

Index

A2L-Mobilius project, 61, 63. See also Affordable BIC. See brain computer interface and Adaptable Building System BIM model, 56-58 Cairo and, 61-62, 65-67, 70 biosignals, electrical, 24 DIV concept in, 61, 65-67, 70 ECG, 22-24, 127-132 DPUs in, 61, 64-67, 69-70 EEG, 23-25, 93 V-Model diagram for, 61-62 EMG, 23 AAL (Ambient Assisted Living). See specific topics EOG, 23-24 A2BS. See Affordable and Adaptable Building blood analysis technology, 87 System blood pressure acoustic comfort, 40-42, 50, 52 diastolic, 18-20 Active Assisted Living (AAL). See specific topics high, 27 Activities of Daily Living (ADL), 3, 12 meter for, 18-20 Affordable and Adaptable Building System (A2BS), pulse and, 18 61-62, 64-65, 68 systolic, 18-20 DPUs with, 64-67, 69-70 blood-testing glucometers, 21-22 modular concrete structural system of, 62-64 BMI. See Brain-Machine-Interface Open Building principles and, 62, 69-70 Bodyweight Support Assist, 91-92 aging, 2, 24-26 bradykinesia detection, 121-122 brain computer interface (BIC), 24 genes influencing, 25-26 in place, BeuAAL and, 37-38 Brain-Machine-Interface (BMI), 92-93 Aircraft Maintenance Repair Overhaul (MRO). Brainspots, 115 See Maintenance Repair Overhaul, Aircraft BSI-Toyota Collaboration Centre (BTCC), 93 AIST Intelligent Wheelchair, 100-101 Building Energy Renovation Through Timber Prefabricated Modules. See BERTIM Alzheimer's disease, 32, 90 Ambient Assisted Living (AAL). See specific topics built environment upgrading for AAL Ambient Intelligence (AmI), 12-13 (BeuAAL), 37, 49-50, 55-56, 61. See also Ambient Sensing, 12-13 Affordable and Adaptable Building System; AmI. See Ambient Intelligence Dynamic Vertical Urbanism accessibility, 42-57 Animatrix, 6 architecture, AAL fusion with, 146 acoustic comfort, 40-42, 50, 52 Arduino, 109-110, 128, 130, 133 adequate lighting, 43-57 ASIMO (humanoid robot), 91 aging in place and, 37-38 astronauts, 2, 11, 145 bespoke and customized elements, 53-54, 57-58 attention span, of workers, 145-146 comfort, 39-42, 44-45, 50 Axiomatic Design, 48, 50-51 environmental issues, 37-39 Functional Requirements of, 50-53 Bandai, 11, 79 green environment in, 45-46, 50, 52-53 on-site works minimized, 46-48, 50, 52-53 bathrooms and kitchens, prefabricated, 43-57 BeagleBone Black, 127-129, 135-136 Open Building in, 48-50, 52, 62, 69-70 BERTIM (Building Energy Renovation Through parametric software tools, 56-58 Timber Prefabricated Modules), 47-59, 145 post-war buildings and, 39-40, 44-45 bespoke elements, 53-54, 57-58 preliminary technology development, 51-53 BeuAAL. See built environment upgrading for AAL product, element, and module, 53-55

160 Index

built environment upgrading for AAL	hyperinsulinemia and, 27
(BeuAAL) (cont.)	metabolic syndrome and, 27
quantitative assessment, 51–53	digital tachometer, 56
research projects, 40, 49–50	direct laser metal forming (DLMF), 142-143
robotic devices, automated tools for, 47-48, 50, 52	disabled persons, solutions for, 99
robotic installation, 47-60	disease, identifying, 15-16
sub-systems, 53–60	DIV. See Decentralized Industrial Village
thermal comfort, 40-41, 50, 52	DLMF. See direct laser metal forming
unobtrusive, 46–48, 50	DP. See Design Parameters
	DPUs. See Decentralized Processing Units
CAD, 53, 56–57	Dr. Kawashima's Brain Training, 90
CAIRE project, 140–145	Dufy, Raoul, 34
Cairo, Egypt, 61–62, 65–67, 70	Dynamic Vertical Urbanism, 71–73
car industry, future developments of, 144	development scenario of, 72
caregivers, 5	proposal for, aerial view of, 73
cataract, 32–33	1 1
CATCH project, 46	ears
categories and systems, of ambient robotics,	aging, 34–36
145–147	structure of, 35
Centre of Excellence (COE) programs, 82	ECG. See electrocardiogram
Centre of IRT (CIRT), Tokyo University, 74, 77	EEG. See electroencephalography
China, 5, 71–73	eHealth, 12, 22–23
CIRT. See Centre of IRT, Tokyo University	Einthoven measurements, 22–23
City-Car PIVO, 75–103	electrocardiogram (ECG), 22–24, 99
civil engineering, AAL fusion with, 146	contactless, 127–132
clock, Japanese, 6–7	EMG compared with, 23
coat dressing aid, 124–126, 145	in private eHealth market, 22–23
COE. See Centre of Excellence programs	electroencephalography (EEG), 23–25, 93
construction	electromyogram (EMG), 23
measurement and data acquisition for robotics in,	electrooculography (EOG), 23–24
55–56	elevator shaft, prefabricated, 43
OCF for, 71–72	EMG. See electromyogram
sites of, AAL systems for, 145–146	Emiew (Excellent Mobility and Interactive Existence
strategies for applying robotics in, 53–55	as Workmate), 76–77
controlled multisensory environment (<i>Snoezelen</i>), 43	energy harvesting, 145
COPRAS, 51	EOG. See electrooculography
Cyberdyne, 93, 102	ESA Planetary Robotics Lab, 11
<i>Cyberayne</i> , <i>52</i> , 102	Europe, 60
Daiwa House, 85, 93	mechatronic/robotic environments in, history of,
deadly quartet. See metabolic syndrome	10–11
death, reasons for, 28–29	renovation research projects in, 40, 49
Decentralized Industrial Village (DIV), 61, 65–67, 70	European Commission, 40, 57
Decentralized Processing Units (DPUs), 61, 64–67,	EVA, 2, 145
69–70	Evolution Robotics, 79
dementia, 32, 90	Excellent Mobility and Interactive Existence as
demographic changes, 3–5	Workmate. See Emiew
in China, 5	exoskeletons, EMG in, 23
in Germany, 4–5, 82, 115–117	eyes, aging, 32–34
in Japan, 5–6, 82, 89	EZ Touch Remote Control, 89
demolition, robotic, 56–57	LE Touch remote control, 07
dental implants, 142–145	F884iES health phone, 86–87
Depth Sensors, 14	fall detection, 129–133, 145
Design Matrix, 51	farming modules, 69
Design Parameters (DP), 51	La Fée Électricité, 34
diabetes	Fernandez-Andrés, C., 141–145
Type I, 28–29	fever measurement, contactless, 126–128
Type II, 21–22, 29–30	FP7 research framework, 49

Index

161

FR. See Functional Requirements	i-foot / Toyota Mobility Suit, 79-96
Fujitsu, 78, 86–87	Independence Axiom, 48, 51
Functional Requirements (FR), 50-53	influenza, 21, 124–125
	information and learning platforms, 89-90
Genki Chip, 87	Information Axiom, 51
geometry, of buildings, 55-56	input devices & health care field, 82
German RepRap X400 3D printer, 120	Institute of Physical and Chemical Research
Germany, 4–5, 82, 115–117	(RIKEN), 88
GEWOS (Gesund wohnen mit Stil) (Healthy Living	Intelligent Toilet, 85–86
with Style) project, 104–106	International Space Station, 11
glaucoma, 32–33	i-Real, 79–96, 99
glucometers	i-Road (Personal Mobility), 98–99
blood, 21–22	Ishida, K. K. N., 54
urine, 21–22	islets of Langerhans, 28–29
glucose scanner, 21–22	i-Swing, 96–97
Goldberger measurements, 22–24	
	Jaco robotic arm. See USA2 project
H2020. See Horizon 2020	Japan, 47, 74, 77, 86, 98–99. See also Karakuris;
HAL-5 (Hybrid Assistive Limb) Enhanced Mobility	mechatronic/robotic environments, history of
Suit, 93–94	demographic changes in, 5-6, 82, 89
Hasegawa, T., 81	Kabuki theatre in, 8–10
health and wellness technology, 84-85	Kouka-ninjya house in, 9
Health Phone, 86–87	Mannen-Tokei clock of, 6–7
HIRB bathing machine, 85–86	OMM building in, 60
Hitachi Genki Chip, 87	Osaka, 48–49, 60, 85
Intelligent Toilet, 85–86	pillar clock of, 6–7
REALIVE™ rehabilitation suit, 87–88	Tokyo, 83, 91
RIBA, 79–88	u-Japan strategy in, 82, 89
Robotic Bed, 79–89	Japan Society for the Promotion of Science, 1–2
Santelubain 999 bathing machine, 86	JAXA Institute, 97–98
Health Phone, 86–87	
health sensors, 16, 27	Kabuki theatre, 8–10
Healthy Living with Style (Gesund wohnen mit Stil).	Karakuris, 6–9
See GEWOS project	modern influence of, 11
hearing aids, 36	in theatre, 8–10
heart attack, 28–29	Kawashima, Ryuta, 90
Hephaestus Project, 59–60	Kei-Cars, 98
HIRB (Human In Roll-lo Bathing), 85–86	Kintzing, Pierre, 10–11
Hitachi, 76, 81	kitchen table, automatic, 132–136
Hitachi Genki Chip, 87	Kohler, N. H. U., 38
Home Assistant AR, 77	Korotkoff-sound, 18–19
home care robots, 74–75	Kouka-ninjya house, 9
Emiew, 76–77	
Home Assistant AR, 75, 77	Lacaton & Vassal architects, 45–46
Mamoru-Kun, 74–76	LASER treatment, for eyes, 33–34
Maron-1, 78–79	Leap Motion Controller, 113, 120, 122
My Spoon, 78	LiDAR (Light Detection and Ranging), 14, 55–56
NetTransorWeb, 79–80	lighting, 43–57
PaPeRo, 74–75	LISA (Living independently in Südtirol/Alto Adige)
Twendy-One, 77–78	project, 106, 109–110
Honda, 91–93	apartment areas in, 106–107
Horizon 2020 (H2020), 49, 60	different settings of, 110
Human In Roll-lo Bathing. See HIRB	service functions in, 107–108
Hybrid Assistive Limb. See HAL-5 Enhanced	system architecture of, 107–108
Mobility Suit	LISA-habitec project, 122–123, 125
hyperinsulinemia, 27	coat dressing aid, 124–126, 145
hypertriglyceridemia, 27	contactless ECG measuring, 127-132

162 Index

2 etection software, 41–42
etection software, 41-42
etection software, 41-42
etection software, 41-42
g principles
obot, 75
truction factory
maximizing, 46–47
41–145
ctory (OCF), 71-72
-60
zing, 46–48, 50, 52–53
rinciples
0
52, 62, 69–70
60, 85
•
Control of, 89
-89
0
slets of Langerhans
Personal-Robot), 74–75
)–31, 122
,
Robot. See PaPeRo
–111, 115–116. See also
,
se, 27
). See i-Road
elligent Units (PI ² Us), 138–139
8
4, 56
33–134
d Interior Intelligent Units
VO
interfaces, 145
-40
s, possible, 145–146
. 1
18
fication (RFID), 14–15, 81
ication (RFID), 14–15, 81

Index

163

RCAST Group: Space Technology for Rehabilitation Science, 97–98	Snoezelen (controlled multisensory environment), 43
REACH (Responsive Engagement of the Elderly	social interaction technologies, 80
Promoting Activity and Customized	input devices & health care, 82
Healthcare), 135–136	Panasonic Life Wall, 80
analysis and planning subsystem of, 136-138	PARO, 79–84
motivation and intervention subsystem of,	RFID in, 81, 83
138–139	Robot Town & Robot Care, 81
PI2Us subsystem of, 138-139	Secure-Life Electronics, 82
sensing and monitoring subsystem of, 136-139	Ubiquitous Monitoring System, 81-82
REALIVE™ rehabilitation suit, 87–88	UbiquitousCommunication, 83
RenoBIM, 58	WAKAMARU, 79–84
renovation, automated and robotic, 140-144	solar panels, 69
repair, automated and robotic, 140-144	spacecraft, 11
research and development projects, 49, 57, 104	StairWalker, 113-114
for BeuAAL, 40, 49–50	stereo-photogrammetry, 13-14
GEWOS, 104-106	stress level, 145–146
LISA, 106-110	Stride Management Assist, 91–92
LISA-habitec, 122–135	stroke, 28–29
PASSAge, 110–116	Support / Infill (S/I). See Open Building principle
REACH, 135-139	Suzuki PIXY, 101–102
USA ² , 119–122	Suzuki SSC (Suzuki Sharing Coach), 79-102
Responsive Engagement of the Elderly Promoting	
Activity and Customized Healthcare. See	Tanita, 87
REACH	Technology Readiness Level (TRL), 50, 140
RFID. See radio frequency identification	telepresence, 119–120
RIBA (Robot for Interactive Body Assistance),	temperature measurement, 20
79–88	contactless, 126–127
RIKEN. See Institute of Physical and Chemical	infrared devices for, 20–21
Research	thermal cameras for, 21
RI-MAN, 88	The Terminator, 6
Robot for Interactive Body Assistance. See RIBA	thermal cameras, 21
Robot Town & Robot Care, 81	thermal comfort, 40–41, 50, 52
Robotic Bed, 79–89	thermometers, 20
rollator, 110–111	3D Laser Scanning. See LiDAR
StairWalker and, 113–114	3D printing and scanning, 117–120, 122
TurtleBot and, 111–114	TMS. See Town Management System
Roppongi Hills R-clicks, 91–92	Tokai Rubber Industries (TRI), 88
rotary shoe shelf, 131–132, 134	Tokyo, Japan, 83, 91
0.1 . 4 100	Tokyo Ubiquitous Computing Centre, 83
Salarian, A., 122	Tokyo Ubiquitous Network project, 83
Sankai, Y., 93	total station. See digital tachometer
Santelubain 999 bathing machine, 86 Sanyo, 85	Town Management System (TMS), 81 Toyota, 93
Sashigane control, 8	i-foot, 79–96
Satoh, Yutaka, 101	i-Real, 79–96, 99
Secure-Life Electronics, 82	i-Road, 98–99
Sekisui Heim, 47–48	i-Swing, 96–97
senilism process, 104, 115–117	Wheelchair Robot, 97
SensFloor, 130	Toyota Mobility Assistance Program, 99
Sharp SH706IW health phone, 87	Toyota production system (TPS), 6
ships, automated repair of, 141–145	Toyota RIN Interior, 98–100
shoe dressing aid, 131–132, 134, 145	Toyota WINGLET, 100
Shoza, Namiki, 9	TPS. See Toyota production system
S/I (Support / Infill). See Open Building principles	tremor analysis, 121–122
smart homes, 2–3	TRI. See Tokai Rubber Industries
SME robotics, 57–58	TRL. See Technology Readiness Level

Tsukauba University, 93, 102

tuk-tuks, 69

164 Index

TurtleBot, 111-114 interface for, 111-113 smartphones, tablets, and, 113 Twendy-One, 77-78 Ubiquitäres und Selbstbestimmtes Arbeiten im Alter. See USA2 project Ubiquitous Monitoring System, 81-82 UbiquitousCommunication, 83 u-Japan strategy, 82, 89 Ultrasonic Bath, 85 Universal Vehicle RODEM, 75-102 urbanization, 61-64 urine analyser, 85 urine-testing glucometers, 21-22 USA² (Ubiquitäres und Selbstbestimmtes Arbeiten im Alter) project, 115, 117-120 bradykinesia detection and tremor analysis by, 121-122 in Brainspots, 115

3D printing and scanning in, 117-120, 122

Jaco robotic arm in, 118–121 mini home-factory of, 117–119

Vuzix M100 in, 120-122

ViPR Vision System, 79 vision systems, 13-14 V-Model diagram, 61-62 VOI electric motorcycle, 69 Vuzix M100, 120-122 WAKAMARU, 79-84 Waseda University, 77, 94-95 wearables, 2-3, 16, 27, 145 Wheelchair Robot, 97 winter garden, 45-46 Wireless Expo 2008, Japan, 86 WL-16R3 Robot Legs / Walking Wheelchair, 94-95 work technologies, 90-92 workstations, 57 BERTIM, 57-58 SME robotics, 57-58 USA2, 119-122 XBee, 127, 129-130, 132-133 Zenn project, 39

Vertical City, 71-73

ZERO-PLUS, 145

zig-zagging method, 51