorem 1.4.11 (Rabin and Scott (1959)) If L is recognised by a finite automaton

A , there exists a DFA which can be effectively computed from A and recognising

the same language L.

A proof and more details about classical results in automata theory can be found

in textbooks like (Hopcroft et al., 2006), (Sakarovitch, 2003) or (Shallit, 2008). For

standard material in automata theory we shall not refer again to these references

below.

One important result is that the set of regular languages coincides with the set of

languages recognised by finite automata.

Theorem 1.4.12 (Kleene (1956)) A language is regular if, and only if, it is recog-

nised by a (deterministic) finite automaton.

Observe that if L, M are two regular languages over Σ, then L∩M, L∪M, LM and

L \M are also regular languages. In particular, a language over Σ is regular if, and

only if, its complement in Σ∗ is regular.

Example 1.4.13 The regular language L = {0}∗{1}{0,01}∗ ∪ {0}∗ from Exam-

ple 1.4.5 is recognised by the DFA depicted in Figure 1.3. Notice that the state s is a

sink: non-terminal state and all transitions remain in s.

s
1

0
1

0
0,1

Figure 1.3 A DFA accepting words without factor 11.
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10 V. Berthé and M. Rigo

1.5 Symbolic dynamics

Let us introduce some basic notions in symbolic dynamics. For expository books on

the subject, see (Cornfeld et al., 1982), (Kitchens, 1998), (Lind and Marcus, 1995),

(Perrin, 1995) and (Queffélec, 1987). For references on ergodic theory, also see, e.g.,

(Walters, 1982).

1.5.1 Codings of dynamical systems

A (discrete) dynamical system is a pair (X ,T ) where T : X → X is a map acting on

a convenient space X (e.g., X is a topological space or a metric space, in the usual

setting, X is generally compact and T is continuous). We are interested in iterating

the map T and we look at orbits (T n(x))n≥0 of points in X under the action T . The

trajectory of x ∈ X is the sequence (T n(x))n≥0. Roughly speaking, infinite words

appear naturally as a convenient coding (with a priori some loss of information) of

these trajectories (T n(x))n≥0. So one can gain insight about the dynamical system

by studying these words, with an interplay between combinatorics on words and dy-

namics. In that setting, the space X is discretised, i.e., it is partitioned into finitely

many sets X1, . . . ,Xk and the trajectory of x is thus coded by the corresponding se-

quence of visited subsets, such as illustrated in Figure 1.4. Precisely, the coding of

(T n(x))n≥0 is the word wx = w0w1w2 · · · over the alphabet {1, . . . ,k} where wi = j

if and only if T i(x) ∈ Xj. Even though the infinite word wx contains less information

than the original trajectory (T n(x))x≥0, this discretised and simplified version of the

original system can help us to understand the dynamics of the original system.

X1

X2

X3

X4

x

T (x)

T 2(x)

Figure 1.4 Trajectory of x in a space X = X1∪X2 ∪X2 ∪X4.

Example 1.5.1 (Rotation words) One of the simplest dynamical systems can be

obtained from the coding of a rotation on a circle identified with the interval [0,2π).

Instead of working modulo 2π , it is convenient to normalise the interval [0,2π) and
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