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1

Boolean functions and key concepts

In this first chapter, we set the stage for the book by presenting many of its

key concepts of the book and stating a number of important theorems that

we prove here.

1.1 Boolean functions

Definition 1.1 A Boolean function is a function from the hypercube

Ωn := {−1,1}n into either {−1,1} or {0,1}.

Ωn is endowed with the uniform measure P = Pn
= ( 1

2
δ−1 +

1
2
δ1)⊗n and E

denotes the corresponding expectation. Occasionally, Ωn will be endowed

with the general product measure Pp = P
n
p = ((1− p)δ−1+ pδ1)⊗n but in such

cases the p is made explicit. Ep then denotes the corresponding expectation.

An element of Ωn is denoted by either ω or ωn and its n bits by x1, . . . , xn

so that ω= (x1, . . . , xn).

For the range, we choose to work with {−1,1} in some contexts and

{0,1} in others, and at some specific places we even relax the Boolean con-

straint (i.e., that the function takes only two possible values). In these cases

(which are clearly identified), we consider instead real-valued functions

f : Ωn→R.

A Boolean function f is canonically identified with a subset A f of Ωn

via A f := {ω : f (ω)= 1}.

Remark Often, Boolean functions are defined on {0,1}n rather than Ωn =

{−1,1}n. This does not make any fundamental difference but, as we see

later, the choice of {−1,1}n turns out to be more convenient when one

wishes to apply Fourier analysis on the hypercube.
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2 Boolean functions and key concepts

1.2 Some examples

We begin with a few examples of Boolean functions. Others appear through-

out this chapter.

Example 1.2 (Dictator)

DICTn(x1, . . . , xn) := x1.

The first bit determines what the outcome is.

Example 1.3 (Parity)

PARn(x1, . . . , xn) :=

n
∏

i=1

xi.

This Boolean function’s output is determined by whether the number of

−1’s in ω is even or odd.

These two examples are in some sense trivial, but they are good to keep

in mind because in many cases they turn out to be the “extreme cases” for

properties concerning Boolean functions.

The next rather simple Boolean function is of interest in social choice

theory.

Example 1.4 (Majority function) Let n be odd and define

MAJn(x1, . . . , xn) := sign(

n
∑

i=1

xi) .

Following are two further examples that also arise in our discussions.

Example 1.5 (Iterated 3-Majority function) Let n= 3k for some integer k.

The bits are indexed by the leaves of a rooted 3-ary tree (so the root has

degree 3, the leaves have degree 1, and all others have degree 4) with depth

k. Apply Example 1.4 (with n = 3) iteratively to obtain values at the ver-

tices at level k − 1, then level k − 2, and so on until the root is assigned a

value. The root’s value is then the output of f . For example, when k = 2,

f (−1,1,1;1,−1,−1;−1,1,−1)=−1. The recursive structure of this Boolean

function enables explicit computations for various properties of interest.

Example 1.6 (Clique containment) If r =
(

n

2

)

for some integer n, then Ωr

can be identified with the set of labeled graphs on n vertices. (Bit xi is 1 if

and only if the ith edge is present.) Recall that a clique of size k of a graph

G = (V,E) is a complete graph on k vertices embedded in G.
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1.3 Pivotality and influence 3

Now for any 1 ≤ k ≤
(

n

2

)

= r, let CLIQk
n be the indicator function of the

event that the random graph Gω defined by ω ∈Ωr contains a clique of size

k. Choosing k= kn so that this Boolean function is nondegenerate turns out

to be a rather delicate issue. The interesting regime is near kn ≈ 2log2(n).

See Exercise 1.9 for this “tuning” of k= kn. It turns out that for most values

of n, the Boolean function CLIQk
n is degenerate (i.e., has small variance)

for all values of k. However, there is a sequence of n for which there is

some k = kn for which CLIQk
n is nondegenerate.

1.3 Pivotality and influence

This section contains our first fundamental concepts. We abbreviate {1, . . . ,n}
as [n].

Definition 1.7 Given a Boolean function f from Ωn into either {−1,1} or

{0,1} and a variable i ∈ [n], we say that i is pivotal for f for ω if f (ω) ,

f (ωi) where ωi is ω but flipped in the ith coordinate. Note that this event

{ f (ω), f (ωi)} is measurable with respect to {x j} j,i.

Definition 1.8 The pivotal set, P, for f is the random set of [n] given by

P(ω)=P f (ω) := {i ∈ [n] : i is pivotal for f for ω}.

Expressed in words, the pivotal set is the (random) set of bits with the

property that if you flip the bit, then the function output changes.

Definition 1.9 The influence of the ith bit, Ii( f ), is defined by

Ii( f ) := P( i is pivotal for f )= P( f (ω), f (ωi))= P(i ∈P)

Let also the influence vector, Inf( f ), be the collection of all the influences:

i.e. {Ii( f )}i∈[n].

Expressed in words, the influence of the ith bit is the probability that, on

flipping this bit, the function output changes. This concept originally arose

in political science to measure the power of different voters and is often

called the Banzhaf power index (see (B65)) but in fact the concept arose

earlier (see (P46)) in the work of L. Penrose.

Definition 1.10 The total influence, I( f ), is defined by

I( f ) :=
∑

i

Ii( f ) = ‖Inf( f )‖1 =E(|P|).
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4 Boolean functions and key concepts

It would now be instructive to compute these quantities for Examples

1.2–1.4. See Exercise 1.1.

Later, we will need the last two concepts in the context where our

probability measure is Pp instead. We now give the corresponding

definitions.

Definition 1.11 The influence vector at level p, {Ip

i
( f )}i∈[n], is defined by

I
p

i
( f ) := Pp( i is pivotal for f )= Pp( f (ω), f (ωi))= Pp(i ∈P).

Definition 1.12 The total influence at level p, Ip( f ), is defined by

Ip( f ) :=
∑

i

I
p

i
( f ) =Ep(|P|).

It turns out that the total influence has a geometric-combinatorial

interpretation as the size of the so-called edge boundary of the correspond-

ing subset of the hypercube. See Exercise 1.4.

Remark Aside from its natural definition as well as its geometric

interpretation as measuring the edge boundary of the corresponding sub-

set of the hypercube, the notion of total influence arises very naturally

when one studies sharp thresholds for monotone functions (to be defined

in Chapter 3). Roughly speaking, as we see in detail in Chapter 3, for

a monotone event A, dPp

[

A
]

/dp is the total influence at level p (this is

the Margulis–Russo formula). This tells us that the speed at which things

change from the event A “almost surely” not occurring to the case where it

“almost surely” does occur is very sudden if the Boolean function happens

to have a large total influence.

1.4 The Kahn–Kalai–Linial theorems

This section addresses the following question. Does there always exist

some variable i with (reasonably) large influence? In other words, for large

n, what is the smallest value (as we vary over Boolean functions) that the

largest influence (as we vary over the different variables) can take on?

Because for the constant function all influences are 0, and the function

that is 1 only if all the bits are 1 has all influences 1/2n−1, clearly we want to

deal with functions that are reasonably balanced (meaning having variances

not so close to 0) or, alternatively, obtain lower bounds on the maximal

influence in terms of the variance of the Boolean function.

The first result in this direction is the following. A sketch of the proof is

given in Exercise 1.5.
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1.4 The Kahn–Kalai–Linial theorems 5

Theorem 1.13 (Discrete Poincaré) If f is a Boolean function mapping

Ωn into {−1,1}, then

Var( f )≤
∑

i

Ii( f ).

It follows that there exists some i such that

Ii( f )≥Var( f )/n.

This gives a first answer to our question. For reasonably balanced

functions, there is some variable whose influence is at least of order 1/n.

Can we find a better “universal” lower bound on the maximal influence?

Note that for Example 1.4 all the influences are of order 1/
√

n (and the vari-

ance is 1). Therefore, in terms of our question, the universal lower bound

we are looking for should lie somewhere between 1/n and 1/
√

n. The fol-

lowing celebrated result improves by a logarithmic factor on the Ω(1/n)

lower bound.

Theorem 1.14 (KKL88) There exists a universal c> 0 such that if f is a

Boolean function mapping Ωn into {0,1}, then there exists some i such that

Ii( f )≥ cVar( f )(logn)/n.

What is remarkable about this theorem is that this “logarithmic” lower

bound on the maximal influence turns out to be sharp! This is shown by

the following example by Ben-Or and Linial.

Example 1.15 (Tribes) Partition [n] into disjoint blocks of length log2(n)−
log2(log2(n)) with perhaps some leftover debris. Define fn to be 1 if there

exists at least one block that contains all 1’s, and 0 otherwise.

One can check that the sequence of variances stays bounded away from

0 and that all the influences (including of course those belonging to the

debris which are equal to 0) are smaller than c(logn)/n for some c <∞.

See Exercise 1.3. Hence Theorem 1.14 is indeed sharp. We mention that

in (BOL87), the example of Tribes was given and the question of whether

logn/n was sharp was asked.

Our next result tells us that if all the influences are “small,” then the total

influence is large.

Theorem 1.16 (KKL88) There exists c > 0 such that if f is a Boolean

function mapping Ωn into {0,1} and δ :=maxi Ii( f ), then

I( f )≥ cVar( f ) log(1/δ).
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6 Boolean functions and key concepts

Or equivalently,

‖Inf( f )‖1 ≥ cVar( f ) log
1

‖Inf( f )‖∞
.

One can in fact talk about the influence of a set of variables rather than

the influence of a single variable.

Definition 1.17 Given S ⊆ [n], the influence of S , IS ( f ), is defined by

IS ( f ) := P( f is not determined by the bits in S c).

It is easy to see that when S is a single bit, this corresponds to our pre-

vious definition. The following is also proved in (KKL88). We do not give

the proof in this book.

Theorem 1.18 (KKL88) Given a sequence fn of Boolean functions map-

ping Ωn into {0,1} such that 0 < infnEn( f ) ≤ supnEn( f ) < 1 and any se-

quence an going to ∞ arbitrarily slowly, then there exists a sequence of

sets S n ⊆ [n] such that |S n| ≤ ann/ logn and IS n
( fn)→ 1 as n→∞.

Theorems 1.14 and 1.16 are proved in Chapter 5.

1.5 Noise sensitivity and noise stability

This section introduces our second set of fundamental concepts.

Let ω be uniformly chosen from Ωn and let ωε be ω but with each bit

independently “re-randomized” with probability ε. To rerandomize a bit

means that, independently of everything else, the value of the bit is recho-

sen to be 1 or −1, each with probability 1/2. Note that ωε then has the same

distribution as ω.

The following definition is central. Let mn be an increasing sequence of

integers and let fn : Ωmn
→{±1} or {0,1}.

Definition 1.19 The sequence { fn} is noise sensitive if for every ε > 0,

lim
n→∞
E[ fn(ω) fn(ωε)]−E[ fn(ω)]2

= 0. (1.1)

Because fn takes just two values, this definition says that the random

variables fn(ω) and fn(ωε) are asymptotically independent for ε > 0 fixed

and n large. We see later that (1.1) holds for one value of ε ∈ (0,1) if and

only if it holds for all such ε. The following notion captures the opposite

situation, where the two events are close to being the same event if ε is

small, uniformly in n.
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1.6 The Benjamini–Kalai–Schramm noise sensitivity theorem 7

Definition 1.20 The sequence { fn} is noise stable if

lim
ε→0

sup
n

P( fn(ω), fn(ωε))= 0.

It is an easy exercise to check that a sequence { fn} is both noise sensitive

and noise stable if and only if it is degenerate in the sense that the sequence

of variances {Var( fn)} goes to 0. Note also that a sequence of Boolean func-

tions could be neither noise sensitive nor noise stable (see Exercise 1.11).

It is also an easy exercise to check that Example 1.2 (Dictator) is noise

stable and Example 1.3 (Parity) is noise sensitive. We see later, when Fourier

analysis is brought into the picture, that these examples are the two op-

posite extreme cases. For the other examples, it turns out that Example

1.4 (Majority) is noise stable, while Examples 1.5,1.6, and 1.15 are all

noise sensitive. See Exercises 1.6–1.9. In fact, there is a deep theorem (see

(MOO10)) that says in some sense that, among all low-influence Boolean

functions, Example 1.4 (Majority) is the most stable.

In Figure 1.1, we give a slightly impressionistic view of what “noise

sensitivity” is.

1.6 The Benjamini–Kalai–Schramm noise sensitivity theorem

We now come to the main theorem concerning noise sensitivity.

Theorem 1.21 (BKS99) If

lim
n

∑

k

Ik( fn)2
= 0, (1.2)

then { fn} is noise sensitive.

Remark The converse of Theorem 1.21 is clearly false, as shown by

Example 1.3. However, the converse is true for monotone functions (de-

fined in the next chapter), as we see in Chapter 4.

Theorem 1.21 allows us to conclude noise sensitivity of many of the

examples introduced in this first chapter. See Exercise 1.10. This theorem

is proved in Chapter 5.

1.7 Percolation crossings: Our final and most important example

We have saved our most important example to the end. This book would

not have been written were it not for this example and for the results that

have been proved about it.
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8 Boolean functions and key concepts

(a)

(c) (d)

(b)

A

Figure 1.1 Consider the following “experiment”: take a bounded
domain in the plane, say a rectangle, and consider a measurable
subset A of this domain. What would be an analog of the
definitions of noise sensitive or noise stable in this case? Start by
sampling a point x uniformly in the domain according to
Lebesgue measure. Then apply some noise to this position x to
end up with a new position xε . One can think of many natural
“noising” procedures here. For example, let xε be a uniform point
in the ball of radius ε around x, conditioned to remain in the
domain. (This is not quite perfect as this procedure does not
exactly preserve Lebesgue measure, but don’t worry about this.)
The natural analog of Definitions 1.19 and 1.20 is to ask whether
1A(x) and 1A(xε) are decorrelated or not.
Question: According to this analogy, what are the sensitivity and
stability properties of the sets A sketched in pictures (a) to (d)?
Note that to match with Definitions 1.19 and 1.20, one should
consider sequences of subsets {An} instead, as noise sensitivity is
an asymptotic notion.

Consider percolation on Z2 at the critical point pc(Z
2)= 1/2. (See Chap-

ter 2 for a brief review of the model.) At this critical point, there is no

infinite cluster, but somehow clusters are “large” and there are clusters at

all scales. This can be seen using duality or with the RSW Theorem 2.1. To
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1.8 A dynamical consequence of noise sensitivity 9

understand the geometry of the critical picture, the following large-scale

observables turn out to be very useful: Let Ω be a piecewise smooth do-

main with two disjoint open arcs ∂1 and ∂2 on its boundary ∂Ω. For each

n ≥ 1, we consider the scaled domain nΩ. Let An be the event that there is

an open path in ω from n∂1 to n∂2 which stays inside nΩ. Such events are

called crossing events. They are naturally associated with Boolean func-

tions whose entries are indexed by the set of edges inside nΩ (there are

O(n2) such variables).

For simplicity, consider the particular case of rectangle crossings.

Example 1.22 (Percolation crossings)

b · n

a · n

Let a,b> 0 and let us consider the

rectangle [0,a · n] × [0,b · n]. The

left-to-right crossing event corre-

sponds to the Boolean function

fn : {−1,1}O(1)n2→{0,1} defined as

follows:

fn(ω) : =



















1
if there is a left–

right crossing

0 otherwise

We later prove that this sequence of Boolean functions { fn} is noise sen-

sitive. This means (see Exercise 4.7) that if a percolation configuration

ω∼ Ppc=1/2 is given, one typically cannot predict anything about the large-

scale clusters of the slightly perturbed percolation configuration ωε where

only an ε-fraction of the edges has been resampled.

Remark The same statement holds for the more general crossing events

described above (i.e., in (nΩ,n∂1,n∂2)).

1.8 A dynamical consequence of noise sensitivity

One can consider a continuous time random walk {ωt}t≥0 (implicitly de-

pending on n which we suppress) on Ωn := {−1,1}n obtained by having

each variable independently re-randomize at the times of a rate 1 Poisson

process (so that the times between rerandomizations are independent ex-

ponential times with parameter 1). The stationary distribution is of course

our usual probability measure, which is a product measure with 1 and −1

equally likely. Starting from stationarity, observe that the joint distribution

of ωs and ωs+t is the same as the joint distribution of ω and ωε introduced

earlier where ε = 1− e−t.
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10 Boolean functions and key concepts

Considering next a sequence of Boolean functions { fn}n≥1 mapping Ωn

into, say, {0,1}, we obtain a sequence of processes {gn(t)} defined by gn(t) :=

fn(ωt). The following general result was proved in (BKS99) for the specific

case of percolation crossings; however, their proof applies verbatim in this

general context.

Theorem 1.23 (BKS99) Let { fn}n≥1 be a sequence of Boolean functions

that is noise sensitive and satisfies δ0 ≤ P( fn(ω) = 1) ≤ 1− δ0 for all n for

some δ0 > 0. Let S n be the set of times in [0,1] at which gn(t) changes its

value. Then |S n| →∞ in probability as n→∞.

Proof We first claim that for all 0≤ a< b≤ 1,

lim
n→∞
P(S n∩ [a,b]= ∅)= 0. (1.3)

Let Wn,ε := {ω :P
[

fn(ωε)= 1|ω] ∈ [0, δ0/2]∪ [1−δ0/2,1]}. The noise sen-

sitivity assumption, the (δ0-)nondegenericity assumption, and Exercise 4.7

(which gives an alternative description of noise sensitivity) imply that for

each ε > 0,

lim
n→∞
P(Wn,ε)= 0.

Fix γ > 0 arbitrarily. Choose k so that (1 − δ0/2)k < γ/2 and then choose

ε := (b− a)/k. Finally choose N so that for all n ≥ N, P(Wn,ε) ≤ γδ0/4. Let

a = t0 < t1 < t2 < · · · < tk = b, where each ti − ti−1 equals (b− a)/k. We then

have for n≥ N,

P(S n∩ [a,b]= ∅)
≤ P(ωtk−1

∈Wn,ε)+E
[

I{ωtk−1
<Wn,ε }P

[

S n∩ [a,b]= ∅ |ωtk−1

]]

≤ γδ0

4
E
[

I{ωtk−1
<Wn,ε }P

[

S n∩ [tk−1,b]= ∅ |ωtk−1

]

P
[

S n∩ [a, tk−1]= ∅ |ωtk−1

]]

using the Markov property. If ωtk−1
<Wn,ε , then

P
[

S n∩ [tk−1,b]= ∅ |ωtk−1

]≤ P[gn(b)= gn(tk−1) |ωtk−1

]≤ 1− δ0/2.

This yields

P(S n∩ [a,b]= ∅)≤ γδ0

4
+

(

1− δ0

2

)

P(S n∩ [a, tk−1]= ∅).

Continuing by induction k−1 more times yields

P(S n∩ [a,b]= ∅)≤ γ
2
+

(

1− δ0

2

)k

< γ.
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