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1 Introduction: the need for a quantum theory

1.1 Introducing quantummechanics

Interference phenomena of material particles (say, electrons, neutrons, etc.) provide us with
the most convincing evidence for the need to elaborate on a new mechanics that goes
beyond and encompasses classical mechanics. At the same time, ‘corpuscular’ behaviour
of radiation, i.e. light, as exhibited in phenomena like photoelectric and Compton effects
(see Sections 2.2 and 2.3, respectively), shows that the description of radiation also has to
undergo significant changes.

If we examine the relation between corpuscular-like and wave-like behaviour, we find
that it is fully described by the following phenomenological equations:

E = h¿ = h̄Ë, �p = h̄�k, (1.1.1)

which can be re-expressed in an invariant way with the help of 1-form notation (see
Chapter 15) through the Einstein–de Broglie relation:

pj dxj 2 E dt = h̄(kj dx j 2 Ë dt). (1.1.2)

This relation between the 1-form pj dxj 2 E dt on the phase space over space–time and

the 1-form h̄
 

kj dxj 2 Ë dt
 

on the optical phase space establishes a relation between

momentum and energy of the ‘corpuscular’ behaviour and the frequency of the ‘wave’
behaviour. The proportionality coefficient is the Planck constant. Such a relation likely
summarizes one of the main new concepts encoded in quantum mechanics.

The way we use this relation is to predict under which experimental conditions light of
a given wavelength and frequency will be detected as a corpuscle with a corresponding
momentum and energy and vice-versa, i.e. when an electron will be detected as a wave
in the appropriate experimental conditions. (To help dealing with orders of magnitude, we
recall that the frequency associated with an electron of kinetic energy equal to 1 eV is
2.42 · 1014 Hz, while the corresponding wavelength and wave number are 1.23 · 1029 m
and 5.12 · 109 m21, respectively. Two standard length units are angstrom = Å= 10210 m
and fermi = Fm = 10215 m.)

If we examine more closely an interference experiment, like the double-slit one, we find
some peculiar aspects for which we do not have a simple interpretation in the classical
setting.

If the experiment is performed in such a way that we make sure that, at each time,
only one electron is present between the source and the screen, we find that the electron
‘interferes with itself ’ and at the same time impinges on the screen at ‘given points’.
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2 Introduction: the need for a quantum theory

�Fig. 1.1 The electrons impinge on the screen at given points. Reproduced with permission from A. Tonomura, J. Endo, T.

Matsuda, T. Kawasaki, and H. Ezawa, Demonstration of single-electron build-up of an interference pattern, Am. J.

Phys. 57, 117320 (1989) copyright (1989), American Association of Physics Teachers.

�Fig. 1.2 Typical interference pattern resulting from the passage of a few thousand electrons. Reproduced with permission from

A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, Demonstration of single-electron build-up of an

interference pattern, Am. J. Phys. 57, 117320 (1989) copyright (1989), American Association of Physics Teachers.

After a few hundred electrons have passed, we find a picture of random spots distributed
on the screen (Figure 1.1). However, with several thousands electrons, a very clear typical
interference pattern is obtained (Figure 1.2).

The same situation occurs again if we experiment with photons (light quanta), with an
experimental setup that makes sure that only one photon is present at a time.

This experiment suggests that the new theory must include a wave character (to take
into account the interference aspects) and, in addition, statistical–probabilistic, character
along with an intrinsically discrete aspect, i.e. a corpuscular nature. All this is quite
counterintuitive for particles, but it is even more unexpected for light. Within the classical
setting we have to accept that it is not so simple to provide a single model capable of
capturing these various aspects at the same time.

From the historical point of view, things developed differently because inconsistencies
already arose in the derivation of the law for the spectral distribution of energy density of a
black body. Planck conceived of the idea of emission and absorption of radiation by quanta
in order to explain the finite energy density of black-body radiation (Section 2.1). The
theory of classical electrodynamics gave an infinite density for this radiation. Indeed, the
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3 1.1 Introducing quantummechanics

energy density per unit frequency was 8Ã¿2KT/c3, as calculated on the basis of this theory,
and the integral over the frequency ¿ is clearly divergent. Based in part on intuition, partly
on experimental information and partly to agree with Wien’s displacement law, Planck
replaced the previous formula by

8Ãh¿3/c3

 
eh¿/KT 2 1

 .

To give an ‘explanation’ of it, he postulated that both emission and absorption of radiation
occur instantaneously and in finite quanta.

Moreover, it was not possible to account for the stability of atoms and molecules along
with the detected atomic spectra. To account for the experimental facts, Bohr postulated
the quantum condition for electronic orbits. This hypothesis was highly successful in
describing the spectrum of atomic hydrogen clearly and also in a qualitative way the
periodic system, and hence some basic properties of all atoms. In spite of these partial
successes, the absence of mathematically sound rules on the basis of which the electronic
orbits, and therefore the energy levels, could be determined was greatly disturbing. It was
also quite unclear how the electron jumps from one precisely defined orbit to another. The
next chapter is devoted to a detailed description of some crucial experiments mentioned
above, presented in their historical sequence, with the aim of providing the physical
background from which the new theory of quanta emerged.

Eventually, the efforts of theoreticians gave rise to two alternative, but equivalent,
formulations of quantum mechanics. They are usually called the Schrödinger picture and
the Heisenberg picture. As will be seen in the coming chapters, the first one uses as a
primary object the carrier space of states, while the latter uses as carrier space the space
of observables. The former picture is built in analogy with wave propagation, the latter in
analogy with Hamiltonian mechanics on phase space, i.e. the corpuscular behaviour.

The Schrödinger equation has the form

ih̄
d

dt
Ë = �HË . (1.1.3)

The complex-valued function Ë is called the wave function, it is defined on the config-
uration space of the system we are considering, and it is interpreted as a probabilistic
amplitude. This interpretation requires that (d¿ being the integration measure)

�

D

Ë7Ë d¿ = 1, (1.1.4)

i.e. because of the probabilistic interpretation, Ë7Ë must be a probability density and
therefore Ë is required to be square-integrable. Thus, wave functions must be elements
of a Hilbert space of square-integrable functions. The operator �H , acting on wave
functions, is the infinitesimal generator of a 1-parameter group (see Chapter 15) of unitary
transformations describing the evolution of the system under consideration. The unitarity
requirement results from imposing that the evolution of an isolated system should be
compatible with the probabilistic interpretation.

These are the basic ingredients appearing in the Schrödinger evolution equation.
The presence of the new fundamental constant h̄ within the new class of phenomena
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4 Introduction: the need for a quantum theory

implies some fundamental aspects completely different from the previous classical ones.
For instance, it is clear that any measurement process requires an exchange of energy
(or information) between the object being measured and the measuring apparatus. The
existence of h̄ requires that these exchanges cannot be made arbitrarily small and therefore
idealized to be negligible. Thus, the presence of h̄ in the quantum theory means that in the
measurement process we cannot conceive of a sharp separation between the ‘object’ and
the ‘apparatus’ so that we may ‘forget the apparatus’ altogether.

In particular, it follows that even if the apparatus is described classically it should be
considered as a quantum system with a quantum interaction with the object to be measured.
Moreover, in the measurement process, there is an inherent ambiguity in the ‘cut’ between
what we identify as the object and what we identify as apparatus.

The problem of measurement in quantum theory is a very profound one and goes
beyond the scope of our manuscript. It is worth mentioning that, within the von Neumann
formulation of quantum mechanics, the measurement problem gives rise to the so-called
‘wave-function collapse’. The state vector of the system we are considering, when we
measure some real dynamical variable A, i.e. a linear operator acting on the Hilbert
space H, is projected onto one of the eigenspaces of A, with some probability that
can be computed. Since our aim is only to highlight the various structures occurring in
the different formulations of quantum mechanics, we shall adhere to the von Neumann
projection prescription.
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2 Experimental foundations of quantum theory

The experimental foundations of quantum theory are presented in some detail in this
chapter: on the one hand, the investigation of black-body radiation, which helps in
developing an interdisciplinary view of physics, besides having historical interest; on the
other hand, the energy and linear momentum of photons, atomic spectra, discrete energy
levels, wave-like properties of electrons, interference phenomena and uncertainty relations.

2.1 Black-body radiation

Black-body radiation is not just a topic of historical interest. From a pedagogical point
of view, it helps in developing an interdisciplinary view of physics, since it involves,
among the other, branches of physics such as electrodynamics and thermodynamics, as
well as a new constant of nature, the Planck constant, which is peculiar to quantum theory
and quantum statistics. Moreover, looking at modern developments, the radiation that
pervades the whole universe (Gamow 1946, Penzias and Wilson 1965, Smoot et al. 1992,
Spergel et al. 2003) is a black-body radiation, and the expected emission of particles from
black holes (space–time regions where gravity is so strong that no light ray can escape to
infinity, and all nearby matter gets eaten up) is also (approximately) a black-body radiation
(Hawking 1974, 1975).

In this section, relying in part on Born (1969), we are aiming to derive the law of heat
radiation, following Planck’s method. We think of a box for which the walls are heated to
a definite temperature T . The walls of the box send out energy to each other in the form
of heat radiation, so that within the box there exists a radiation field. This electromagnetic
field may be characterized by specifying the average energy density u, which in the case
of equilibrium is the same for every internal point; if we split the radiation into its spectral
components, we denote by u¿d¿ the energy density of all radiation components for which
the frequency falls in the interval between ¿ and ¿+d¿. (The spectral density is not the only
specification; we need to know the state of the entire radiation field including the photon
multiplicity.) Thus, the function u¿ extends over all frequencies from 0 to >, and represents
a continuous spectrum. Note that, unlike individual atoms in rarefied gases, which emit
line spectra, molecules, which consist of a limited number of atoms, emit narrow ‘bands’,
which are often resolvable. A solid represents an infinite number of vibrating systems of all
frequencies, and hence emits an effectively continuous spectrum. But inside a black cavity
all bodies emit a continuous spectrum characteristic of the temperature.
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6 Experimental foundations of quantum theory

The first important property in our investigation is a theorem by Kirchhoff (1860), which
states that the ratio of the emissive and absorptive powers of a body depends only on
the temperature of the body, and not on its nature (recall that the emissive power is, by
definition, the radiant energy emitted by the body per unit time, whereas the absorptive

power is the fraction of the radiant energy falling upon it that the body absorbs). A black

body is meant to be a body with absorptive power equal to unity, i.e. a body that absorbs all
of the radiant energy that falls upon it. The radiation emitted by such a body, called black-

body radiation, is therefore a function of the temperature alone, and it is important to know
the spectral distribution of the intensity of this radiation. Any object inside the black cavity
emits the same amount of radiant energy. We are now aiming to determine the law of this
intensity, but before doing so it is instructive to describe in detail some arguments in the
original paper by Kirchhoff (cf. Stewart 1858).

2.1.1 Kirchhof laws

The brightness B is the energy flux per unit frequency, per unit surface, for a given solid
angle per unit time. Thus, if dE is the energy incident on a surface dS with solid angle d�

in a time dt with frequency d¿, we have (» being the incidence angle)

dE = B d¿ dS d� cos » dt. (2.1.1)

The brightness B is independent of position, direction and the nature of the material. This
is proved as follows.

(i) B cannot depend on position, since otherwise two bodies absorbing energy at the
same frequency and placed at different points P1 and P2 would absorb different amounts
of energy, although they were initially at the same temperature T equal to the temperature of
the cavity. We would then obtain the spontaneous creation of a difference of temperature,
which would make it possible to realize a perpetual motion of the second kind, hence
violating the second principle of thermodynamics, which is of course impossible.

(ii) B cannot depend on direction either. Let us insert into the cavity a mirror S of
negligible thickness, and imagine we can move it along a direction parallel to its plane.
In such a way no work is performed, and hence the equilibrium of radiation remains
unaffected. Then let A and B be two bodies placed at different directions with respect
to S and absorbing in the same frequency interval. If the amount of radiation incident upon
B along the BS direction is smaller than that along the AS direction, bodies A and B attain
spontaneously different temperatures, although they were initially in equilibrium at the
same temperature! Thermodynamics forbids this phenomenon as well.

(iii) Once equilibrium is reached, B is also independent of the material the cavity is
made of. Let the cavities C1 and C2 be made of different materials, and suppose they are
at the same temperature and linked by a tube such that only radiation of frequency ¿ can
pass through it. If B were different for C1 and C2 a non-vanishing energy flux through the
tube would therefore be obtained. Thus, the two cavities would change their temperature
spontaneously, against the second law of thermodynamics. Similar considerations prove B

to be independent of the shape of the cavity as well.
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7 2.1 Black-body radiation

By virtue of (i)–(iii) Eq. (2.1.1) reads, more precisely, as

dE = B(¿, T)d¿ dS d� cos » dt. (2.1.2)

Moreover, the energy absorbed by the surface element dS of the wall once equilibrium is
reached is (x denoting all variables other than ¿, T)

dEabs = am(¿, T , x)dE, (2.1.3)

while the emitted energy is

dEem = em(¿, T , x)d¿ dS d� cos » dt. (2.1.4)

Under equilibrium conditions, the amounts of energy dEem and dEabs are equal, and hence

em(¿, T , x)

am(¿, T , x)
= B = B(¿, T). (2.1.5)

Thus, the ratio of emissive and absorptive powers is equal to the brightness and hence can
only depend on frequency and temperature, although both em and am can separately depend
on the nature of materials.

As far as the production of black-body radiation is concerned, it has been proved by
Kirchhoff that an enclosure (typically, an oven) at uniform temperature, in the wall of which
there is a small opening, behaves as a black body. Indeed, all the radiation which falls on
the opening from the outside passes through it into the enclosure, and is, after repeated
reflection at the walls, completely absorbed by them. The radiation in the interior, and
hence also the radiation which emerges again from the opening, should therefore possess
exactly the spectral distribution of intensity, which is characteristic of the radiation of a
black body.

2.1.2 Electromagnetic oeld in a hollow cavity

According to classical electrodynamics, a hollow cavity filled with electromagnetic
radiation (possibly in thermodynamical equilibrium with the cavity surfaces) contains
energy stored in the electromagnetic field as described by the expression1

E = 1

8Ã

�  
|2³E |2 + |2³B |2

 
dV , (2.1.6)

where the fields
2³
E and

2³
B satisfy the Maxwell equations

2³' ' 2³
E = 21

c

"

"t

2³
B ,

2³' · 2³
B = 0, (2.1.7)

2³' ' 2³
B = 1

c

"

"t

2³
E + 4Ã

c

2³
J ,

2³' · 2³
E = 4ÃÃ, (2.1.8)

with Ã and
2³
J denoting the charge and current density, respectively. The most general

solution of Eqs. (2.1.7) expresses the fields
2³
E and

2³
B in terms of scalar and vector

potentials as

2³
B = 2³' ' 2³

A ,
2³
E = 22³' Ç 2 1

c

"

"t

2³
A . (2.1.9)

1 Hereafter we will use Gaussian units, see for example Jackson (1975), for a detailed discussion.
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8 Experimental foundations of quantum theory

Once the electromagnetic fields are given, Eqs. (2.1.9) do not fix Ç and
2³
A . In fact, if

according to Eq. (2.1.9) Ç and
2³
A yield

2³
E and

2³
B , from the pair Ç� and

2³
A � defined by

2³
A � c 2³

A 2 2³' È , Ç� c Ç + 1

c

"

"t
È , (2.1.10)

the same electromagnetic fields for every arbitrary È function are obtained. Such a level of
freedom in choosing the scalar and vector potentials associated with given electromagnetic
fields, which makes the former physically unobservable, is commonly denoted as gauge

symmetry. In the case of Maxwell equations in vacuum, a the gauge symmetry can be
completely exploited by imposing simultaneously the conditions

2³' · 2³
A = " iAi = 0, Ç = 0, (2.1.11)

which is a particular case of transverse gauge. By substituting Eqs. (2.1.9) in (2.1.8) for the
vacuum case and using the conditions (2.1.11) we get the wave equation for the transverse
degrees of freedom of

2³
A , i.e. (hereafter � c "2

"x2 + "2

"y2 + "2

"z2 if expressed in Cartesian
coordinates)

�
� 2 1

c2

"2

"t2

�2³
A t c �

2³
A t = 0, (2.1.12)

2³' · 2³
A t = 0. (2.1.13)

As already proved in the previous subsection, the energy density of a hollow cavity filled
of electromagnetic radiation in thermal equilibrium with the cavity surface cannot depend

on the nature and shape of the cavity. For this reason, we can choose the particular case of
a cubic cavity with periodic boundary conditions, which allows a simpler treatment of the
electromagnetic problem.

Let us consider a cube with edge length L; the generic field �At(�r, t) simultaneously
periodic along the three coordinate directions can be expanded as

2³
A t(�r, t) =

�

l,n,m*Z

�
�alnm(t) cos

�
2Ã

L
(l x + m y + n z)

�

+ �blnm(t) sin

�
2Ã

L
(l x + m y + n z)

��
. (2.1.14)

By defining the propagation vector �k c (2 Ã/L)(l, m, n), the condition
2³' ·2³A t = 0 implies

�k · �alnm(t) = �k · �blnm(t) = 0 (transverse condition).
Hence Eq. (2.1.14) can be rewritten

2³
A t(�r, t) =

�

�k,¿

�
�a�k,¿(t) cos

 
�k · �r

 
+ �b�k,¿(t) sin

 
�k · �r

 �
, (2.1.15)

where the index ¿ labels the two independent solutions of the transverse condition, and
Eq. (2.1.12) gives

�
d2

dt2
+ |�k|2 c2

�
�a�k,¿(t) = 0,

�
d2

dt2
+ |�k|2 c2

�
�b�k,¿(t) = 0, (2.1.16)
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9 2.1 Black-body radiation

which show that �a�k,¿ and �b�k,¿ behave as harmonic oscillators with angular frequency

Ë = |�k| c, where |�k| c (2 Ã/L)
:

l2 + m2 + n2.
By deriving from Eq. (2.1.15) the corresponding electromagnetic fields and substituting

them in Eq. (2.1.6) we get

E = L3

8Ãc2

�

�k,¿

1

2

""""""
d

dt

 
�a�k,¿ + �a2�k,¿

 """"
2

+ |�k|2 c2
"""
 
�a�k,¿ + �a �2k,¿

 """
2
"

+
"""""

d

dt

 
�b�k,¿ 2 �b2�k,¿

 """"
2

+ |�k|2 c2
"""
 
�b�k,¿ 2 �b �2k,¿

 """
2
""

. (2.1.17)

From Eq. (2.1.17) deduce that the electromagnetic energy in a hollow cavity receives
contributions from the sum of countable and separate harmonic oscillator-type degrees of
freedom with mass equal to L3/(8Ãc2) and angular frequency Ë. For each particular mode,
i.e. for each �k, the two independent polarizations are labelled by ¿. Note that the presence
in Eq. (2.1.17) of terms proportional to �a�k,¿ + �a �2k,¿ and �b�k,¿ 2 �b2�k,¿, even though they

have particular properties of symmetry with respect to �k ³ 2�k, ensures one independent
degree of freedom for each value of �k and ¿.

By virtue of the isotropy expected for the radiation energy density in the hollow cavity
describing the black body, the expression in square brackets on the right-hand side of
Eq. (2.1.17) (total energy of the single harmonic oscillator) can depend on Ë only, hence
in the sum of Eq. (2.1.17) the directional degrees of freedom can be integrated out.

If we fix �k, the infinitesimal number of oscillators around this value is

·n = dl dm dn = L3/(2Ã)3 dkx dky dkz = L3/(2Ã)3 |�k|2 d|�k| d�. (2.1.18)

Once the angular integration is performed the total number of oscillators between the
frequencies ¿ and ¿ + d¿ is obtained, i.e.

·N = 8ÃV

c3
¿2 d¿, (2.1.19)

where we have used the relation ¿ = |�k| c/(2Ã), added an extra factor 2 to Eq. (2.1.19) to
take into account the different polarizations, and denoted with V the volume of the cavity
V = L3. By using Eqs. (2.1.17) and (2.1.19) we get for the cubic cavity

1

V

dE

d¿
= 8ÃV

c3
¿2 eho(¿), (2.1.20)

where eho(¿) denotes the energy contribution of the harmonic-oscillator-like degrees of
freedom with frequency ¿ appearing on the right-hand side of Eq. (2.1.17).

The expression of E can then be obtained by determining the explicit expression of
eho(¿). In the following we will take a different approach, but we will revert to Eq. (2.1.20)
to physically interpret our results.

2.1.3 Stefan and displacement laws

Remaining within the framework of thermodynamics and the electromagnetic theory
of light, two laws can be deduced concerning the way in which black-body radiation

www.cambridge.org/9781107076044
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-07604-4 — Advanced Concepts in Quantum Mechanics
Giampiero Esposito , Giuseppe Marmo , Gennaro Miele , George Sudarshan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Experimental foundations of quantum theory

depends on the temperature. First, the Stefan law states that the total emitted radiation
is proportional to the fourth power of the temperature of the radiator. Thus, the hotter the
body, the more it radiates. Second, Wien found the displacement law (1896), which states
that the spectral distribution of the energy density is given by an equation of the form

u¿(¿, T) = ¿3F(¿/T), (2.1.21)

where F is a function of the ratio of the frequency to the temperature, but cannot be
determined more precisely with the help of thermodynamical methods. This formula can
be proved by using the approach of previous subsection, i.e. describing the black body as
a hollow cavity of volume V in the shape of a cube of edge length L. As shown before, the
equilibrium radiation field will consist of standing waves and this leads to the following
relation for the frequency:

�
¿L

c

�2

= l2 + m2 + n2, (2.1.22)

where l, m and n are integers. If an adiabatic change of volume is performed, the quantities
l, m and n, being integers and hence unable to change infinitesimally, will remain invariant.
Under an adiabatic transformation the product ¿L is therefore invariant, or, introducing the
volume V instead of L,

¿3V = invariant, (2.1.23)

under adiabatic transformation. The result can be proved to be independent of the shape of
the volume.

However, it is more convenient to have a relation between ¿ and T , and for this purpose
the entropy of the radiation field must be considered. Classical electrodynamics tells us
that the radiation pressure P is one-third of the total radiation energy density u(T):

P = 1

3
u(T). (2.1.24)

On combining Eq. (2.1.24) with the thermodynamic equation of state
�

"U

"V

�

T

= T

�
"P

"T

�

V

2 P, (2.1.25)

and the relation U = uV , the differential equation,

u = 1

3
T

du

dT
2 1

3
u, (2.1.26)

which is solved by using the Stefan law is obtained,

u(T) = aT4. (2.1.27)

Equations (2.1.24) and (2.1.27), when combined with the thermodynamic Maxwell relation
�

"S

"V

�

T

=
�

"P

"T

�

V

, (2.1.28)

yield

S = 4

3
aT3V . (2.1.29)
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