

Advanced Concepts in Quantum Mechanics

Introducing a geometric view of fundamental physics, starting from quantum mechanics and its experimental foundations, this book is ideal for advanced undergraduate and graduate students in quantum mechanics and mathematical physics.

Focusing on structural issues and geometric ideas, this book guides readers from the concepts of classical mechanics to those of quantum mechanics. The book features an original presentation of classical mechanics, with the choice of topics motivated by the subsequent development of quantum mechanics, especially wave equations, Poisson brackets and harmonic oscillators. It also presents new treatments of waves and particles and the symmetries in quantum mechanics, as well as extensive coverage of the experimental foundations.

Giampiero Esposito is Primo Ricercatore at the Istituto Nazionale di Fisica Nucleare, Naples, Italy. His contributions have been devoted to quantum gravity and quantum field theory on manifolds with boundary.

Giuseppe Marmo is Professor of Theoretical Physics at the University of Naples Federico II, Italy. His research interests are in the geometry of classical and quantum dynamical systems, deformation quantization and constrained and integrable systems.

Gennaro Miele is Associate Professor of Theoretical Physics at the University of Naples Federico II, Italy. His main research interest is primordial nucleosynthesis and neutrino cosmology.

George Sudarshan is Professor of Physics in the Department of Physics, University of Texas at Austin, USA. His research has revolutionized the understanding of classical and quantum dynamics.

Advanced Concepts in Quantum Mechanics

GIAMPIERO ESPOSITO

GIUSEPPE MARMO

GENNARO MIELE

GEORGE SUDARSHAN

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
loor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, In

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107076044

© G. Esposito, G. Marmo, G. Miele and G. Sudarshan 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data
Esposito, Giampiero, author.

Advanced concepts in quantum mechanics / Giampiero Esposito,
Giuseppe Marmo, Gennaro Miele, George Sudarshan.

pages cm.

Includes bibliographical references.

ISBN 978-1-107-07604-4 (Hardback)

1. Quantum theory. I. Marmo, Giuseppe, author. II. Miele, Gennaro, author. III. Sudarshan, E. C. G., author. IV. Title.

QC174.12.E94 2015 530.12–dc23 2014014735

ISBN 978-1-107-07604-4 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

for Gennaro and Giuseppina; Patrizia; Arianna, Davide and Matteo; Bhamathi

Contents

Pre	eface	I	page xiii
1	Introduc	ction: the need for a quantum theory	1
	1.1	Introducing quantum mechanics	1
2	Experime	ental foundations of quantum theory	5
	2.1	Black-body radiation	5
		2.1.1 Kirchhoff laws	6
		2.1.2 Electromagnetic field in a hollow cavity	7
		2.1.3 Stefan and displacement laws	9
		2.1.4 Planck model	13
		2.1.5 Contributions of Einstein	17
		2.1.6 Dynamic equilibrium of the radiation field	19
	2.2	Photoelectric effect	19
		2.2.1 Classical model	21
		2.2.2 Quantum theory of the effect	23
	2.3	Compton effect	25
		2.3.1 Thomson scattering	29
	2.4	Particle-like behaviour and the Heisenberg picture	30
		2.4.1 Atomic spectra and the Bohr hypotheses	30
	2.5	Corpuscular character: the experiment of Franck and Hertz	34
	2.6	Wave-like behaviour and the Bragg experiment	35
		2.6.1 Connection between the wave picture and the discrete-level	
		picture	35
	2.7	Experiment of Davisson and Germer	39
	2.8	Interference phenomena among material particles	41
	Append	dix 2.A Classical electrodynamics and the Planck formula	46
3	Waves ar	nd particles	51
	3.1	Waves: d'Alembert equation	51
	3.2	Particles: Hamiltonian equations	58
		3.2.1 Poisson brackets among velocity components for a charged	
		particle	62
	3.3	Homogeneous linear differential operators and equations of motion	64
	3.4	Symmetries and conservation laws	65

viii Contents

		3.4.1	Homomorphism between $SU(2)$ and $SO(3)$	67
	3.5 Motivations for studying harmonic oscillators		tions for studying harmonic oscillators	72
	3.6	Compl	ex coordinates for harmonic oscillators	74
	3.7	Canoni	ical transformations	75
	3.8	Time-d	lependent Hamiltonian formalism	76
	3.9	Hamilt	on–Jacobi equation	78
	3.10	Motion	n of surfaces	81
	Appen	dix 3.A	Space–time picture	83
		3.A.1	Inertial frames and comparison dynamics	84
		3.A.2	Lagrangian descriptions of second-order differential equations	85
		3.A.3	Symmetries and constants of motion	88
		3.A.4	Symmetries and constants of motion in the Hamiltonian	
			formalism	91
		3.A.5	Equivalent reference frames	92
4	Schrödi	nger pictu	re, Heisenberg picture and probabilistic aspects	94
	4.1	From c	classical to wave mechanics	94
		4.1.1	Properties of the Schrödinger equation	96
		4.1.2	Physical interpretation of the wave function	100
		4.1.3	Mean values	103
		4.1.4	Eigenstates and eigenvalues	106
	4.2	Probab	ility distributions associated with vectors in Hilbert spaces	106
	4.3	Uncertainty relations for position and momentum		109
	4.4	Transfo	ormation properties of wave functions	111
		4.4.1	Direct approach to the transformation properties of the	
			Schrödinger equation	113
		4.4.2	Width of the wave packet	114
	4.5	Heisen	berg picture	115
	4.6		in the Heisenberg picture	119
	4.7	'Concl	usions': relevant mathematical structures	120
5	Integra	ting the e	quations of motion	122
	5.1	Green 1	kernel of the Schrödinger equation	122
		5.1.1	Discrete version of the Green kernel by using a fundamental	
			set of solutions	125
		5.1.2	General considerations on how we use solutions of the	
			evolution equation	127
	5.2	Integra	ting the equations of motion in the Heisenberg picture:	
		harmor	nic oscillator	129
6	Elemen	tary appli	cations: one-dimensional problems	131
-	6.1	,	ary conditions	131
		6.1.1	Particle confined by a potential	132
		6.1.2	A closer look at improper eigenfunctions	134

ix Contents

	6.2	Reflection and transmission	135
	6.3	Step-like potential	139
		6.3.1 Tunnelling effect	142
	6.4	One-dimensional harmonic oscillator	143
		6.4.1 Hermite polynomials	146
	6.5	Problems	147
	Append	dix 6.A Wave-packet behaviour at large time values	148
7	Element	tary applications: multi-dimensional problems	151
	7.1	The Schrödinger equation in a central potential	151
		7.1.1 Use of symmetries and geometrical interpretation	158
		7.1.2 Angular momentum operators and spherical harmonics	159
		7.1.3 Angular momentum eigenvalues: algebraic treatment	162
		7.1.4 Radial part of the eigenvalue problem in a central potential	163
	7.2	Hydrogen atom	165
		7.2.1 Runge–Lenz vector	168
	7.3	s-Wave bound states in the square-well potential	170
	7.4	Isotropic harmonic oscillator in three dimensions	172
	7.5	Multi-dimensional harmonic oscillator: algebraic treatment	174
		7.5.1 An example: two-dimensional isotropic harmonic oscillator	175
	7.6	Problems	177
8	Coheren	t states and related formalism	180
	8.1	General considerations on harmonic oscillators and coherent states	180
	8.2	Quantum harmonic oscillator: a brief summary	182
	8.3	Operators in the number operator basis	185
	8.4	Representation of states on phase space, the Bargmann-Fock	
		representation	186
		8.4.1 The Weyl displacement operator	188
	8.5	Basic operators in the coherent states' basis	190
	8.6	Uncertainty relations	191
	8.7	Ehrenfest picture	192
	8.8	Problems	194
9	Introdu	ction to spin	195
	9.1	Stern-Gerlach experiment and electron spin	195
	9.2	Wave functions with spin	199
	9.3	Addition of orbital and spin angular momenta	201
	9.4	The Pauli equation	203
	9.5	Solutions of the Pauli equation	205
		9.5.1 Another simple application of the Pauli equation	207
	9.6	Landau levels	209
	9.7	Spin-orbit interaction: Thomas precession	210
	9.8	Problems	212

x Contents

10	Symmeti	ries in quantum mechanics	214
	10.1	Meaning of symmetries	214
		10.1.1 Transformations that preserve the description	216
	10.2	Transformations of frames and corresponding quantum symmetries	222
		10.2.1 Rototranslations	222
	10.3	Galilei transformations	226
	10.4	Time translation	229
	10.5	Spatial reflection	230
	10.6	Time reversal	232
	10.7	Problems	232
11	Approxin	nation methods	234
11A	Perturba	ntion theory	235
	11A.1	Approximation of eigenvalues and eigenvectors	235
	11A.2	Hellmann–Feynman theorem	239
	11A.3	Virial theorem	241
	11A.4	Anharmonic oscillator	245
	11A.5	Secular equation for problems with degeneracy	248
	11A.6	Stark effect	249
	11A.7	Zeeman effect	251
	11A.8	Anomalous Zeeman effect	254
	11A.9	Relativistic corrections (α^2) to the hydrogen atom	256
	11A.10	Variational method	258
	11A.11	Time-dependent formalism	259
		Harmonic perturbations	261
	11A.13	Fermi golden rule	263
	11A.14	Towards limiting cases of time-dependent theory	263
		Adiabatic switch on and off of the perturbation	266
		Perturbation suddenly switched on	266
		Two-level system	267
		The quantum K^0 – K^0 system	269
	11A.19	The quantum system of three active neutrinos	271
11B	Jeffreys-	-Wentzel–Kramers–Brillouin method	274
	11B.1	The JWKB method	274
	11B.2	Potential barrier	277
	11B.3	Energy levels in a potential well	278
	11B.4	α -decay	279
110	Scatterin	ng theory	282
	11C.1	Aims and problems of quantum scattering theory	282
	11C.2	Time-dependent scattering	282
	11C.3	An example: classical scattering	284

xi Contents

	11C.4	Time-independent scattering		287
		11C.4.1 One-dimensional stationary description	of scattering	287
	11C.5	Integral equation for scattering problems		289
	11C.6	The Born series		293
	11C.7	Partial wave expansion		295
	11C.8	s-Wave scattering states in the square-well poten	ntial	298
	11C.9	Problems		299
12	Modern	pictures of quantum mechanics		301
	12.1	Quantum mechanics on phase space		301
	12.2	Representations of the group algebra		304
	12.3	Moyal brackets		308
	12.4	Tomographic picture: preliminaries		309
	12.5	Tomographic picture		311
		12.5.1 Classical tomography		312
		12.5.2 Quantum tomography		313
	12.6	Pictures of quantum mechanics for a two-level s	ystem	315
		12.6.1 von Neumann picture	•	317
		12.6.2 Heisenberg picture		319
		12.6.3 Unitary group $U(2)$		320
		12.6.4 A closer look at states in the Heisenberg	g picture	321
		12.6.5 Weyl picture		322
		12.6.6 Probability distributions and states		324
		12.6.7 Ehrenfest picture		325
	12.7	Composite systems		329
		12.7.1 Inner product in tensor spaces		330
		12.7.2 Complex linear operators in tensor space	ces	330
		12.7.3 Composite systems and Kronecker prod		331
	12.8	Identical particles		332
		12.8.1 Product basis		332
		12.8.2 Exchange symmetry		333
		12.8.3 Exchange interaction		334
		12.8.4 Two-electron atoms		335
	12.9	Generalized paraFermi and paraBose oscillators		337
	12.10	Problems		337
13	Formula	ations of quantum mechanics and their physical implica	tions	339
	13.1	Towards an overall view	-	339
	13.2	From Schrödinger to Feynman		339
		13.2.1 Remarks on the Feynman approach		341
	13.3	Path integral for systems interacting with an elec	ctromagnetic field	344
	13.4	Unification of quantum theory and special relati	-	346
	13.5	Dualities: quantum mechanics leads to new fund		351

xii Contents

14	Exam pr	oblems	353
	14.1	End-of-year written exams	353
15	Definition	ons of geometric concepts	360
	15.1	Outline	360
	15.2	Groups	360
	15.3	Lie groups	361
	15.4	Symmetry	362
	15.5	Various definitions of vector fields	363
	15.6	Covariant vectors and 1-form fields	366
	15.7	Lie algebras	368
	15.8	Lie derivatives	369
	15.9	Symplectic vector spaces	370
	15.10	Homotopy maps and simply connected spaces	371
		15.10.1 Examples of spaces which are or are not simply connected	372
	15.11	Diffeomorphisms of manifolds	372
	15.12	Foliations of manifolds	373
Rej	erences		374
Ind	lex		381

Preface

In the course of teaching quantum mechanics at undergraduate and post-graduate level, we have come to the conclusion that there is another original book to be written on the subject. The abstract setting foreseen by Dirac and the geometric view pioneered by von Neumann are finding new realizations, leading to further progress both in physics and mathematics, while the applications to quantum computation are opening a new era in modern science. Our emphasis is mainly on structural issues and geometric ideas, moving the reader gradually from the concepts of classical mechanics to those of quantum mechanics, but we have also inserted many problems for students throughout the text, since the book is written, in the first place, for advanced undergraduate and graduate students, as well as for research workers.

The overall picture presented here is original, and also the parts in common with a previous monograph by some of us have been rewritten in most cases. The analysis of waves and particles (Chapter 3), the treatment of symmetries in quantum mechanics (in particular, the first half of Chapter 10), the assessment of modern pictures of quantum mechanics (Chapter 12) have never appeared before in any monograph, to the best of our knowledge. The material on experimental foundations is rather rich and it cannot easily be found to the same extent elsewhere. Our presentation of classical mechanics is original and the choice of topics is motivated by the subsequent development of quantum mechanics, expecially wave equations, Poisson brackets and harmonic oscillators. The examples in Chapters 6 and 7 are frequently discussed with a care not always used in many introductory presentations in the literature. We find it also useful to offer an unified view of approximation methods, as we do in Chapter 11, which is divided into three parts: perturbation theory, the JWKB method and scattering theory.

We hope that, having acquired familiarity with symbols of differential operators, geometric formulation and tomographic picture, the reader will find it easier to follow the latest developments in quantum theory, which embodies, in the broadest sense, all we know about guiding principles and fundamental interactions in physics.

Our friend Eugene Saletan, with whom some of us worked and corresponded on the subject of dynamical systems over many years, is deeply missed. Special thanks are due to our colleagues Fedele Lizzi, Francesco Nicodemi and Luigi Rosa for discussing various aspects of the manuscript, and to our students who, never being satisfied with our writing, helped us a lot in conceiving and completing the present monograph. Last, but not least, the Cambridge University Press staff, i.e. Nicholas Gibbons, Neeraj Saxena, Zoë Pruce, Lindsay Stewart, Jeethu Abraham, Sarah Payne and the copy-editor, Zoë Lewin, have provided invaluable help in the course of completing our task.