

X-ray Microscopy

Written by a pioneer in the field, this text provides a complete introduction to x-ray microscopy, providing all of the technical background required to use, understand, and even develop x-ray microscopes. Starting from the basics of x-ray physics and focusing optics, it goes on to cover imaging theory, tomography, chemical and elemental analysis, lensless imaging, computational methods, instrumentation, radiation damage, and cryomicroscopy, and includes a survey of recent scientific applications. Designed as a "one-stop" text, it provides a unified notation, and shows how computational methods in different areas are linked with one another. Including numerous derivations, and illustrated with dozens of examples throughout, this is an essential text for academics and practitioners across engineering, the physical sciences, and the life sciences who use x-ray microscopy to analyze their specimens, as well as those taking courses in x-ray microscopy.

Chris Jacobsen is Argonne Distinguished Fellow at Argonne National Laboratory, and Professor of Physics and Astronomy at Northwestern University. He is also a Fellow of the American Association for the Advancement of Science, the American Physical Society, and the Optical Society of America.

Advances in Microscopy and Microanalysis

Microscopic visualization techniques range from atomic imaging to visualization of living cells at near nanometer spatial resolution, and advances in the field are fueled by developments in computation, image detection devices, labeling, and sample preparation strategies. Microscopy has proven to be one of the most attractive and progressive research tools available to the scientific community, and remains at the forefront of research in many disciplines, from nanotechnology to live cell molecular imaging. This series reflects the diverse role of microscopy, defining it as any method of imaging objects of micrometer scale or less, and includes both introductory texts and highly technical and focused monographs for researchers and practitioners in materials and the life sciences

Series Editors

Patricia Calarco, *University of California*, *San Francisco* Michael Isaacson, *University of California*, *Santa Cruz*

Series Advisors

Bridget Carragher, The Scripps Research Institute
Wah Chiu, Baylor College of Medicine
Christian Colliex, Université Paris Sud
Ulrich Dahmen, Lawrence Berkeley National Laboratory
Mark Ellisman, University of California, San Diego
Peter Ingram, Duke University Medical Center
J. Richard McIntosh, University of Colorado
Giulio Pozzi, University of Bologna
John C. H. Spence, Arizona State University
Elmar Zeitler, Fritz-Haber Institute

Books in Series

Published

Heide Schatten, Scanning Electron Microscopy for the Life Sciences
Frances Ross, Liquid Cell Electron Microscopy
Joel Kubby, Sylvain Gigan, and Meng Cui, Wavefront Shaping for Biomedical Imaging
Chris Jacobsen, X-Ray Microscopy

X-ray Microscopy

CHRIS JACOBSEN

Argonne National Laboratory, Illinois Northwestern University, Illinois

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107076570

DOI: 10.1017/9781139924542

© Chris Jacobsen 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in Singapore by Markono Print Media Pte Ltd

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-07657-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Contributors		<i>page</i> xii		
	Fore	vord		xiii	
1	X-ray microscopes: a short introduction				
	1.1	How to	o read this book	2	
	1.2	Online	appendices	3	
	1.3	Key m	athematical symbols and formulae	3	
2	A bit of history				
	2.1	Röntgen and the discovery of X rays			
	2.2	Einstei	in and mirrors	9	
	2.3	Cold V	Var microscopes	12	
	2.4	Zone p	plates	13	
	2.5	Synchrotrons and lasers			
	2.6	Lensle	ess microscopes	19	
	2.7	The du	astbin of history	21	
	2.8	Conclu	ading limerick	22	
3	X-ray	y physic	es ·	23	
	3.1	The Bo	ohr model, energy levels, and x-ray shells	23	
		3.1.1	X-ray fluorescence and Auger emission	26	
		3.1.2	X-ray transitions: fluorescence nomenclature	30	
		3.1.3	Beyond the core: the Fermi energy, valence electrons, and		
			plasmon modes	35	
	3.2	Atomi	Atomic interactions, scattering, and absorption		
		3.2.1	Scattering by a single electron	41	
		3.2.2	Scattering by an atom	42	
	3.3	The x-ray refractive index		45	
		3.3.1	Electromagnetic waves in media	47	
		3.3.2	The great frequency divide and the refractive index	49	
		3.3.3	X-ray linear absorption coefficient	55	
		3.3.4	The Born and Rytov approximations	57	
		3.3.5	Oscillator density in molecules, compounds, and mixtures	59	
	3.4	Anomalous dispersion: life on the edge			

vi Contents

		3.4.1	The Kramers–Kronig relations	63
	3.5		refraction	64
	3.6	-	reflectivity	66
	3.7	•	ading limerick	70
4	_	jing phy		71
	4.1		and rays	71
		4.1.1	Adding up waves	71
		4.1.2	Rayleigh quarter wave criterion	76
		4.1.3	Connecting waves and rays	76
	4.2		gs and diffraction	78
		4.2.1	Slits and plane gratings	78
		4.2.2	Volume gratings and Bragg's law	80
		4.2.3	Bragg's law and crystals	82
		4.2.4	Synthetic multilayer mirrors	83
		4.2.5	Momentum transfer and the Ewald sphere	86
	4.3	Wavefi	ield propagation	92
		4.3.1	The Huygens construction	93
		4.3.2	Fraunhofer approximation	95
		4.3.3	Fourier transforms: analytical and discrete	96
		4.3.4	Power spectra of images	100
		4.3.5	Fraunhofer diffraction	101
		4.3.6	Fresnel propagation by integration, and by convolution	102
		4.3.7	Fresnel propagation, distances, and sampling	104
		4.3.8	Propagation and diffraction in circular coordinates	106
		4.3.9	Multislice propagation	110
	4.4	Imagir	ng systems	112
		4.4.1	Field of view	114
		4.4.2	Optical system via propagators	116
		4.4.3	Diffraction and lens resolution	119
		4.4.4	Beating the diffraction limit in light microscopy	122
		4.4.5	Cylindrical (1D by 1D) optics	125
		4.4.6	Coherence, phase space, and focal spots	129
		4.4.7	Transfer functions	138
		4.4.8	Deconvolution: correcting for the transfer function	142
		4.4.9	Depth resolution and depth of field	144
	4.5	Full-fie	eld imaging	148
		4.5.1	TXM condensers, STXM detectors, and reciprocity	152
	4.6	Dark-f	field imaging	153
	4.7	Phase	contrast	155
		4.7.1	Phase contrast in coherent imaging methods	160
		4.7.2	Propagation-based phase contrast	160
		4.7.3	Zernike phase contrast imaging	162
		4.7.4	Differential phase contrast	165

		Contents	VI		
		4.7.5 Grazing incidence imaging	167		
	4.8	Image statistics, exposure, and dose	168		
		4.8.1 Photon statistics and the contrast parameter Θ	169		
		4.8.2 Minimum detection limits	172		
		4.8.3 Signal to noise and resolution from experimental images	174		
		4.8.4 Estimating the required photon exposure	177		
		4.8.5 Imaging modes and diffraction	180		
	4.9	From exposure to radiation dose	183		
		4.9.1 Dose versus resolution	186		
	4.10	X-ray microscopy relative to electron microscopy and microprobe	4.05		
		analysis	187		
		4.10.1 Elemental mapping	187		
		4.10.2 Transmission electron microscopy	191		
		4.10.3 A comparison of transmission imaging with electrons and w			
		X rays	194		
	4.11	See the whole picture	197		
	4.12	Concluding limerick	198		
5	X-ray focusing optics				
	5.1	Refractive optics	199		
		5.1.1 Compound refractive lenses	200		
	5.2	Reflective optics	204		
		5.2.1 Grazing incidence spheres and toroids	207		
		5.2.2 Kirkpatrick–Baez and Montel mirrors	209		
		5.2.3 Ellipsoidal and Wolter mirrors, and single capillaries	211		
		5.2.4 Multilayer mirrors	213		
		5.2.5 Non-imaging grazing incidence optics	215		
	5.3	Diffractive optics	216		
		5.3.1 Fresnel zone plates	216		
		5.3.2 Focusing efficiency	221		
		5.3.3 Order sorting	224		
		5.3.4 Fabrication	225		
		5.3.5 Making zone plates thicker	230		
		5.3.6 Thick zone plates and multilayer Laue lenses	232		
		5.3.7 Multilayer Laue lenses: practical considerations	235		
	5.4	Combined optics	236		
	5.5	Resolution over the years	238		
	5.6	Concluding limerick	240		
6	X-ray	y microscope systems	241		
•	6.1				
	6.2	Contact microscopy Point projection x-ray microscopes			
	6.3				
	0.5	6.3.1 Zone plate condensers	246 248		
		0.5.1 Zone place condensers	∠ + c		

viii Contents

		6.3.2	Capillary condensers	249
	6.4		ng x-ray microscopes	252
	6.5		n optical x-ray microscopes (PEEM and others)	256
	6.6		ding limerick	258
7	X-ray	/ micros	cope instrumentation	259
	7.1	X-ray s	ources	260
		7.1.1	Photometric measures	261
		7.1.2	Laboratory x-ray sources: electron impact	263
		7.1.3	Unconventional laboratory x-ray sources	266
		7.1.4	Synchrotron light sources	267
		7.1.5	Bending magnet sources	271
		7.1.6	Undulator sources	272
		7.1.7	Inverse Compton scattering sources	277
		7.1.8	X-ray free-electron lasers (FELs)	277
	7.2	X-ray b	peamlines	280
		7.2.1	Monochromators and bandwidth considerations	280
		7.2.2	Coherence and phase space matching	282
		7.2.3	Slits and shutters	285
		7.2.4	Radiation shielding	286
		7.2.5	Thermal management	286
		7.2.6	Vacuum issues, and contamination and cleaning of surfaces	287
	7.3	Nanopo	ositioning systems	288
	7.4	X-ray c	letectors	292
		7.4.1	Detector statistics	294
		7.4.2	Detector statistics: dead time	297
		7.4.3	Detector statistics: charge integration	299
		7.4.4	Pixelated area detectors	302
		7.4.5	Semiconductor detectors	303
		7.4.6	Sensor chips for direct x-ray conversion	308
		7.4.7	Scintillator detectors: visible-light conversion	308
		7.4.8	Gas-based detectors	310
		7.4.9	Superconducting detectors	312
		7.4.10	Energy-resolving detectors	313
		7.4.11	Wavelength-dispersive detectors	313
		7.4.12	Energy-dispersive detectors	314
	7.5	Sample	environments	316
		7.5.1	Silicon nitride windows	318
	7.6	Concluding limerick		
8	X-rav	/ tomogi	raphy	321
-	8.1	_	raphy basics	322
	0.1	8.1.1	The Crowther criterion: how many projections?	325
		8.1.2	Backprojection, filtered backprojection, and gridrec	327

			C	ontents	ix
	8.2	Algebr	raic (matrix-based) reconstruction methods		329
		8.2.1	Numerical optimization		330
		8.2.2	Maximum likelihood and estimation maximum		335
	8.3	Analys	is of reconstructed volumes		336
	8.4	Tomog	raphy in x-ray microscopes		338
		8.4.1	Tomographic mapping of crystalline grains		341
		8.4.2	Tensor tomography		341
	8.5	Compli	ications in tomography		342
		8.5.1	Projection alignment		342
		8.5.2	Limited tilt angles and laminography		344
		8.5.3	Pixel intensity errors and ring artifacts		346
		8.5.4	Beam hardening		347
		8.5.5	Self-absorption in fluorescence tomography		347
	8.6	Limitin	ng radiation exposure via dose fractionation		347
	8.7	Conclu	ding limerick		349
9	X-ray spectromicroscopy				
	9.1	Absorp	otion spectromicroscopy		350
		9.1.1	Elemental mapping using differential absorption		352
		9.1.2	Living near the edge: XANES/NEXAFS		355
		9.1.3	Carbon XANES		357
		9.1.4	XANES in magnetic materials		361
		9.1.5	XANES in phase contrast		363
		9.1.6	Errors in XANES measurements		364
		9.1.7	Wiggles in spectra: EXAFS		365
	9.2	•	fluorescence microscopy		367
		9.2.1	Details of x-ray fluorescence spectra		370
		9.2.2	Fluorescence detector geometries		373
		9.2.3	Elemental detection limits using x-ray fluorescence	•	375
		9.2.4	Fluorescence self-absorption		378
		9.2.5	Fluorescence tomography		378
	9.3		mathematics and multivariate statistical methods		381
		9.3.1	Principal component analysis		383
		9.3.2	Cluster analysis and optimization methods		386
	9.4	Conclu	ding limerick		389
10	Coherent imaging				
	10.1	Diffrac	tion: crystals, and otherwise		390
	10.2	C 1 •			
			In-line or Gabor holography		396
			Off-axis or Fourier transform holography		399
		10.2.3	Holography, ankylography, and 3D imaging		403
	10.3		ent diffraction imaging and phase retrieval		404
		10.3.1	X-ray speckle and object size		406

x Contents

		10.3.2	Coherent versus incoherent diffraction	407
		10.3.3	Iterative phase retrieval algorithms	410
		10.3.4	Coherent diffraction imaging with X rays	415
		10.3.5	CDI geometry and notation	417
		10.3.6	Iterative phase retrieval algorithm details	420
		10.3.7	Focus and resolution in CDI	423
		10.3.8	Bragg CDI	425
	10.4	Ptychog	graphy	433
		10.4.1	Ptychography geometry and resolution gain G_p	435
		10.4.2	Ptychography reconstruction algorithms	440
		10.4.3	Focus and resolution in ptychography	443
		10.4.4	Ptychography experiments	444
		10.4.5	Bragg ptychography	446
		10.4.6	Beyond strict Nyquist sampling	447
	10.5	Coheren	nt imaging beyond the pure projection approximation	447
	10.6	CDI at 2	XFELS: diffract before destruction	451
	10.7	Conclud	ding limerick	456
11	Radia	ation da	mage and cryo microscopy	457
	11.1	Specim	en heating	457
		11.1.1	Anti-Goldilocks and the "no-fly zone"	460
		11.1.2	Heating and ionization with short, intense pulses	460
	11.2	Radiation	on damage	462
		11.2.1	Radiation damage in soft materials	462
		11.2.2	Radiation damage in water and in hydrated organic materials	468
		11.2.3	Radiation risk in humans	469
		11.2.4	Radiation damage in initially living specimens	471
		11.2.5	Dose rate effects	474
		11.2.6	Specimen size effects	476
		11.2.7	Low-dose strategies	476
	11.3	Cryo m	icroscopy	477
		11.3.1	Vitrification and amorphous ice	484
		11.3.2	Radiation damage to organics at cryogenic temperatures	489
		11.3.3	Bubbling in frozen hydrated specimens	492
		11.3.4	Radiation damage limits to resolution in cryo x-ray microscopy	493
	11.4	Radiation	on damage in hard materials	494
	11.5	Conclud	ding limerick	495
12	Appli	ications,	, and future prospects	496
	12.1	Life sci	ence	496
	12.2	Geoscie	ence and environmental science	500
	12.3	Astrobi	ology	502
	12.4	Materia	als science	503
	12.5	Cultura	l heritage	510

	Contents	xi
12.6 Future prospects		511
12.7 Concluding limerick		513
Appendix A X-ray data tabulations		515
References		519
Index		573

Contributors

Janos Kirz

Lawrence Berkeley National Laboratory (retired)

Malcolm Howells

Lawrence Berkeley National Laboratory, USA (retired)

Michael Feser

Lyncean Technologies, USA

Doğa Gürsoy

Advanced Photon Source, Argonne National Laboratory, USA

Adam Hitchcock

McMaster University, Canada

Foreword

X-ray microscopy is an interdisciplinary topic, both in terms of its technical details and in terms of the scientific and engineering problems it is applied to. While there are a number of books that provide excellent coverage of certain aspects of x-ray physics, optics, and microscopy, it is my opinion that there has not been a single book that one can hand to someone new in the field of x-ray microscopy to give them an introduction to most of the key aspects they should know about. This book is an attempt to fill that need.

Are you a new PhD student entering a research group who will use x-ray microscopy for part of your research? If so, you have probably had at least a year or so of university physics during your studies. You are whom I have written the book for! At times I may push you a bit further in mathematics or physics than what you have learned thus far, but if you are in a PhD program you are a serious enough student so this should be OK. Besides, you can always skim over some of the more detailed points.

Are you an established researcher or engineer who is new to x-ray microscopy? This book is also for you! Your expertise might be with microscopes using other radiation, or on materials you hope to understand better using x-ray microscopy.

What I hope to do in this book is to give you a feel for the fundamental ideas that come into play in a variety of x-ray microscopy approaches and applications, and to do so with enough detail to allow you to go off and invent new approaches of your own. I look forward to seeing your contributions to x-ray microscopy!

What do I mean by x-ray microscopy? I have decided to focus on imaging at a spatial resolution of a few micrometers down to nanometers. This is not a book on medical radiology at 0.1 mm resolution as limited by acceptable radiation exposure, and it is not a book on crystallography. I consider X rays to be photons with an energy well above the plasmon resonance (20–50 eV for most solids) and in particular above about 100 eV, and I tend to concentrate on energies below 20 keV since at higher energies the fine structure that one hopes to see in a microscope has reduced contrast. While much useful research is done in an approach where X rays illuminate an area and magnetic or electrostatic lenses image the electrons that come off of the surface, these photoelectron emission microscopes (PEEM and its variations) are based on electron, not x-ray, optics so they are given only brief treatment in Section 6.5. However, I do discuss x-ray microscopy approaches where one uses the properties of x-ray scattering to recover images without the use of lenses in Chapter 10, and I also include the combination of x-ray microscopy with absorption and fluorescence-based spectroscopy in Chapter

xiv Foreword

9. I discuss three-dimensional imaging or tomography as a natural extension of two-dimensional microscopy in Chapter 8. Chapter 7 covers what I consider to be essential points on x-ray microscope instrumentation. X rays are ionizing radiation, so Chapter 11 is devoted to radiation damage as well as cryo microscopy methods that can help in minimizing damage. While Chapter 12 discusses applications of x-ray microscopy, these applications ultimately involve detailed knowledge in their respective scientific specialties, which may be undergoing rapid development. Therefore the coverage here is rather brief, while pointing out recent review papers when possible.

I expect that I have made many sins of commission, and of omission. Cambridge University Press has a web page www.cambridge.org/Jacobsen associated with this book (one can also reach this web page with www.cambridge.org/9781107076570). This web page will host errata, as well as online Appendices B and C.

This book was originally undertaken as a team effort with one of my favorite people in the world: Janos Kirz, who is one of the real pioneers in x-ray microscopy. However, the book has taken longer to complete than we had hoped, and Janos has rightfully been enjoying his retirement more completely as of late. His fingerprints are all over the earliest chapters, and he has provided valuable feedback on the entire tome. However, as the book has grown and developments in later chapters have motivated rewrites of earlier ones, all of the warts and blemishes in what remains have become my fault alone. Therefore at Janos' request he is no longer listed as a coauthor – which means, I guess, that you can't blame him for anything that's wrong or incomplete!

A number of other people have provided wonderful input. Some are listed as contributors to specific chapters, in which case I will not thank them again here. But people like Marc Allain, Elke Arenholz, Lahsen Assoufid, Anton Barty, Anna Bergamaschi, Sylvan Bohic, Anibal Boscoboinik, Virginie Chamard, Henry Chapman, Si Chen, Yong Chu, Marine Cotte, Björn De Samber, Peter Fischer, Manuel Guizar-Sicairos, Mirko Holler, Young Pyo Hong, Xiaojing Huang, Sarah Köster, Florian Meirer, Nino Miceli, Günter Schmahl (1936–2018), Xianbo Shi, Pierre Thibault, Stephen Urquhart, Ivan Vartanyants, Pablo Villanueva-Perez, Stefan Vogt, Michael Wojcik, Russell Woods, and Hanfei Yan have taken the time to read various sections of the book and give important critical comments and suggestions, or contributed figures. Several of my Northwestern University PhD students (Sajid Ali, Ming Du, and Saugat Kandel in particular) have given me great feedback on specific sections. Joshua Zachariah made early versions of several figures. Again, you can't blame any of the above for my mistakes, but you can thank them for reducing their number.

One can only undertake the project of writing a book like this with lots of support. The Advanced Photon Source at Argonne National Laboratory (a U.S. Department of Energy Office of Science user facility) has generously supported me in devoting considerable time to this effort, since x-ray microscopy is one of its widely used methods. My wife, Holly, has been patient with me in so many ways, and has helped keep me in balance as the project progressed by joining me on many activities, adventures, and travels that have kept me refreshed and enthusiastic!

Some income from this book is being directed to a student prize at the international conference series on x-ray microscopy.