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1-randomness see Martin-Löf randomness

Abelian sandpile (alias: Bak–Tang–Wiesenfeld
model; sandpile automaton; lattice avalanche model;
Dhar’s Abelian sandpile) A classic interacting particle
system, where the particles are envisaged as grains of
sand that form piles at the points of a subset D of the
d-dimensional integer lattice. Each vertex can support
grains up to some finite limit; at integer times a new grain
is added to a randomly chosen point v 2 D. If this
addition causes the pile to exceed its limit, it will topple
onto its neighbours according to some rule of
redistribution. This toppling may induce further
topplings, and a complete set of topplings is called an
avalanche. The process is called Abelian when the final
stable result of an avalanche is independent of the order
of execution of the topplings. No grains are created in
avalanches, but sand may be lost at a boundary. Other
sandpile models exist, e.g. Zhang’s sandpile in which a
random quantity of sand, continuously distributed on an
interval ½a, b�, is added to a randomly chosen vertex. If its
capacity is exceeded, the pile is equally divided among
all the vertex’s neighbours. Related models include the
Bak–Sneppen model, the chip-firing game, and the
Dirichlet game. [G. Pruessner, Self-Organized Criticality.

Cambridge University Press, 2012]

absolute continuity A strengthening of the idea of
continuity that arises in the context of real-valued
functions and measures. One definition asserts that a real
function FðxÞ, x 2 R is absolutely continuous if it can be
written as the Lebesgue integral of a function f ðxÞ;
FðxÞ ¼ Ð x

a f ðuÞdu. Thus the distribution of a random
variable having a density on ℝ (or ℝd), is absolutely
continuous. Equivalently, FðxÞ is absolutely continuous
on ½a, b� if, for any ε > 0, there is δ > 0 such thatP

k jFðbkÞ � FðakÞ j < ε, for any collection of disjoint
intervals ðak , bkÞ 2 ½a, b�, such that

P
kðbk � akÞ < δ:

A classic example of a continuous, yet not absolutely
continuous, distribution function is the Cantor
distribution. Similarly, but more generally, a measure (or
distribution) μð∙Þ is said to be absolutely continuous with
respect to a measure (or distribution) νð∙Þ if μðAÞ ¼ Ð

A f ðxÞ
νðdxÞ for some f ð∙Þ. When μ and f are probability

distributions, f is called a density of μ with respect to ν.
More generally, f is called a Radon–Nikodym derivative
of μ with respect to ν.

The Radon–Nikodym theorem (sometimes called the
Lebesgue–Nikodym thm) shows that μ is absolutely
continuous wrt ν iff μðAÞ ¼ 0 whenever νðAÞ ¼ 0. In this
case one says that μ is dominated by the dominating
measure ν, and writes μ � ν. If also ν � μ, then ν and
μ are said to be equivalent measures.

The concepts coincide for a distribution function FðxÞ
corresponding to a probability measure Pð∙Þ on ℝ such
that Pðð�∞, x�Þ ¼ FðxÞ; Pð∙Þ is absolutely continuous wrt
the Lebesgue measure iff Fð∙Þ is an absolutely continuous
function. [D. Pollard, A User’s Guide to Measure Theoretic

Probability. Cambridge University Press, 2002]

absolute deviation The absolute value jX � qj of the
difference X � q between a random variable X and some
given q, commonly called the mean, the median, or the
‘true value’ of some quantity, of which X is a sample or
realization. It is sometimes called the absolute error; and
jX � qj=q may be called the relative deviation (or error).
[M. Bean, Probability: The Science of Uncertainty. American

Mathematical Society, 2001]

absolute moment The rth absolute moment of the
r.v. X is EðjXjrÞ ¼ EðjXrjÞ. If r is not an integer then this
is the absolute fractional moment; note that for z complex
and r real, zr ¼ jzjreirθ, where θ is the argument of z. The
first absolute moment may be called the mean (absolute)
deviation. [K. L. Chung, Course in Probability Theory, 2nd

edn revised. Academic Press, 2001]

absolute monotonicity The probability generating
function GðxÞ of a non-negative integer-valued r.v. has a
power series expansion with positive coefficients for
0 � x < 1; any function with this property is said to be
absolutely monotone. From a theorem of S. Bernstein,
this holds iff

Xk
r¼0

k
r

� �
ð�1Þk�rGðrhÞ�0, 0�k�n�1, h¼n�1, n�1:

[W. Feller, Introduction to Probability Theory and its

Applications, Vol. 2, 2nd edn. Wiley, 1971]
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absolute probability This is used to denote the
unconditional probability of an event, where the lack of
conditioning is to be stressed. For example, for a Markov
chain Xn with initial distribution ar and n-step transition
probabilities pijðnÞ, the absolute probability of the event
Xn ¼ j is

P
rarprjðnÞ; in contrast to the conditional pijðnÞ.

Similarly, the term absolute probability fn is used in an
axiomatization of probability defined on the statements of
a propositional language; where the use of ‘absolute’
stresses the distinction from relative probability fns.
These are functions of two propositions, one of which is a
conditioning statement seen as evidence or support for
the other. [W. Feller, Introduction to Probability Theory and its

Applications, Vol. 1, 3rd edn. Wiley, 1968]

absolute regularity see mixing

absorbing A term arising in the context of random
processes whose evolution can be seen as the movement
of a particle in some space. A point is absorbing if the
particle remains there for all time after its first arrival
there. Such a point (or state of the process) may be called
a sink or trap.

A collection of such points may be called an
absorbing barrier, or absorbing boundary. They are
important not only as models of reality, but also because
all first-passage problems can be formulated in terms of
the original process together with additional (artificial)
absorbing barriers.

A related concept is that of the absorbing set S, which
the process can never leave after entering for the first
time, but may continue its evolution within S. [S. Karlin &
H. Taylor, A First Course in Stochastic Processes, 2nd edn.

Academic Press, 1975; A Second Course in Stochastic

Processes. Academic Press, 1981]

absorption-time distribution see phase-type
distribution

accelerated life model Arises in reliability theory
(and other contexts) when the failure-time distribution
has a heavy tail (or a large mean) so that empirical results
are delayed and expensive. The core of the technique is
the assumption that the parameters of the model depend
on some measure of stress (e.g. temperature or loading).
Data may be obtained quickly and cheaply under high
stress and used, via the model, to predict low-stress
lifetimes. [V. Bagdonavičius & M. Nikulin, Accelerated Life

Models. Chapman & Hall, 2002]

acceptability A finite set X1, . . . ,Xn of r.vs is
called acceptable if for any t 2 R, E exp ½tPn

1Xr� �Qn
1E expðtXrÞ; while a sequence X1,X2, . . . is acceptable

if any finite subset is acceptable. [R. Giuliano Antonini

et al., Convergence of series of dependent φ-subgaussian

random variables, J. Math. Anal. Appl., 338(2), 1188–1203,

2008]

acceptance-complement A method for sampling
from a density fXðxÞ, as follows. Choose non-negative
functions f1ðxÞ and f2ðxÞ, and a proper density fYðxÞ, such
that for x2R fXðxÞ¼ f1ðxÞþ f2ðxÞ, and f1ðxÞ� fYðxÞ. Then:
1. Generate Y with density fYðyÞ, and independent

U uniform on ½0, 1�.
2. If U � f1ðYÞ=fYðYÞ, then set X ¼ Y; otherwise

generate Z with density f2ðzÞ=
Ð
R f2ðxÞ dx, and set

X ¼ Z. The output X has density fXðxÞ.
[R. Kronmal & A. Peterson, Jr, An acceptance-complement

analogue of the mixture-plus-acceptance-rejection method for

generating random variables, ACM Trans. Math. Software,

10(3), 271–281, 1984]

acceptance-rejection (alias: rejection method; Von
Neumann’s method) A method for sampling from a
density fXðxÞ, as follows. Choose a density fYðyÞ such
that for some constant a, and all x, 0 � fXðxÞ � afY ðxÞ.
1. Generate independent U and Y, where Y has density

fYðyÞ, and U is uniform on ð0, 1Þ.
2. If aU fYðYÞ � fXðYÞ, then set X ¼ Y . Otherwise reject

Y and go to step 1.
[R. Rubinstein & D. Kroese, Simulation and the Monte Carlo

Method, 2nd edn. Wiley, 2008]

acceptance sampling A class of quality control
methods that decide whether to accept the output of some
industrial (or other) process as satisfactory (or reject it as
unsatisfactory) on the basis of a random sample from
each lot. There are two main types of sentencing rule
(i.e. the decision function for acceptance or rejection of
the lot):
1. A plan (or rule) that depends on the number of

defective (or non-conforming) items is said to be
acceptance by attributes.

2. A plan that depends on measurement of some
variable property of the items is acceptance by
variables.

More complicated procedures are typically sequential,
rather than simply lot-based.
[E. Schilling & D. Neubauer, Acceptance Sampling in Quality

Control, 2nd edn. Chapman & Hall, 2009]

2absolute probability
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accessibility A concept arising in the context of
Markov chains. Let Xn 2 S be a chain with discrete state
space S, with i, j 2 S. Then j is accessible from i if, for
some finite n,PðXn ¼ j jX0 ¼ iÞ > 0. Equivalently, if Tij
is the hitting time of j from i, then j is accessible from i if
PðTij < ∞Þ > 0.

We write i ! j for this property, and synonyms are: i
leads to (or communicates with) j; j can be reached (or is
reachable) from i; j is a consequent of i.

If i ! j and j ! i, then i and j are said to
communicate (or inter-communicate); and we write
i $ j for this property, which is an equivalence relation.
If the state space of a chain comprises exactly one such
equivalence class, then it is called irreducible.

For a Markov chain in continuous time with standard
transition probabilities pijðtÞ, the Lévy dichotomy asserts
that either pijðtÞ > 0 for all t > 0, or pijðtÞ ¼ 0 for all t.

If pijðtÞ have a stable Q-matrix Q, and p̂ijðtÞ are the
transition probabilities for the associated Feller-minimal

process X̂ðtÞ, then i ! j for X̂ðtÞ iff i ! j for the jump
chain defined by Q. For diffusions complications arise,
but it is often convenient to say that a state (or set of
states) is accessible from x0 if its occupation measure is
greater than zero when started from x0.

The term also arises in the general theory of processes,
where a stopping time T is called accessible if there is a
sequence T1, T2, . . . of predictable times such that
Pð[∞

r¼1fTr ¼ T < ∞gÞ ¼ PðT < ∞Þ, in which case
the sequence is said to catch (or envelop) T.
[O. Kallenberg, Foundations of Modern Probability,

2nd edn. Springer, 2002]

access time Arises in the context of Markov chains as
a generalization of hitting times. Let a finite irreducible
Markov chain be started with distribution p, and consider
all rules that stop the chain at a time when it has
distribution q. The minimum over all such rules of the
expected stopping time of the chain is called the access
time from p to q, denoted by Aðp, qÞ. If p and q are
degenerate on states i and j respectively, then the access
time is just the hitting time of j from i.

If π is the stationary distribution of the chain, and δ(i)
is the degenerate distribution on the state i, then
maxi AðδðiÞ, πÞ is called the mixing time. Also the
quantity

P
iπiAðδðiÞ, πÞ is called the reset time. Finally,

the forget time is minτ maxi AðδðiÞ, τÞ, and the
distribution τ that achieves this minimum is the forget
distribution. [L. Lovász & P. Winkler, Reversal of Markov

chains and the forget time, Combin. Probab. Comp., 7,

189–204, 1998]

activated random walk An interacting particle
system on the vertices of a suitable graph. Initially a
number of particles are distributed (possibly randomly)
on the vertices of the graph; they are all active, which is
to say that each performs a symmetric r.w. on the vertices
independently of the others. Each particle becomes
inactive (falls asleep) at rate λ, and once inactive
(sleeping) it stops walking until another (necessarily
active) particle is present at the same vertex, whereupon it
resumes the random walk. In particular, no particle can
fall asleep at a vertex with two or more particles present.
If there is a time T after which a vertex V is never again
visited by an active particle, then V is said to fixate at
fixating time T. See also frog model. [R. Dickman et al.,

Activated random walkers: Facts, conjectures and challenges,

J. Stat. Phys., 138, 126–142, 2010]

actuarial table see life table

adapted process (alias: non-anticipating process)
It is natural to assume that for a random process evolving
in time, its distribution at time t (given its past) should not
depend on its future values. The adapted process makes
this idea formal, thus: given a filtration ðF tÞ, a random
process XðtÞ is adapted to ðF tÞ if, for all t, XðtÞ is F t-
measurable. Any process is adapted to its natural or
induced filtration ðF tÞ ¼ σfXðsÞ : s � tg.

In continuous time, a right-(or left-)continuous
adapted process XðtÞ has the stronger property of being
progressively measurable. In discrete time an adapted
process is both progressively measurable and an optional
process. [D. Applebaum, Lévy Processes and Stochastic

Calculus, 2nd edn. Cambridge University Press, 2009]

adaptive rejection A method for sampling from a
density fXðxÞ that is a computationally efficient
modification of the acceptance-rejection method.
Whenever a rejection occurs, the bounding function
afYðxÞ is modified to reduce the number of future
rejections. [W. Gilks et al., Adaptive rejection Metropolis

sampling, Appl. Stat., 44, 455–472, 1995]

adaptive stochastic control Broadly, that part of
control theory that seeks to optimize some function of the
realizations of a random process with uncertain
parameters, in which the control policy is adapted in the
light of updated estimates of the state variables and the
unknown parameters.

addition rule (alias: additive property) The axiom
of classical probability theories which asserts that the

addition rule3
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probability of the union of disjoint events is the sum
of their probabilities. Formally, if A\B ¼ ∅, then
PðA [ BÞ ¼ PðAÞ þ PðBÞ.

This rule is natural when probability is interpreted as
frequency, or proportion, or an expression of symmetry,
but its necessity has been questioned for interpretations
such as degree of belief, or degree of support.

The special form of the rule, written for arbitrary A
and B as PðBÞ ¼ PðA\BÞ þ PðAc\BÞ, is often called the
partition rule or the law of total (or complete)
probability. More strongly, Kolmogorov’s additivity
axiom requires that for a countable pairwise disjoint
collection of events Ai,Pð[AiÞ ¼

P
PðAiÞ, and Pð∙Þ is

said to be countably additive or sigma-additive. See
inclusion-exclusion bounds. [H. Tijms, Understanding

Probability, 3rd edn. Cambridge University Press, 2012]

additive functional Arises in the context of a strong
Markov process XðtÞ ¼ Xðt,ωÞ. A continuous additive
functional of (or associated with) Xðt,ωÞ is a random
process Aðt,ωÞ such that Að0,ωÞ ¼ 0, and for
s, t � 0, Aðt þ s,ωÞ ¼ Aðt,ωÞ þ Aðs,ωþ

t Þ ¼
Aðt,ωÞ þ Aðs,ωÞ∘θt; where ωþ

t is the sample path
shifted by t (i.e. seen after t) and θt is the shift operator.
Furthermore, Aðt,ωÞ is required to be continuous, non-
decreasing, and adapted to the filtration generated by

Xðt,ωÞ. A classic example is AðtÞ ¼ Ð t
0 f ðXðuÞÞdu,

where f ð∙Þ is a bounded non-negative function; another
example is the local time of a diffusion at x. Some writers
do not require the functional to be non-decreasing.
A multiplicative functional is defined analogously by
Mðt þ sÞ ¼ MðsÞMðtÞ∘ θs. [S. Karlin & H. Taylor, A Second

Course in Stochastic Processes. Academic Press, 1981]

additiveprocess (alias: independent (or orthogonal)
increments process) If, for any n, and t1 < t2 < � � �
< tn, the increments Xðt2Þ � Xðt1Þ, . . . ,XðtnÞ � Xðtn�1Þ
of X(t) are independent, then X(t) is said to be an additive
(or strongly additive) process. If the increments are only
uncorrelated, then the process is said to be weakly
additive, or to have orthogonal increments. The Wiener,
Lévy, and Poisson processes are classic examples of
additive processes. [K. Itô, Essentials of Stochastic
Processes, English translation. American Mathematical Society,

2006]

additive property see addition rule

additive set functional see valuation

Adelson recursion A formula for the computation of
the terms of a compound Poisson distribution,
recursively. Thus, if X ¼ PN

r¼1Yr where N is Poisson (λ),
and the Yr are i.i.d.r.v. with PðYr ¼ kÞ ¼ pk, k � 0,
then PðX ¼ 0Þ ¼ expf�λð1� p0Þg, and xPðX ¼ xÞ ¼
λ
Px�1

k¼0ðx� kÞpx�k PðX ¼ kÞ, x � 1. The case p1 ¼ 1 is
the classic Poisson recursion., and a generalization is
called the Panjer (or Adelson–Panjer) recursion.
[R. Adelson, Compound Poisson distributions, Oper. Res. Q.,

17(1), 73–75, 1966]

adiabatic effect Arises in the context of Monte
Carlo simulations; it refers to the possibility that an
over-hasty annealing schedule may leave the system
(process) in a locally extreme (metastable) state,
rather than the desired global extreme (ground state).
[B. Gidas, Metropolis-Type Monte Carlo simulation

algorithms and simulated annealing, in Topics in Contemporary

Probability and its Applications, L. Snell (ed.). CRC Press,

1995]

adjoint source In communication theory, that
memoryless discrete source which has the same
distribution over its symbols as a given ergodic Markov
source in equilibrium. [D. Welsh, Codes and Cryptography.

Oxford University Press, 1988]

Adleman’s theorem Addresses randomized
algorithms in the context of computational complexity. It
asserts that the set of decision problems solvable by a
probabilistic Turing machine in polynomial time (with
error probability less than p 2 ð0, 1=2Þ is included in the
set of problems decidable by a Turing machine whose
circuits and running time are polynomially bounded as
functions of the length of the input, denoted by P/poly.
[R. Motwani & P. Raghavan, Randomized Algorithms.

Cambridge University Press, 1995]

admission control Arises in queueing theory, or
related systems, when the arrival process of customers (or
items) depends on the number, and possibly types, of
those in service. The control may be random, as e.g. in
balking and reneging, or it may be imposed with the
aim of optimizing some measure of performance.
[S. Stidham & R. Weber, A survey of Markov decision models

for control of networks of queues, Queueing Sys., 13(1–3),

291–314, 1993]

adversarial input (alias: worst-case) A concept
arising in game theory that has applications in areas as

4additive functional
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disparate as cryptography and sequential job scheduling
in OR. Broadly, it is the assumption that the random
inputs to the system are in some sense worst-case; that is,
as if chosen by an adversary.

affine Markov process A term arising in two
contexts:
1. Given a Markov chain Xn, if there exist suitable

functions f and g such that, for all n � 0,Xnþ1 ¼ gðXnÞ
þ f ðXnÞZnþ1, where the Zn are i.i.d.r.vs independent
of X0, then the chain is said to be affine.

2. If the transition semi-group of a Markov process in
continuous time is such that the logarithm of its
characteristic function is an affine transformation of
the initial state, then the process is called affine.

[T. Hurd & A. Kuznetsov, Affine Markov chain model of

multifirm credit migration, J. Credit Risk, 3(1), 3–29, 2007;

D. Dawson & Z. Li, Skew convolution semigroups and

affine Markov processes, Ann. Probab., 34(3), 1103–1142,

2006]

affine process see harness

age (alias: current life; spent waiting time; back-
ward recurrence time) In a renewal process at time t,
the time elapsed since the most recent prior event is
called the age of the process. If there is no prior event
the age is taken to be t, for a process started at 0. If
the interevent time is not arithmetic, with distn fn FðxÞ,
then the limiting distn of the age as t ! ∞ is AðxÞ ¼
ðEXÞ�1Ð x

0 ð1� FðuÞÞdu, provided EX ¼ Ð∞
0 ð1� FðuÞÞdu

is finite. [G. R. Grimmett & D. R. Stirzaker, Probability

and Random Processes, 3rd edn. Oxford University Press,

2001]

age-dependent process (alias: Bellman–Harris
process) Generalizes the ordinary Galton–Watson
process by requiring each individual to complete a
random lifetime before branching. In the simplest model,
lifetimes are independent of each other and the family
sizes. More generally, a family-size distribution may
depend on the age of the individual giving rise to it.
[P. Haccou et al., Branching Processes. Cambridge University

Press, 2005]

ageing Arises in the analysis of reliability and
maintenance of systems (in the most general sense), as
well as in demographic and actuarial theories. In the
simplest classical model, a system comprises n
components (usually satisfying some dependency

relations), each of which has a random lifetime. For a
component aged t, whose lifetime distribution is FðxÞ, for
a lifetime T with density f ðxÞ, we define rðtÞ ¼ f ðtÞ=f1�
FðtÞg, which is called either the failure rate fn or the
hazard rate fn (or the force of mortality in actuarial
contexts).

There is a considerable taxonomy based on
the properties of rðtÞ, and suitable functions
of rðtÞ. The cumulative hazard fn is

HðtÞ ¼ Ð t
0 rðuÞdu ¼ �logð1� FðtÞÞ(also, and

confusingly, sometimes called the hazard function), and
for a random lifetime T, the residual lifetime RðtÞ at t is
the random variable T � t, conditional on the event
T > t. Then these classifications are commonplace:
(A) If HðtÞ is convex (resp. concave) in t, then T is said

to have increasing (resp. decreasing) failure rate,
denoted by IFR (resp. DFR).

(B) If t�1 HðtÞ is non-decreasing (resp. non-increasing)
then T is said to have increasing (resp. decreasing)
failure rate on average, denoted by IFRA
(resp. DFRA).

(C) If for all u,v� 0,Hðuþ vÞ �HðuÞþHðvÞðresp:�Þ,
then T is said to be new better (resp. worse) than
used, denoted by NBU (resp. NWU).

(D) If ET � ERðtÞðresp �Þ, then T is said to be new
better (resp. worse) than used in expectation,
denoted by NBUE (resp. NWUE).

(E) If ERðtÞ is non-increasing (resp. non-decreasing) in t,
then T has decreasing (resp. increasing) mean
residual life, denoted by DMRL (resp. IMRL).

It can be shown that IFR ) DMRL ) NBUE and that
IFR ) IFRA ) NBU ) NBUE.

The equivalent expression, 1� FðtÞ ¼ e�HðtÞ ¼
expf�Ð t

0 rðuÞdug, may be called the exponential
formula for reliability in appropriate contexts. More
generally, when F has no density, the hazard rate over
ðt, t þ a�, a > 0, is

rðt, aÞ ¼ Fðt þ aÞ � FðtÞ
1� FðtÞ ¼ Pðt < X � t þ a jX > tÞ:

More narrowly, if X is integer-valued, then
rðtÞ ¼ PðX ¼ t jX � tÞ. [M. Finkelstein, Failure Rate

Modelling for Reliability and Risk. Springer, 2008]

age replacement model (or policy) Any one of a
large number of procedures for maintaining the
reliability of a system by replacing components according
to rules based on their current lifetime, or age.
[T. Nakagawa, Maintenance Theory of Reliability. Springer,

2005]

age replacement model (or policy)5
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age-structured process see age-dependent process

aggregation see lumpability

aggregation-disaggregation A method sometimes
used in the analysis of Markov chains arising in the
context of very large networks (of queues, or processors).
If the state space can be partitioned into subsets within
which transitions are very likely, but transitions into other
subsets are very unlikely, then one may proceed by first
considering inter-set transitions, and then intra-set
transitions, to yield good approximate results.
[P. Schweitzer, A survey of aggregation-disaggregation in large

Markov chains, in Numerical Solution of Markov Chains,

W. Stewart (ed.). Marcel Dekker, 1991]

aggregation paradox Refers to the fact that it is
possible that a number of distinct and disparate (but
commensurate) data-sets may all point towards some
common conclusion, but when combined (i.e. pooled) the
aggregated data-sets suggest the opposite conclusion. See
Yule–Simpson paradox. [D. Saari, A chaotic exploration of

aggregation paradoxes, SIAM Rev., 37(1), 37–52, 1995]

Agrawal–Biswas test A randomized method for
testing the primality of a given integer n. It relies on the
fact that for any c > 1, such that gcdðn, cÞ ¼ 1, n is prime
iff ðx� cÞn ¼ xn � c, modulo n. Broadly, the method
chooses a random monic polynomial RðxÞ of degree
dlog ne = smallest integer not less than log n. If
ðxþ 1Þn 6¼ xn þ 1, modulo RðxÞ, nð Þ, then n is declared
composite; otherwise n may be prime. [L. Rempe-Gillen &

R. Waldecker, Primality Testing for Beginners. American

Mathematical Society, 2014]

agreeing function Arises in a number of contexts,
e.g. decision theory and theories of probability, where a
family T of objects are subject to some ordering induced
by, e.g., preferences or beliefs. The real-valued function
að�Þ is said to agree with this ordering if, for all
x, y 2 T , aðxÞ � aðyÞ iff y is preferred to x (or belief in y
is greater than belief in x). See utility functions. [J.
Halpern, A counterexample to theorems of Cox and Fine, J.

Artif. Intel. Res., 10, 67–85, 1999]

Ahlswede–Daykin inequality (alias: four functions
theorem) This has applications in random graphs, and
other areas of probabilistic combinatorics. One form is
this: Let π be the set of all subsets of f1, 2, . . . , ng (i.e. its
power set), and let að�Þ, bð�Þ, cð�Þ, and dð�Þ be four non-

negative functions on π. For a family ϕ of subsets of π,
the sum

P
S2ϕaðSÞ is denoted by AðϕÞ, and likewise for

b, c, and d.
If, for any two subsets S and T of π, we have aðSÞbðTÞ

� cðS [ TÞ dðS \ TÞ, then for any two families ϕ and θ
of subsets of π, AðϕÞBðθÞ � Cðϕ [ θÞDðϕ \ θÞ, where
ϕ [ θ ¼ fA [ B : A 2 ϕ, B 2 θg, and similarly for ϕ \ θ.

It is an example of a correlation inequality, such as
those of Harris, FKG, Holley and Fishburn–Shepp, all
of which it implies. [R. Ahlswede & D. Daykin, An inequality

for the weights of two families of sets, their unions and

intersections, Probab. Theor. Rel. Fields, 43(3), 183–185, 1978]

Airy distribution Usually denotes one of two
distributions:
1. The map-Airy distribution, so called because it

arises in the study of random maps (i.e. planar
graphs), which has density on ℝ given by f ðxÞ ¼
2½xAðx2Þ � A0ðx2Þ�exp �2

3x
3

� �
, where AðxÞ ¼ π�1Ð∞

0 cos xt þ 1
3 t

3
� �

dt, is the Airy function. It has zero
mean, but no higher moments.

2. The area-Airy distribution, so called because it
is the distribution of the area (suitably scaled) of
the positive Brownian excursion, which may
be defined on ℝ+ by its moments mr given by
mr ¼ Ar2

ffiffiffi
π

p
=Γ 1

2 ð3r � 1Þ� �
, r � 1, where Ar are the

Airy constants fA1 ¼ 1=2,A2 ¼ 5=4,A3 ¼ 45=4, . . .g.
It arises as the limiting distribution of a number of
random structures.

[C. Banderier & G Louchard, Philippe Flajolet and The Airy

Function, online, www.stat.purdue.edu/~mdw/

ChapterIntroductions/banderier-louchard.pdf

Aldous–Broder method A procedure for generating
a uniform spanning tree on a finite connected graph G
(i.e. one selected uniformly at random from all spanning
trees). From any vertex v run a symmetric random walk
on G until all vertices have been visited. For any vertex
u 6¼ v, let eðuÞ be the edge used to make the first visit
to u. The collection of such edges is the required
random tree. [S. Evans et al., Rayleigh processes, real trees,

and root growth with regrafting, Probab. Theor. Rel. Fields,

134(1), 81–126, 2006]

Aldous’s condition Arises in considering the weak
convergence of a sequence of random processes, where it
supplies a sufficient condition for tightness in terms of
behaviour after stopping times; a later weaker condition
is similarly denoted. [D. Aldous, Stopping times and tightness

6age-structured process
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I & II, Ann. Probab., 6(2), 335–340, 1978; 17(2), 586–595,

1989]

Aldous’s integrated superBrownian excursion
(or ISE) Introduced by D. Aldous as a description for
random distribution of masses, this is a random
probability measure arising as a continuous rescaled limit
of random trees. [D. Aldous, Tree-based models for random

distribution of mass, J. Stat. Phys., 73(3–4), 625–641, 1993]

aleatory Random. From the Latin aleator, meaning
one who throws a die; the Latin word for die being alea
(which was also the name of a popular Roman
board game).

The term ‘aleatory probability’ may be applied in the
context of uncertain physical events lying in the future,
such as the decay of subatomic particles or radioactive
atoms; it is to be contrasted with epistemic probability,
which arises simply from a lack of knowledge (see
probability). [I. Hacking, The Emergence of Probability.
Cambridge University Press, 1975]

Alexandrov's theorem see portmanteau theorem

algebraic probability see quantum probability

algorithmic complexity see Kolmogorov
complexity

algorithmic probability (alias: Solomonoff prob-
ability; universal probability) Commonly denotes a
probability distribution assigned to binary strings (finite
or infinite) on an a priori basis, i.e. axiomatically not
empirically (as the uniform distribution is similarly
assigned by the principle of insufficient reason). The
concept was introduced by R. Solomonoff for the
purposes of inductive inference, and is closely related to
Kolmogorov complexity. In the basic case of a finite
binary string b the so-called universal (algorithmic)
probability PðbÞ of b is defined in terms of a universal
(Turing) computer with random (prefix-free) input p
having length lðpÞ yielding output TðpÞ.

Then PðbÞ ¼ P
p:TðpÞ¼b2

�lðpÞ, where
P

p2
�lðpÞ ¼

Ωc < 1 is Chaitin’s constant. Note that the term
algorithmic probability also has its standard interpretation.
[M. Hutter, Universal Artificial Intelligence. Springer, 2005;

M. Neuts, Algorithmic Probability. Chapman & Hall, 1995]

algorithmic randomness Arises in considering the
extent to which a given infinite sequence (typically
binary) can be seen as random. Broadly speaking, the

issue is decided by putting the sequence through a
number of suitable tests (essentially statistical and
probabilistic); then sequences that pass the test may be
called algorithmically random.

The field of such tests is large and varied, but e.g. a
random sequence should not be readily compressible (in
the sense of having a short encoding); it should be
essentially unpredictable (so that no gambler can
expect to win by betting on its unrevealed future); and
it should pass all statistical tests for randomness (such
as obeying the appropriate laws of large numbers).
See Martin-Löf randomness. [R. Downey & D. Hirschfeldt,

Algorithmic Randomness and Complexity. Springer, 2010]

aliasing (alias: alias method; Walker’s
method) A technique for sampling from the
distribution p ¼ ðp1, . . . , pnÞ of a simple random
variable X. It relies on the fact that X can be represented
as a composite (or compound) random variable in the
form X ¼ YU , where U is uniform on ½1, . . . , n� 1�,
and Yk 2 fxk, xaðkÞg, for a suitable function
að�Þ : f1, . . . , n� 1g ! ½1, . . . , n�, called the alias
function. Thus sampling from p is equivalent to sampling
from a randomly chosen Bernoulli distribution. Put
simply, one can always set

p ¼ 1
n� 1

Xn�1

r¼1

Vr ,

where each Vr is a vector of length n with at most two
non-zero entries, one of which can be forced to lie in the
rth place of Vr by renumbering. [W. Hörmann et al.,

Automatic Nonuniform Random Variate Generation. Springer,

2004]

Ali–Silvey divergence see f-divergence

Allais paradox (alias: Allais phenomenon; Allais
problem) Arises in decision theory and utility theory.
The Von Neumann–Morgenstern model for choice under
uncertainty assumes that choices are independent of
irrelevant alternatives. M. Allais constructed uncertain
choices such that the irrelevant alternatives affected the
choices of real decision makers. Behavioural decision
theory accounts for this in a number of ways, including
the certainty effect, or by postulating regret as a factor in
decision-making. The paradox can be seen either as a
failure of people to be rational, or as a failure of classical
utility to account for people’s behaviour. [I. Hacking,
Introduction to Probability and Inductive Logic. Cambridge

University Press, 2001]

Allais paradox7
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Allison mixture Refers to the fact that two
independent white noise processes can be mixed to yield

a process that is not white noise. Formally, let Xð1Þ
n and

Xð2Þ
n be independent stationary processes with means λ

and μ, λ 6¼ μ, whose autocorrelation functions are both

given by ρðXðiÞ
n ,XðiÞ

nþmÞ ¼ δðmÞ, where δðmÞ is the
Kronecker delta. Let Zn be a two-state Markov chain

with transition matrix
	

p 1�p
1�q q



, with pþ q 6¼ 1, and

pq 6¼ 0, in equilibrium. Then the process Wn ¼ XðZnÞ
n is

stationary, but is not white noise, in that
ρðWn,WnþmÞ 6¼ δðmÞ. [D. Abbott, Developments in

Parrondo’s paradox, in Applications of Nonlinear Dynamics, V.

Longhini et al. (eds). Springer, 2009]

allocation problem (alias: scheduling problem;
sequencing problem) A large class of problems in
operations research that require the allocation of some
resource (or vector of resources), which may be random,
to satisfy various (possibly random) constraints,
according to some criterion of optimality. For example:
bin-packing; portfolio allocation, knapsack problems;
bandwidth allocation; network routing; buffering;
makespan scheduling; bandits; job-shop problems;
repairman scheduling; etc. [S. Sarin et al., Stochastic

Scheduling, Cambridge University Press, 2010]

almost surely (alias: with probability 1; almost
everywhere; almost certainly; a.s.; a.e.) An event A
such that PðAÞ ¼ 1 is said to occur almost surely; by
extension the same is said of any probability statement
that holds on an event of probability 1. Thus e.g. for r.vs
defined on the same space, to say that ‘X ¼ Y , a.s.’ is to
say that P fω : XðωÞ ¼ YðωÞgð Þ ¼ 1. Note that an almost
sure event A need not be the certain event Ω; the
complement of an almost sure event A is a null event.
The term ‘almost everywhere’ is commonly used in
the more general context of measure theory, where
it is said of a property (or assertion) that holds
everywhere except on a set of measure zero.
[J. Stoyanov, Counterexamples in Probability, 3rd edn.

Dover, 2013]

alpha-mixing (alias: strong mixing) A concept that
formalizes the idea that a sequence Xn, n 2 Z, of random
variables may not be independent, but widely separated
members of the sequence may be negligibly dependent
on each other. Formally, let A be any event that depends
only on fXr : r � kg, and B any event that depends only
on fXs : s � nþ kg, and define

αðnÞ ¼ sup
k�1

jPðA \ BÞ � PðAÞPðBÞj:

If, for any A and B, αðnÞ ! 0 as n ! ∞, then the
sequence Xn is said to be α-mixing. It is the weakest of a
number of so-called strong-mixing conditions, of which
independence is the strongest. [R. Bradley, Basic properties
of strong mixing conditions, Probab. Surv., 2, 107–144, 2005]

alternating renewal A random process that arises as
a model for a system that works (or is on, or is up) for a
random time to failure, and is then off (or down) for a
random time until repair; this cycle is independently
repeated ad infinitum. Formally, let X0,X1, . . . be a
sequence of independent non-negative r.vs such that
X2r�1, r � 1 have distn FðxÞ, and X2r , r � 1, have distn
GðxÞ. This, together with the counting function
NðtÞ ¼ maxfn :

Pn
r¼0Xr � tg, comprises an alternating

renewal process. It is ordinary if X0 has the distn GðxÞ;
otherwise it is delayed. [D. R. Cox, Renewal Theory.
Methuen, 1962]

amalgamation paradox see Yule–Simpson
paradox

ambit process Arises in modelling the evolution of
suitable spatial processes in time. Broadly, for t 2R and

r 2Rd, one defines a so-called ambit field as an integral
Yðt, rÞ ¼ Ð

kðs, t; x, rÞMðds, dxÞ, where M is an
appropriate random measure and k some (possibly
random) kernel. Then the values of the field along a path

in Rdþ1 constitute an ambit process. [O. Barndorff-Nielsen
et al., Ambit processes and SDES, in Advanced Mathematical

Methods for Finance, G. Di Nunno & B. Øksendal (eds).

Springer, 2011]

American option Arises in financial mathematics,
where it refers to contracts in which the holder of an
option can exercise it at any time up to the expiry (or
maturity) date T. [M. Musiela & M. Rutkowski, Martingale

Methods in Financial Modelling, 2nd edn. Springer, 2005]

Ammeter process Arises in insurance mathematics,
where it denotes a Cox (i.e. doubly stochastic Poisson)
process such that the random intensity λðtÞ is given for
t � 0 by λðtÞ ¼ An, n� 1 � t < n, n � 1, where
An, n � 1, is a sequence of i.i.d.r.vs. [J. Grandell, Mixed

Poisson Processes. Chapman & Hall, 1997]

Andersen see Sparre Andersen (model, theorem, etc.)

8Allison mixture
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Anderson’s theorem (or inequality) In its simplest
form this asserts that if X has an origin-symmetric
unimodal density, and Y is independent of X, then
PðjXj � aÞ � PðjX þ Y j � aÞ. More generally, if the r.vr

X 2 Rd has an origin-symmetric unimodal density, and A
is an origin-symmetric convex set inℝd, then PðX 2 AÞ �
PðXþ Y 2 AÞ for any Y 2 Rd that is independent of X.
[T. Anderson, The integral of a symmetric convex set and some

probability inequalities, Proc. Amer. Math. Soc., 6, 170–176,

1955]

annealing method (alias: simulated annealing)
Arises in optimization. It is a probabilistic procedure for
finding the global extremes of a function fðxÞ, x 2 S, that
may have many widely dispersed local extremes in the
state space S, which is commonly a lattice or a graph. In
such cases, elementary optimization methods such as
exhaustion, or gradient (hill-climbing) methods (possibly
stochastic) are often useless. The method is a type of
Markov chain Monte Carlo technique, and one version is
implemented as follows.

Assume we seek a global minimum; simulate a
Markov chain Xn, n � 0, on S, whose stationary
distribution is πðxÞ / expf f ðxÞT�1g (being a Gibbs distn),
where the arbitrary parameter T is called the temperature.
As T # 0, this distribution is supported by the set M of
global minima of f ðxÞ. Therefore T ¼ TðnÞ is set as a
non-increasing function of time, called the annealing
schedule, and when T is small enough the chain is very
likely to be in M. The nomenclature arises from the
analogy with the creation of physical objects with low
internal energy (and hence stress) by first heating and
then cooling according to a good schedule. A related
(mixture) method, in which a chain is run in equilibrium
on a state space augmented by values of T, is called
simulated tempering. See Gibbs sampling. [B. Gidas,
Metropolis-Type Monte Carlo simulation algorithms and

simulated annealing, in Topics in Contemporary Probability and

its Applications, L. Snell (ed.). CRC Press, 1995]

annihilating particle system A type of interacting
particle system in which particles may disappear on
encountering another particle. An example is the
annihilating random walk on ℤd, in which all particles
present at t ¼ 0 perform independent simple random
walks on the lattice, and any particles that meet at a
vertex (or use the same edge), are instantly removed.
Interest centres, e.g., on the asymptotic behaviour of the
probability pðtÞ that the origin (or other given site) is
occupied at time t. More generally, particles may be of

two (or more) types, with only different types (say)
annihilated on meeting. Related processes include those
where particles destroy themselves (death process), kill
neighbours (coalescence), or reproduce (branching
annihilation). [T. Liggett, Interacting Particle Systems.

Springer, 2005]

announceable time see predictability

annuity Arises in actuarial maths. A periodic
(classically, annual) payment, which may vary, and may
run for a fixed term, or for the annuitant’s lifetime, or
forever (in which last case it may be called a perpetuity).
Formally, the present value of an annuity (equal to the
fair purchase price) is V ¼ PT

j¼1Aj
Qj�1

k¼1Dk, where T is
the duration of the annuity (lifetime), Aj are the amounts
paid, and Dj are the discount factors subsuming the
effects of inflation and interest rates. [D. Dickson et al.,

Actuarial Mathematics for Life Contingent Risks. Cambridge

University Press, 2009]

anomalous diffusion (alias: enhanced diffusion,
sub- and super diffusion) Denotes a class of real-
world processes that are essentially diffusive in nature,
but whose detailed properties are different from those of
the classic Brown–Einstein–Fick motion (BEF). If XðtÞ
is a BEF process, then its mean-square displacement

E
�
XðtÞ2� is proportional to the elapsed time t; in an

anomalous diffusion AðtÞ,E�AðtÞ2� / ta, where a < 1,
a > 1, and a ¼ 2 correspond respectively to subdiffusion,
superdiffusion, and ballistic diffusion. Examples
include tracers in turbulence, transient currents in
photocopiers, and diffusive percolation. A classic
anomalous diffusion model is the Montroll–Weiss
process, in which a particle makes i.i.d. random jumps in
ℝd at the instant of a renewal process. Another class of
models comprises the fractional diffusion processes.
These may be variously derived, but typically their
probability distributions satisfy fractional diffusion

equations, i.e. of the form ∂αf =∂tα ¼ Δβf , where ∂α=∂tα is
a time-fractional derivative, and Δβ is a space-fractional
differential operator. [D. Ben-Avraham & S. Havlin, Diffusion

and Reactions in Fractals and Disordered Systems. Cambridge

University Press, 2000]

Anscombe’s condition For a sequence of r.vs
Xn, n � 0, this condition amounts to requiring uniform
continuity in probability. Formally, for any ε > 0 and
δ > 0, there exist c > 0 and m < ∞, such that for all
n > m

Anscombe’s condition9

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07516-0 - The Cambridge Dictionary of Probability and Its Applications
David Stirzaker
Excerpt
More information

http://www.cambridge.org/9781107075160
http://www.cambridge.org
http://www.cambridge.org


P max
ð1�cÞn�k�ð1þcÞn

jXk � Xn j > ε

� �
< δ:

[P. Berti et al., An Anscombe-type theorem, J. Math. Sci.,

196(1), 15–22, 2014]

Anscombe’s quartet Comprises four artificial sets of
bivariate data ðX, YÞ, having the same marginal means
and variances, the same covariance, and the same
regression of Y upon X. However, when plotted they
exhibit entirely different apparent functional relationships
between their respective X and Y. [F. Anscombe, Graphs in

statistical analysis, Amer. Stat., 27(1), 17–21, 1973]

Anscombe’s theorem This is a limit theorem for
randomly indexed sequences of random variables.
Formally, let Xn, n � 0 satisfy Anscombe’s condition and
converge in distribution as n ! ∞; we write Xn !D X. If
MðnÞ, n � 0, is an integer-valued random process, and
aðnÞ, n � 0 a non-random sequence of positive numbers
increasing to ∞ as n ! ∞, where MðnÞ=aðnÞ converges
in probability to 1, then XM ðnÞ converges in distribution

(with the same limit as Xn), as n ! ∞. Note that it is
not assumed that MðnÞ is independent of Xn. [A. Gut,
Anscombe’s theorem 60 years later, Seq. Anal., 31(3), 368–396,

2012]

anticipating integral A type of stochastic integral in
which the integral is not necessarily adapted to the σ-field
generated by the integrator. That is to say, it fails to be
predictable, i.e. non-anticipating. Examples include the
Skorokhod integral, when the integrator is the Wiener
process; and theMa–Protter–San Martin integral, when
the integrator is a normal martingale. [C. Tudor, Martingale-

type stochastic calculus for anticipating integral processes,

Bernoulli, 10(2), 313–325, 2004]

antithetic variables Arise in Monte Carlo methods,
where they were introduced by J. Hammersley and
K. Morton to improve efficiency by reducing the variance
of outcomes. For example, if r.vs X and Y, with the same
distn F, are simulated to estimate their common mean,
the variance of the elementary estimator 1

2 ðX þ YÞ is
1
2 var X þ covðX, YÞ. Independent simulations thus yield a
larger variance than simulations such that covðXþYÞ<0
(i.e. antithetic, from the Greek word meaning opposite).
In this example, one may simulate a uniform r.v. U on
ð0,1Þ, and set X¼F�1ðUÞ and Y¼F�1ð1 � UÞ; it was
shown by P. Moran that this minimizes the correlation
between X and Y having the same distn. [S. Ross,
Simulation, 5th edn. Academic Press, 2013]

a priori probability A probability determined
independently of experience or empirical evidence (as it
relates to the problem at hand). Such probabilities may be
fixed subjectively, or by logical argument, or by applying
some principle, such as insufficient reason or maximum
entropy. Such a probability may be used as a prior in
Bayes methods; but note that not all priors are determined
a priori. [H. Jeffreys, Theory of Probability, 3rd edn. Oxford

University Press, 1961]

arbitrage Arising in financial mathematics, this denotes
any collection of financial transactions, or betting scheme,
that yields a gain with probability 1. (A weak arbitrage
yields no loss with probability 1, and a positive probability
of positive gain.) A set of offered bets, or offered prices for
assets and derivatives, is arbitrage-free (or a no-arbitrage
market), if no such collection (or portfolio) exists. Standard
market models for pricing derivatives and options require
that the result must be arbitrage-free; in the simpler models
this is sufficient to determine a unique fair price. More
general models may require other (stronger) principles to
constrain uniqueness of prices. A set of betting odds that
offers an arbitrage opportunity is called a Dutch book.
[T. Björk, Arbitrage Theory in Continuous Time, 3rd edn.

Oxford University Press, 2009]

arbitrage theorem (alias: no-arbitrage theorem;
first fundamental theorem of finance) Arises in the
context of betting, with natural applications to financial
mathematics. Informally, suppose that n betting
opportunities are available on a game (or experiment) with
m possible outcomes, and the amounts to be bet on each
opportunity are free to choose. Then the theorem asserts that
either there is a probability distribution on the outcomes
such that all bets are fair (in the sense of expected return), or
there is a betting scheme which wins with probability 1.
Formally, let the betting scheme (amounts bet on each of the
n opportunities) be ðb1, . . . , bnÞ 2 Rn, with the total return,
when the outcome of the game is j, denoted by
rðb, jÞ ¼ Pn

k¼1bkrðk, jÞ, where rðk, jÞ is the return on bk
for outcome j. Then either there is a probability distn
ðp1, . . . , pmÞ such that, for all k,

Pm
j¼1pjrðk, jÞ ¼ 0, or

there is a betting scheme ða1, . . . , anÞ such that, for all j,Pn
k¼1akrðk, jÞ > 0; yielding an arbitrage. This theorem

may be derived from the duality theorem of linear
programming. [S. Le Roy & J. Werner, Principles of Financial

Economics. Cambridge University Press, 2001]

ARCH process An acronym for autoregressive
conditionally heteroscedastic process; the word

10Anscombe’s quartet

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07516-0 - The Cambridge Dictionary of Probability and Its Applications
David Stirzaker
Excerpt
More information

http://www.cambridge.org/9781107075160
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107075160: 


