

Index

Figures and tables are denoted in bold typeface

```
and high-order meshing, 116, 116-117, 117, 118
accuracy
                                                       movement, 135-139, 136, 137, 138, 139
  in design optimization, 382-383
                                                       Navier-Stokes equations, 42-43, 44
  of Navier-Stokes equations, 9
  of structured mesh generation techniques, 87, 88
                                                       near wall grid distribution in RANS turbulence,
                                                         293-295
  of wind tunnels for aerodynamic testing, 3-4, 4
                                                       phase lagged, 389, 389-392, 391
                                                       in process planning, 474-476, 475, 487
  computational, 438-449
                                                       in turbulence, 267-270, 268, 269, 320-323, 322
  process planning, 484-486, 509-510, 510
                                                       unique incidence, 398
actuator disk models, 397-398, 398
                                                     boundary element method (BEM), 202-206, 204
adjoint analysis
                                                     boundary representation geometry (BREP)
  and design optimization, 376–378
  for grid quality, 132-133, 134
                                                       file formats, 490
                                                       and initial process planning, 467, 468
  in process planning, 496-497
aerodynamics
                                                     Boussinesq approximation and buoyancy
  experimental methods, 2-5, 4, 5
                                                         equation, 53-54
                                                     BOXER computer code, 466, 469, 470
  using CFD in problem solving, 6, 6-7
aeroelasticity of length scale couple problems,
                                                     Cartesian coordinates
    413, 413–418, 415, 416, 417, 418
airfoil
                                                       to cylindrical polar, 19
                                                       to rotating frame of reference, 26
  feature control, 473
                                                       unstructured mesh type, 69, 70, 72
  inverse design optimization methods, 373-376,
                                                     cell shape and mesh quality, 70, 104-105, 105, 106
    374, 375, 376
algorithms
                                                     CFD general notice file format (CGNS), 489–490
                                                     Chimera mesh type, 69, 73-74, 74
  finite difference methods consistency, 157-158
  mesh movement, 136-138, 137, 138
                                                     circular mesh, 77, 77-78
  multigrid, 209-213, 211, 212
                                                     compressible flow procedures, 232, 236-240, 237
                                                     computational aeroacoustics, 438-449, 485,
anisotropy invariant mapping, 521, 522
automatic blocking approach to mesh generation,
                                                          484-486, 486, 509-510, 510
                                                     computational fluid dynamics (CFD)
    85-88, 86
                                                       definition of, 1
axisymmetric form of Navier-Stokes equations,
                                                       future of, 541-543, 542, 543
    40 - 41
                                                       values of, 2
                                                     computer-aided design (CAD), 466-473
baroclinic instability, 29-31, 30
body fitted mesh generation techniques, 78, 78-81,
                                                     computers
                                                       and acoustics, 438-449
body force simulation modelling, 392-397, 393,
                                                       aided design, 466-473
                                                       file formats, 469, 470, 488-490, 490
    394, 396, 397, 486
                                                       future of, 533-542, 534
boundary conditions
                                                     concise equation forms, 17-19
  and aerodynamic experimental measurements,
                                                     conjugate simulation modelling, 418-419
    5
                                                     constructed solid geometry (CSG)
  assessing uncertainty, 504, 504-505
                                                       file formats, 490
  for compressible and incompressible flow, 232,
    236-240, 237
                                                       and initial process planning, 467, 468
```

continuity equation derivation of, 12, 12 real gas form, 39–40 strong conservation form, 36 , 36–39 convective flux evaluation basic method, 173–175 interpolation, 182–197	Direct Replacement of Arbitrary Grid Overlapping by Non-structured grid (DRAGON), 71 discretization methods basic finite element, 549–552 boundary element, 202–206, 204 general equation, 553–556
smoothing, 175–181, 177 , 179 convective term forms, 33 convergence in process planning, 490–503 core solver tests, 524–527 Corocco's equation, 51	lattice-Boltzmann, 197–200, 199 and process planning, 487 smooth particle hydrodynamics (SPH), 200–201 vortex, 201–202
correlation coefficients for eddy resolving simulations, 513–515, 514 , 515 , 523 coupled simulations and advanced simulation models, 362	dispersion error, 159 Dispersion Relation Preserving schemes (DSP), 160–161, 161
code, 543 , 543 length scale coupled problems, 422–425, 423 ,	eddy resolving simulation future uses, 541–543, 542
424 , 425 , 426 multi-scale simulation problems, 410–412, 411 , 412	eddy resolving simulation grids boundary conditions, 474–475, 475 design optimization, 384, 387
and process planning, 486 Crank-Nicolson temporal scheme, 227–230 crosswind turbulence meshes, 347, 348 cubic turbulence model, 285	future of, 533–535, 534 smoothing in convective flux, 190–192, 192 in turbulence meshes, 120, 121 , 122 , 123 , 124 and unsteady turbulence conditions, 327 , 231
curvilinear equation form, 20–25, 21 curvilinear mesh type, 68–71, 70 , 72 , 73 , 74 cylindrical polar coordinate equations, 19 , 19–20, 21	327–331 eddy viscosity transport turbulence model, 275–276 eikonal equation, 479 , 479–480, 480 , 484
Delaunay mapping, 92 , 92–93, 136–137, 137 , 138 design optimization adjoint method, 376–378 constraints in, 384	energy cascade in turbulence, 262–264, 263 energy equations, 31–32 entropy in process planning, 511–513, 512 equation solvers core, 524–527
with eddy resolving simulations, 384, 387 future of, 539 general process of, 363–365, 364 hybrid, 384, 385 , 386	coupling, 213–214 grid, 336 , 341 , 341–342 simultaneous, 206–209 TDMA, 207–208, 557–559
inverse methods of, 373–376, 374 , 375 , 376 multi-fidelity approaches, 381–382, 383 , 381 , 382	explicit algebraic stress turbulence model, 285–286, 286 , 468 explicit temporal scheme, 230–231
multi-objective design, 380 , 380–381 and process planning, 487–488, 488 response surfaces, 378 , 378–380 scheme overview, 365–368, 366 , 368 , 369	Fast Fourier Transform procedure (FFT), 502 , 502 feature control
stochastic evolutionary searches, 368–372, 369 , 370 , 371 , 372 , 373 detached eddy simulation (DES)	and initial process planning, 470–473, 472 , 473 shock identification, 505–507, 506 file formats and process planning, 488–490, 490
hybrid mesh type, 332–333 for separated flow, 333–334, 334	filter future of, 537–539, 538
deterministic stress simulation modelling (DSM), 398–400, 400 , 401 , 486	in LES simulation hierarchy, 345–346, 346 finite difference methods
differential wave propagation operators, 441–444, 442, 443, 444, 445 dimensionless form of Navier-Stokes equations,	algorithm consistency, 157–158 body fitted grids, 156–157 compact schemes, 152–153, 153
47–48 direct numerical simulation (DNS) pre-computed wakes and, 474–475, 475 in turbulence, 270	dissipation and dispersion error, 159 , 159–161, 161 geometric approach, 149 , 149–150 modified equation analysis, 158

simple difference-finite volume discretization,	hexing the tet, 93–94, 94
153–156, 154	high-order mesh generation, 116 , 116–117, 117 ,
Taylor series approach, 150–152, 152	118
finite element method, 549–552	hybrid mesh type
finite volume method	design optimization, 384, 385, 386
control volume comparison, 164–167, 165 , 166 , 167	generation technique, 74 , 74–75, 88 , 88–89, 89 , 90
control volume face integration, 167–169, 169	movement approaches, 138-139, 139
control volume structures, 161–164, 162 , 163 , 164	RANS-LES simulation, 121–125, 122 , 123 , 124 , 330 , 332 , 332–336, 334
viscous flux evaluation, 170–173, 171 , 172	TopMaker generation, 84
flow visualization in process planning, 505–510, 506, 509, 510	in turbulence, 270 unstructured, 95, 95
fluids in governing equations, 56–57	
flux limiters in convective flow, 186–189, 187 , 188	ice build up, 432–436, 433 , 434 , 435 , 436
fractional step method in pressure field evaluation, 222	Immersed Boundary Method (IBM), 71, 76, 76 Implicit LES model (ILES)
free flow surface	convective flow flux limiters, 188 , 188–189
modelling, 427–428	modular, 348
tracking, 427–438, 429 , 430 , 431 , 433 , 434 , 435 ,	to replace role of LES model, 344
436, 437	implicit temporal scheme, 227–228, 468
free shear layer distribution in practical flows,	of Navier Stakes equations 0
112–115, 113 , 114 , 115 function contours and near wall distance, 483 , 483	of Navier-Stokes equations, 9 of structured mesh generation techniques, 87,
	b88
gear temporal schemes, 233	of wind tunnels for aerodynamic testing, 3–4, 4
geometry	industrial use for eddy resolving simulations, 346 ,
future of, 535–536, 536 and initial process planning, 460, 462, 461 , 466	346–349, 348 integral wall distance equations, 480–481, 481 ,
and initial process planning, 460–462, 461 , 466 , 466–473, 467 , 468 , 470 , 471 , 472 , 473	484
mesh types for, 77 , 77–78	interface tracking and process planning, 487
governing equations	international graphics exchange file format
in aerodynamic design methodology, 6	(IGES), 469, 470, 490
Boussinesq approximation and buoyancy, 53–54	interpolation
Corocco's equation, 51 deciding on correct type of, 8–12	pressure field collocated grid, 223–226, 225 in process planning, 476
derivation of Navier-Stokes and continuity, 12 ,	interpolation in convective flux
12–16	compressible flow procedures, 183–186, 185
fluid properties, 56–57	flux limiters, 186–189, 187 , 188
iterative convergence, 459, 460	kinetic energy conservation, 189, 190 , 191
periodic flows, 502 , 502	piecewise reconstruction, 186
Reynolds equation, 49–50, 50	smoothing for eddy resolving simulations,
in solids, 51–53	190–192, 192
thermodynamic, 54–56	unstructured grid high order, 192-197, 194, 195,
throughflow model, 45–47, 46	196, 197
viscous force dominated, 48–49	inverse design optimization methods, 373–376,
grey area issues in RANS-LES simulation,	374, 375, 376
335–336	inverse eikonal equation, 481–482, 484
grid error estimation	iterative convergence
grid stretching, 109–111, 110 , 111	and flow governing equations, 459, 460
non-flow aligned, 109	in process planning, 490–493, 491 , 493
in process planning, 493–501, 494 , 497 , 498 , 500 grid quality	jet propulsion and aerodynamic measurements,
adjoint analysis, 132–133, 134	3–4
boundary movement, 135–139, 136 , 137 , 138 ,	J 7
139	Kato and Launder stagnation correction, 307
space-time meshes, 134–135, 134 , 135	k - ε turbulence model, 280–281, 281 , 302
grid-solver compatibility in LES simulation	kinetic energy conservation in convective flux,
hierarchy, 336 , 341 , 341–342	189, 190 , 191

kinetic energy turbulence models	structured, 78–89
particle trajectories, 407–410, 409 , 410	for turbulence, 118–127
RANS energy, 279–280	mesh grid error estimation
Kriging, 381, 383	grid stretching, 109–111, 110 , 111
k-ω turbulence model, 281–282, 302	non-flow aligned, 109
	in process planning, 493–501, 494 , 497 , 498 , 500
lambda 2 and vortex identification, 508–509, 509	mesh quality
large eddy simulation (LES)	cell shape and, 104–105, 105 , 106
assessing numerical input in, 497–501, 498 , 500	grid generator diagnostics and, 107–108, 108
boundary layer, 43, 44 , 104, 475	mesh types
high order convective flux, 196–197, 197	basic, 67–68, 68 , 105–107, 107
simulation hierarchy, 336–346, 336 , 344 , 346	body fitted grid, 68–71, 70 , 72
statistically stationary, 502–503, 503	method of lines
in turbulence, 120–121, 121 , 126–127, 269 , 270	definition of, 148–149
lattice-Boltzmann discretization method, 197–200,	spatial procedures, 149–206
199	mixing length turbulence model, 273–275, 273
lava flow interface tracking, 436–438, 437	model character in the future, 537–539, 538
leading edge distribution in practical flows, 112	multiblock mesh generation techniques
length scale coupled elasticity problems, 413–418,	Cartesian fitting, 84, 85 , 86
413, 415, 416, 417, 418	grid distribution in more practical flows,
level sets	114–115, 114
and acoustic process planning, 484–486, 485 ,	hybrid, 88–89, 88 , 89 , 90
486	medial axis, 82–83, 82 , 83 , 84 , 85 , 86
in unstructured mesh types, 100–103	TopMaker, 84, 84 , 85 , 86
Lighthill equation, 444–445	multi-fidelity approaches
linear harmonic method, 387	in design optimization, 381–382, 381 , 382 , 383
linearized Euler equations (LEE), 442	future of, 540
liquids and governing equations, 59 Lunds recycling procedure, 338	multi-physics problems, 426–427, 428 , 540
Lunus recycling procedure, 336	multi-scale simulation problems, 403–412, 404 , 407 , 409 , 411 , 412
mapping	407, 409, 411, 412
anisotropy invariant, 521, 522	Navier-Stokes equations
Delaunay, 136–137, 137 , 138	as combined set of continuity momentum and
mathematics	energy, 9–12, 9 , 10 , 11
flow-governing equations, 8–12, 9 , 10 , 11	derivation of, 13–16
Hillire of algorithmic complitation, 536–547.	· · · · · · · · · · · · · · · · · · ·
future of algorithmic computation, 536–542, 536, 541	dimensionless form of, 47-48
536, 541	dimensionless form of, 47–48 forms of, 16–31
536 , 541 geometry, 460–462, 466–473, 535–536	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442
536, 541	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44
536 , 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481 , 484	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44
536 , 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481 , 484	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses,	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 ,
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83 Menter SST based DES simulation, 333	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298 noise prediction, 438–441, 439 , 440 non-linear disturbance equation mesh grid (NLDE), 270
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83 Menter SST based DES simulation, 333 mesh adaptation, 127–131, 128, 129, 130, 131	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298 noise prediction, 438–441, 439 , 440 non-linear disturbance equation mesh grid (NLDE), 270 non-linear disturbance equation (NLDE)
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83 Menter SST based DES simulation, 333 mesh adaptation, 127–131, 128, 129, 130, 131 mesh control error estimation, 109–111, 110, 111 loss of, 103–104	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298 noise prediction, 438–441, 439 , 440 non-linear disturbance equation mesh grid (NLDE), 270 non-linear disturbance equation (NLDE) differential wave propagation operators, 441
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83 Menter SST based DES simulation, 333 mesh adaptation, 127–131, 128, 129, 130, 131 mesh control error estimation, 109–111, 110, 111 loss of, 103–104 near wall grid distribution, 96–97, 96, 97	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298 noise prediction, 438–441, 439 , 440 non-linear disturbance equation mesh grid (NLDE), 270 non-linear disturbance equation (NLDE)
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83 Menter SST based DES simulation, 333 mesh adaptation, 127–131, 128, 129, 130, 131 mesh control error estimation, 109–111, 110, 111 loss of, 103–104 near wall grid distribution, 96–97, 96, 97 smoothing, 103–104, 104	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298 noise prediction, 438–441, 439 , 440 non-linear disturbance equation mesh grid (NLDE), 270 non-linear disturbance equation (NLDE) differential wave propagation operators, 441 perturbation equation based simulation models, 388
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83 Menter SST based DES simulation, 333 mesh adaptation, 127–131, 128, 129, 130, 131 mesh control error estimation, 109–111, 110, 111 loss of, 103–104 near wall grid distribution, 96–97, 96, 97 smoothing, 103–104, 104 unstructured sources, 97–99, 98, 99	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298 noise prediction, 438–441, 439 , 440 non-linear disturbance equation mesh grid (NLDE), 270 non-linear disturbance equation (NLDE) differential wave propagation operators, 441 perturbation equation based simulation models, 388 non-linear eddy viscosity models, 283–286, 286
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83 Menter SST based DES simulation, 333 mesh adaptation, 127–131, 128, 129, 130, 131 mesh control error estimation, 109–111, 110, 111 loss of, 103–104 near wall grid distribution, 96–97, 96, 97 smoothing, 103–104, 104 unstructured sources, 97–99, 98, 99 mesh generation	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298 noise prediction, 438–441, 439 , 440 non-linear disturbance equation mesh grid (NLDE), 270 non-linear disturbance equation (NLDE) differential wave propagation operators, 441 perturbation equation based simulation models, 388
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83 Menter SST based DES simulation, 333 mesh adaptation, 127–131, 128, 129, 130, 131 mesh control error estimation, 109–111, 110, 111 loss of, 103–104 near wall grid distribution, 96–97, 96, 97 smoothing, 103–104, 104 unstructured sources, 97–99, 98, 99 mesh generation grid distribution in more practical flows,	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298 noise prediction, 438–441, 439 , 440 non-linear disturbance equation mesh grid (NLDE), 270 non-linear disturbance equation (NLDE) differential wave propagation operators, 441 perturbation equation based simulation models, 388 non-linear eddy viscosity models, 283–286, 286 non-linear harmonic method, 388
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83 Menter SST based DES simulation, 333 mesh adaptation, 127–131, 128, 129, 130, 131 mesh control error estimation, 109–111, 110, 111 loss of, 103–104 near wall grid distribution, 96–97, 96, 97 smoothing, 103–104, 104 unstructured sources, 97–99, 98, 99 mesh generation grid distribution in more practical flows, 112–115, 113, 114, 115	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298 noise prediction, 438–441, 439 , 440 non-linear disturbance equation mesh grid (NLDE), 270 non-linear disturbance equation (NLDE) differential wave propagation operators, 441 perturbation equation based simulation models, 388 non-linear eddy viscosity models, 283–286, 286 non-linear harmonic method, 388 octree based mesh type
536, 541 geometry, 460–462, 466–473, 535–536 integral wall distance equations, 480–481, 481, 484 and predicting aerodynamic design, 5–6 surface integral equations, 446–447, 447 mean source terms and deterministic stresses, 398–399 medial axis level sets, 101 medial axis transform (MAT), 82, 83 Menter SST based DES simulation, 333 mesh adaptation, 127–131, 128, 129, 130, 131 mesh control error estimation, 109–111, 110, 111 loss of, 103–104 near wall grid distribution, 96–97, 96, 97 smoothing, 103–104, 104 unstructured sources, 97–99, 98, 99 mesh generation grid distribution in more practical flows,	dimensionless form of, 47–48 forms of, 16–31 linearized, 441–442 reduced forms of, 40–44, 41 , 43 , 44 for stream function and vorticity, 44–51 strong conservation form, 37–39, 38 near wall grid distribution mesh, 96–97, 96 , 97 , 101 in process planning, 476–483, 484 in RANS turbulence, 290–298, 291 , 296 , 297 , 298 noise prediction, 438–441, 439 , 440 non-linear disturbance equation mesh grid (NLDE), 270 non-linear disturbance equation (NLDE) differential wave propagation operators, 441 perturbation equation based simulation models, 388 non-linear eddy viscosity models, 283–286, 286 non-linear harmonic method, 388

interpolation and, 476	initial, 460–463, 461 , 462
level sets in, 102	of large data sets, 523–524
structure of, 71, 72 , 94 , 94–95	mesh generation, 473–474
orthogonal form of Navier-Stokes equations, 41	problem definition, 463–465
overset mesh type, 75	setting parameters, 474–488
overset mesh type, 75	verification and validation, 524–527, 528
parabolized form of Navier-Stokes equations,	proper orthogonal decomposition (POD)
43–44, 43	for eddy resolving simulations, 519–520, 520
parameter fields in process planning, 474–488	and plenum type simulation, 403
Pareto front, 380–381, 380	pseudo-Laplacian in convective flux, 176–181, 177 ,
particle trajectories	179
and flow visualization, 505	
and process planning, 486	Q-criterion and vortex identification, 508, 509
RANS, 407–410, 409 , 410	quality control
particle/droplet transport equations in multiscale	grid, 132–139
simulation, 405–406, 407	mesh, 104–105, 107–108
perturbation equation based simulation models,	processes, 524–527, 527 , 528
387–389	F
physics	radial basis functions in design optimization, 380
problems, 426–427, 428	radiative heat transfer length scale coupled
spectral information, 515–518, 516 , 517 , 518	problem, 419–422, 421 , 422
wing-slat-flap configuration, 73	RANS turbulence method
plenum type simulation models, 401–403, 401 , 402 ,	advancements in, 326–327
403	deterministic stresses, 399–400, 401
plot3d file format, 488–489	and initial process planning, 462, 466
points per wave length in grid error estimation,	near walls, 290–298, 291 , 296 , 297 , 298
109–111, 110 , 111	particle trajectories, 407–410, 409 , 410
Poisson equation and near wall distance, 477–515,	Reynolds equation, 270–272, 271
478, 484	Reynolds stress method, 287
polynomial response surface for optimization,	scalar transport, 289–290
378–380, 383	source description, 448–449, 449
practical flow grid distribution, 112–115, 113, 114,	RANS turbulence method equation models
115	one, 275–280
prediction in general experimental methods, 2–5	two, 280–283, 281
predictor-corrector temporal schemes, 233–235,	zero, 273 , 273–275
234	RANS turbulence method models
pressure correction equation, 553–556	character, 272–273
pressure field evaluation	non-linear eddy viscosity, 283–286, 286
artificial methods, 218	RANS turbulence method performance
fractional step method, 222	body forces and rotation, 308–310
pressure/velocity coupling, 222–226, 225	code implementation, 323–326
SIMPLE methods, 218–221	compressive strain problem, 305–307, 306
types of, 216–217, 216	curvature problem, 307–308
velocity-vorticity approach, 217–218	defects, 299–301, 300 , 302
vortex identification, 507, 509 , 526	forward transition, 312–316, 313 , 315
pressure reduction and rotating reference form	free shear flow, 301–305
equation, 29–31, 30	free stream, 316–319, 317 , 319
problem definition	general, 298 , 298–299, 299
in initial process planning, 463–465, 466	reverse transition, 310–312, 311
in LES simulation hierarchy, 337–341, 336 , 338 ,	surface finish, 319–323, 322
340	RANS-LES simulation
process planning	hybrid mesh type, 330 , 332 , 332–336, 334
acoustics in, 509–510	turbulence source descriptions, 448, 448
convergence in, 490–503	zonalized methods, 334–336, 336
eddy resolving simulation, 513–523	real gas form equations
entropy in, 511–513	in continuity, 39–40
file formats, 488–490	flow governing, 57 , 57–58
flow visualization in, 505–510	response surfaces in design optimization, 378 , 378–380

Reynolds Averaged Navier-Stokes grid (RANS)	stability
basics of, 125 , 125–127	of explicit temporal scheme, 231
high order convective flux, 197	of finite difference methods, 160
Reynolds equation	in post processing analysis, 518–519, 519
meshes, 119 , 119–120	standard tessellation geometry language (STL),
in RANS turbulence, 269 , 270 , 270–272, 271	466, 469, 490
for stream function and vorticity, 49–50, 50	stochastic evolutionary searches, 368–372, 369 ,
Reynolds stress turbulence model, 287, 523	370, 371, 372, 373
rotating reference frame equation, 25–31, 26 , 28	strong conservation form, 36 , 36–39
coalo	structured mesh generation techniques flow feature based adaptation, 127–129, 129
scale and body force modelling, 392–397, 394	future of, 542
disparity in electronic system, 404	grid feature based adaptation, 129–130
multi-scale problems, 403–410, 404 , 407 , 409	types of, 78–89
secundov v-92 model, 278–279	substantial derivative, 32–35
semi-implicit temporal scheme, 227–228	surface integral equations in aeroacoustics,
shear forces	446–447, 447
in Navier-Stokes equation, 14	synthetic turbulence in LES simulation, 339, 340
in practical flows, 112–115, 113 , 114 , 115	•
TSL, 41 , 41–42	Taylor microscale and LES grid design, 126–127
SIMPLE methods in pressure field, 218–221	Taylor series approach to finite difference
simultaneous TDMA equation solvers, 557–559	methods, 494, 493–496, 150–152, 152
sliding plane simulation, 389 , 389–392, 390 , 392	temperature equations, 31–32, 54–56
Smagorinsky LES model, 342–343	temporal schemes
small scale and body force modelling, 395–397,	adaptive time-steps, 235–236
396, 397	higher level, 231–232, 233
smooth particle hydrodynamics (SPH), 200–201	predictor-corrector methods, 233–235, 234
smoothing	splitting methods, 235
in convective flux evaluation, 175–181, 177 , 179	two level, 227–231
for eddy resolving simulations in convective	values, 226–227, 227 tensor forms of equations, 17–18
flux, 190–192, 192	thermodynamic equations, 31–32, 54–56
mesh control, 103–104, 104	thin shear layer form (TSL), 41 , 41–42
software for code coupling, 425–426	three-dimensional equation forms, 16–17, 18
solids and governing equations, 51–53	throughflow equations for stream function, 45–47,
solution procedures	46
coupling enhancements/solvers, 213–214	trailing edge distribution in practical flows, 112
diagonal dominance, 209	transition modeling
multigrid algorithm, 209-213, 211, 212	boundary layer, 320–323, 322
preconditioning, 215–216	RANS turbulence method, 310–316, 311 , 313 ,
simultaneous equation solvers, 206–209	315
solution speeds	in turbulence, 263 , 264 , 264–265, 266
and near wall distance, 482–483	tri-diagonal matrix algorithm equaltion solver
and process planning, 486	(TDMA), 207–208, 557–559
source terms in Navier-Stokes equations, 59–60,	turbulence
132	basic nature of, 260–270, 261 , 262 , 263 , 264 , 266 ,
space-time meshes, 134 , 134–135, 135 Spalart-Allmaras turbulence model, 276–278, 302	268 , 269 , 270 for computational aeroacoustics, 447–449, 448 ,
spatial procedures	449
convective flux evaluation, 173–197	energy budgets, 521, 521 , 523
discretization methods, 197–206	and process planning, 487
finite difference methods, 149–161	RANS basics, 270–298
finite volume method, 161–173	turbulence flow equations, 32, 33
spectral information for eddy resolving	turbulence meshes
simulations, 515–518, 516 , 517 , 518 , 523	correlations and RANS for design of, 125,
Speziale turbulence model, 284–285	125–127
splitting methods temporal scheme, 235	eddy resolving simulation grids, 120–125, 121,
spring analogy in mesh movement, 137, 138	122, 123, 124
squares and front method, 91	RANS, 119 , 119–120

Index 567

unsteady Reynolds Averaged Navier-Stokes grid (URANS) mean source terms, 398-400 in turbulence, 270 with very large eddy resolving simulations, 327, 327-331 unsteady turbulence conditions convergence in, 501 and eddy resolving simulation, 327, 327-331 mean source terms, 398-400 unstructured mesh generation techniques advanced front method, 90-92, 91 grid refinement, 130-132, 130, 131 grid-based, 90, 91 unstructured mesh type background sources, 97–99, **98**, **99** cell types for flow solvers, 70 Delauney triangulation method, 92, 92–93 gradient limiting level set, 102-103 high order convective flux, 192-197, 194, 195, 196, 197 hybrid, 95, 95 level sets in, 100, 100–103, 101, 102 quadrilateral/hexahedral meshes, 93-95 uses for, 69

Variational Multiscale LES model (VMS), 343 vector forms, 18-19 virtual reality modelling language (VRML), 468, 490 viscous force dominated flows, 48-49 viscous stresses in Navier-Stokes equation, 15-16 vortex flow problem in RANS turbulence model, 308-310 identification, 507-509, 509 turbulence scales, 266-267 vorticity and stream function, 44-51, 46, 50 velocity-vorticity approach, 217-218 and vortex identification, 507, 509 wall modelling in LES simulation hierarchy, 336, 341 in process planning, 476-483, 484 wave equations in aeroacoustics, 442-444, 443, 444 wind tunnel experimental method, 2-3

Yap correction, 307

zonal DES mesh type, 122-123, 124