

MECHANICS OF AERO-STRUCTURES

Mechanics of Aero-structures is a concise textbook for students of aircraft structures, which covers aircraft loads and maneuvers, as well as torsion and bending of single-cell, multi-cell, and open thin-walled structures. Static structural stability, energy methods, and aero-elastic instability are discussed. Numerous examples and exercises are included to enhance students' facility with structural analysis.

This well-illustrated textbook is meant for third- and fourth-year undergraduate students in aerospace and aeronautical engineering programs. The material included can be covered in a one-semester course.

Key features include:

- Torsion and bending of single-cell, multi-cell, and open sections are described in detail.
- Aerodynamic loads, maneuvers, and elementary aero-elastic stability are included.
- The book begins with a description of the aerodynamics loads to motivate the students.
- Includes an in-depth description of energy methods, an essential topic.

Sudhakar Nair has taught aircraft structures for more than 30 years at the Illinois Institute of Technology. He is a Fellow of ASME, an Associate Fellow of AIAA, and a Member of ASEE, Sigma Xi, and Tau Beta Pi. He has authored numerous articles on structural mechanics and applied mathematics and is the author of two previous textbooks: *Introduction to Continuum Mechanics* and *Advanced Topics in Applied Mathematics: For Engineering and the Physical Sciences*. He was Associate Dean for Academic Affairs, Department Chair, and Chair of the Faculty Council at IIT. He received the Barnett award for the best teacher and a special commendation from the AIAA student chapter at IIT.

MECHANICS OF AERO-STRUCTURES

Sudhakar Nair

Illinois Institute of Technology

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107075771

© Sudhakar Nair 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Nair, Sudhakar, 1944-

Mechanics of aero-structures / Sudhakar Nair, Illinois Institute of Technology. pages cm

Includes bibliographical references and index.

ISBN 978-1-107-07577-1 (hardback)

1. Airframes – Design and construction. 2. Aerodynamics. I. Title.

TL671.6.N35 2015

629.132-dc23 2015002304

ISBN 978-1-107-07577-1 Hardback

Additional resources for this publication at www.cambridge.org/nair.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Prefa	reface		
1 Ai	ircraft Str	uctural Components and Loads	1
	1.0.1	Fuselage	1
	1.0.2	Wing	2
1.1	Element	ts of Aerodynamic Forces	3
1.2	Level F	light	4
1.3	Load Fa	ector	5
1.4	Maneuv	vers	5
1.5	Gust Lo	6	
1.6	V-n Di	agram	7
1.7	Proof L	oad and Ultimate Load	8
1.8	Optimiz	ration	8
Furt	her Readir	ng	9
Exer	cises		9
2 EI	ements of	f Elasticity	11
2.1	Traction	n Vector	11
	2.1.1	External and Internal Forces	11
2.2	Stress C	Components	13
	2.2.1	Example: Traction Vector on a Plane	14
2.3	Equilibrium Equations		15
	2.3.1	Force Equilibrium	15
	2.3.2	Moment Equilibrium	16
	2.3.3	Traction Boundary Conditions	17
2.4	Plane Stress		17
	2.4.1	Curved Panels	18
2.5	Transfo	rmation of Vectors	18
2.6	Transformation of Tensors		19
	2.6.1	Principal Stresses	21
	2.6.2	Maximum Shear Stress	23
	2.6.3	Mohr's Circle	23
	2.6.4	Example: Principal Stresses and the Maximum	
		Shear Stresses	24

V

Conten	ts		
2.7	Princir	pal Stresses in Three Dimensions	25
,	2.7.1	Example: Eigenvalues and Eigenvectors	27
2.8	Displacement and Strain		28
	1	Plane Strain	32
	2.8.2	Strain Transformation	32
	2.8.3	Displacement Boundary Conditions	33
		Compatibility Equations	33
2.9	Generalized Hooke's Law		33
	2.9.1	Hooke's Law for Plane Stress	34
	2.9.2	Hooke's Law for Plane Strain	34
	2.9.3	Example: Cantilever Beam under Plane Stress	35
2.10	Therm	al Expansion	38
		Example: Heated Bar	39
2.11		Venant's Principle	39
2.12		ropic Materials	4(
2.13		osite Materials	40
	-	Lamina Properties	41
		Laminate Properties	43
2.14		ity in Polycrystalline Metals	44
2.15		only Used Aircraft Materials	4:
	er Read	•	40
Exerc			46
3 En	ergy Me	ethods	50
3.1	Strain	Energy and Complementary Strain Energy	52
	3.1.1	Flexibility and Stiffness Coefficient	53
3.2	Strain	Energy Density	55
	3.2.1	Voigt Notation	56
	3.2.2	Uniform Bar Subjected to an Axial Tension	56
	3.2.3		57
	3.2.4	Beam Subjected to a Moment	58
3.3	Two-ba	ar Truss	58
	3.3.1	Solution Without Using Energy	59
	3.3.2	Virtual Force Method	60
	3.3.3	Castigliano's First Theorem	60
	3.3.4	Unit Load Method	6
	3.3.5	Virtual Displacement Method	6
	3.3.6	Castigliano's Second Theorem	62
	3.3.7	Unit Displacement Method	62
	3.3.8	Minimum Total Complementary Potential Energy	
		Theorem	63
	3.3.9	Minimum Total Potential Energy Theorem	63
	3.3.10	Dummy Load and Dummy Displacements	64
3.4		Illy Indeterminate Problems	64
	3.4.1	Example: Statically Indeterminate Torsion	65

vii

Contents

	3.4.3	Example: Axial Extension Calculation of a Variable	
		Cross-section Bar by the Finite Element Method	67
	3.4.4	Example: Frame Deflection	70
3.5	-	ble: Bulkhead Subjected to Moments	70
3.6	_	ble: Shear Correction Factor	72
3.7	-	ocity Theorem	73
	er Read	ing	74
Exerc	eises		74
4 Tor	rsion		79
4.1		Circular Shaft	79
4.2	Thin-v	valled Circular Tube	80
4.3	Single	-Cell Tube	81
	4.3.1	Example: A Rectangular Tube	83
4.4	Multi-	cell Tubes	83
	4.4.1	Example: Three-cell Tube	84
4.5	-	Thin-walled Tubes	85
	4.5.1	Example: Circular Tube	87
4.6	-	ng of the Cross Section	87
	4.6.1	Example: Warping in a Single-cell Tube	89
	4.6.2	Warping in Open Tubes	91
	4.6.3	Example: Split Circular Tube	91
4.7	Induce	d Torque due to Varying Warp	92
	4.7.1	Example: Channel Section	94
	4.7.2	Example: Split Circular Tube	96
	er Read	ing	96
Exerc	ises		97
5 Be	nding		100
	5.0.1	Principal Axes of a Section	103
	5.0.2	Example: Angle Section	103
5.1	Equilib	orium Equations	106
	5.1.1	Example: Elliptic Lift Distribution	107
	5.1.2	Concentrated Forces and Moments	108
	5.1.3	Example: Concentrated Force and Moment	109
5.2	Shear	Stresses in Beams	111
	5.2.1	Open-cell Tubes	111
	5.2.2	Example: Channel Section	112
	5.2.3	Center of Shear	113
	5.2.4	Example: Split Circular Beam	114
	5.2.5	Center of Shear and the Center of Twist	115
5.3	Multi-	cell Tubes	116
	5.3.1	Shear Flow Transfer at Wall Intersections	117
	5.3.2	Example: Two-cell Tube	117
5.4	Sheet-	stringer Construction	121
	5.4.1	Example: Open Cell	122
	5.4.2	Example: A Two-cell Beam under Boom	
		Approximation	123

viii

Cambridge University Press & Assessment 978-1-107-07577-1 — Mechanics of Aero-structures Sudhakar Nair Frontmatter More Information

Conter	nts		
5.5	Shear Lag	124	
5.6	Combined Bending and Torsion	126	
	5.6.1 Example: Single-cell Beam	126	
5.7	Analysis of Tapered Beams	128	
	5.7.1 Quadrilateral Shear Panels	128	
	5.7.2 Shear Flow due to Bending in Tapered Beams	129	
Furth	ner Reading	131	
Exerc	<u> </u>	131	
6 St	ability of Structures	135	
	6.0.3 Spring-supported Vertical Bar	135	
6.1	Buckling of a Beam	136	
	6.1.1 Critical Stresses	138	
6.2	Bending under an Eccentric Load	138	
6.3	Buckling of Imperfect Beams	140	
6.4	Cantilever Beam	141	
6.5	Propped Cantilever Beam	142	
6.6	Clamped-clamped Beam	143	
	6.6.1 Effective Lengths	145	
6.7	Energy Method for Buckling of Beams	145	
6.8	Post-buckling Deflections	147	
6.9	Torsional-bending Buckling of a Compressed Beam	150	
	6.9.1 Torsional Buckling	152	
	6.9.2 General Case	152	
6.10	Example: Split Circular Cross-section Column		
	under Compression	153	
6.11	Dynamic Stability of an Airfoil	154	
	ther Reading		
Exerc	cises	156	
7 Fa	ilure Theories	159	
7.1	Brittle Failure	159	
	7.1.1 Maximum Principal Stress Theory	159	
	7.1.2 Mohr-Coulomb Theory	160	
	7.1.3 Maximum Principal Strain Theory	160	
7.2	Failure Theories for Composites	161	
	7.2.1 Maximum Stress Theory for Composites	162	
	7.2.2 Maximum Strain Theory for Composites	162	
	7.2.3 Tsai–Hill Theory	162 163	
7.3	Ductile Failure		
	7.3.1 Tresca Theory	164	
	7.3.2 Von Mises Theory	164	
7.4	Fatigue	166	
	7.4.1 Palmgren-Minor Rule of Cumulative Damage	167	
	7.4.2 Goodman Diagram	167	
7.5	Creep	168	

Stress Concentration Factor

7.6

168

Conte	nts		
7.7	Fractu	re Mechanics	169
	7.7.1	Mode I	170
	7.7.2	Mode II	171
	7.7.3	Mode III	172
	7.7.4	Crack Propagation	172
	7.7.5	Example: Energy Method for a Split Cantilever	175
	7.7.6	Ductility at the Crack Tip	175
7.8	Fatigu	e Crack Growth	175
Furt	ner Read	ing	176
Exer	cises		176
Inde	ζ.		179

Preface

This book is intended as a textbook for advanced mechanics of materials for thirdyear undergraduate students in the area of aerospace engineering and related fields. It is assumed that these students have had a first course in strength of materials and a course in ordinary differential equations in their second year. The material included in this book can be covered in one semester. From my experience in teaching this topic, it has been abundantly clear that students are used to following textbook descriptions topic-by-topic as opposed to following the instructor's presentations, which may be at variance with the chosen text. The large number of excellent textbooks available in physics, calculus, statics, dynamics, and strength of materials has conditioned the students to depend on "one" textbook and "one" notation.

I have followed a logical sequence for introducing students to aero-structures. In Chapter 1, the typical loads expected during a preliminary design of an aircraft are described along with certain essential design considerations such as load factor, proof load, and factor of safety. Also, aerodynamic loads in level flight and under gust conditions are included.

Elements of elasticity from a three-dimensional description to two-dimensional simplification are introduced in Chapter 2. Most students find this a difficult topic. But this is the last chance for them to see the full picture before they go to work or to graduate school to continue structural analysis. Energy methods are explained in Chapter 3 and these are used in the coming chapters wherever they are needed.

Analysis of thin-walled structures under torsion and bending, which is of specific use in aero-structures, is treated in Chapters 4 and 5. Applications to open-, single-, and multiple-cell tubes are emphasized. Shear center (and center of twist) calculations are discussed. Chapter 6 is devoted to elastic stability, including a brief primer on aero-elastic stability.

Chapter 7 considers various failure and yield criteria. Metals as well as epoxy/ fiber composites are included. An introduction to fracture mechanics, fatigue, and fatigue crack propagation is also included in this chapter.

I am grateful to my colleague Dr. Roberto Cammino, who provided many suggestions for improvement. My former teacher and thesis advisor, Professor S. Durvasula (Indian Institute of Science, Bangalore), and Professor M. Nambudiripad (National Institute of Technology, Calicut) were inspirational in guiding my career toward elastic structures and I am always indebted to them. I also wish to record my appreciation of my doctoral advisor, the late Eric Reissner, whose name appears when one lists the giants in this field. I also thank the hundreds

хii

Preface

of aerospace students who took this course with me at the Illinois Institute of Technology and provided me feedback on the material included here.

I thank Peter Gordon and Sara Werden for providing editorial assistance on behalf of Cambridge University Press.

My wife, Celeste, has provided constant encouragement throughout the preparation of the manuscript and I am always thankful to her.

S.N., Chicago