INDEX

Abstract formalism, dialectics compared, 240–242
Abstract thinking, 170–171, 191–193
Abstract to concrete, ascending from, xxxiii, 195, 202, 247–248
Action response, 116–117
Activity theory, xiv
artifacts in, xiv
Cole and, xiv, xv
c conceptual tools, xv
c contradiction and, xv
critiques of, xxvii
cultural artifacts in, xiv
cultural-historical methodology, xiv, 249–251, 252–253
Davydov and, xiv
developmental work research and, xvi
division of labor and, xiv
d e x p a n s i o n and, 7
first generation of, xiv
horizontal aspects of, xxiv
individual versus collective activity, xiv
influence of on expansive learning
t h e o r y, x iv
Marxism and, xxiv
mediation, xiv
object of learning activity in, xiv
Scribner and, xiv
second generation of, xiv
subject of learning activity in, xiv
third generation of, xv
tools in, xv
vertical aspects of, xxiv
Actual-empirical analysis, 255
Actual-empirical data, 9

Adorno, Theodor, 17
Advanced thought versus primitive thought, 169–172
The Adventures of Huckleberry Finn (Twain)
contradiction and, 140
double bind and, 140, 149
heuristic rules in, 229
microcosms and, 232
models and, 226–227
overview, 14
periodic law of elements compared, 208
science and, 223
Seven Brothers compared, 166
springboards and, 225
theoretical lessons from, 146–153
zones of proximal development in, 139–146, 152
Alienation, 84–86
Altshuller, G.S., 12, 256–258
Analysis of activity system, 254–256
actual-empirical analysis, 255
double bind and, 256
object-historical analysis, 254–255
object-unit and, 255–256
outcome and, 255–256
t h e o r y-historical analysis, 255
Analysis of the Developing Concept (Arsen’ev, Bibler and Kedrov), 191
Analysis versus experience, 172–176
Animal activity, 59–62
Apes
evolution of activity, 60–62
tools and, 60
Apprenticeship, 243, 245–246
Argyris, C., 112
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arlin, Patricia, 234</td>
</tr>
<tr>
<td>Arsen’ev, A.S., 191, 193–194</td>
</tr>
<tr>
<td>Art</td>
</tr>
<tr>
<td>Bartlett on, 184</td>
</tr>
<tr>
<td>as commodity, 98</td>
</tr>
<tr>
<td>cultural evolution of learning in, 75, 95–98</td>
</tr>
<tr>
<td>object of learning activity in, 98</td>
</tr>
<tr>
<td>Vygotsky on, 97</td>
</tr>
<tr>
<td>Wartofsky on, 96–97, 98</td>
</tr>
<tr>
<td>Artifacts</td>
</tr>
<tr>
<td>in activity theory, xiv</td>
</tr>
<tr>
<td>primary artifacts, 49–50, 115</td>
</tr>
<tr>
<td>secondary artifacts, 49–50, 115–117, 121, 255</td>
</tr>
<tr>
<td>tertiary artifacts, 121</td>
</tr>
<tr>
<td>Ascending from abstract to concrete, xxxiii, 195, 202, 247–248</td>
</tr>
<tr>
<td>Atlas, J.A., 170</td>
</tr>
<tr>
<td>Atomic bomb. See Manhattan Project</td>
</tr>
<tr>
<td>Bakhtin, Mikhail, xxiv, 12, 20, 245–247, 248</td>
</tr>
<tr>
<td>Bakhurst, David, xxvii</td>
</tr>
<tr>
<td>Bales, P.B., 11–12</td>
</tr>
<tr>
<td>Bartlett, Frederic, 12, 18–19, 52–53, 116, 182–184</td>
</tr>
<tr>
<td>Basseches, Michael, 236, 237–238</td>
</tr>
<tr>
<td>Bateson, Gregory</td>
</tr>
<tr>
<td>on deuto-learning, 111</td>
</tr>
<tr>
<td>on double bind, 112–113, 119, 145, 166</td>
</tr>
<tr>
<td>expansive learning theory, influence on, xviii</td>
</tr>
<tr>
<td>on hierarchy of learning, 111–114</td>
</tr>
<tr>
<td>on levels of learning, xxv, 111–113, 115, 119–120, 126, 127</td>
</tr>
<tr>
<td>making categories reach reality and, 21, 23</td>
</tr>
<tr>
<td>on models, 201</td>
</tr>
<tr>
<td>on play, 107</td>
</tr>
<tr>
<td>processing categories out of data and, 15–16, 18, 19</td>
</tr>
<tr>
<td>selection of data and, 10, 11, 12, 13</td>
</tr>
<tr>
<td>theoretical research and, 9</td>
</tr>
<tr>
<td>Behavioral routines, 114–115</td>
</tr>
<tr>
<td>Bereiter, Carl, 11–12, 18, 25–27, 82</td>
</tr>
<tr>
<td>Bernstein, N.A., 131</td>
</tr>
<tr>
<td>Beyond Formal Operations (Commons, Richards and Armon), 233, 234</td>
</tr>
<tr>
<td>Bhopol disaster, 88–89</td>
</tr>
<tr>
<td>Bibler, V.S., 137, 191, 193–194</td>
</tr>
<tr>
<td>Bibliolatry, 79</td>
</tr>
<tr>
<td>BIM (Building Information Modeling), xxxvi</td>
</tr>
<tr>
<td>Blacksmithing, 179–180</td>
</tr>
<tr>
<td>Blunden, Andy, xxx</td>
</tr>
<tr>
<td>Bohm, David, 230–231</td>
</tr>
<tr>
<td>Bohr, Niels, 213–214, 215–216, 219. See also Nuclear fission</td>
</tr>
<tr>
<td>Bratus, B.S., 152–154, 159</td>
</tr>
<tr>
<td>Braverman, H., 13, 84–85</td>
</tr>
<tr>
<td>Brehm, F., 11–12, 173–176, 177</td>
</tr>
<tr>
<td>Broadbent, D.E., 52–53</td>
</tr>
<tr>
<td>Bröndén, P., 89–90</td>
</tr>
<tr>
<td>Bronfenbrenner, Uri, xiii, 11–12, 110, 127</td>
</tr>
<tr>
<td>Bronowski, Jacob, 13, 94</td>
</tr>
<tr>
<td>Broughton, J.M., 233</td>
</tr>
<tr>
<td>Brown, Ann L., 11–12, 101–103, 109, 123</td>
</tr>
<tr>
<td>Bruner, Jerome, xiv, 11–12, 106, 117, 125–126, 176–177</td>
</tr>
<tr>
<td>Bühler, Karl, 189</td>
</tr>
<tr>
<td>Building Information Modeling (BIM), xxxvi</td>
</tr>
<tr>
<td>Bulmer, R., 188</td>
</tr>
<tr>
<td>Bunn, J.H., 116</td>
</tr>
<tr>
<td>Buss, A.R., 11–12, 110</td>
</tr>
<tr>
<td>Campione, J.C., 102</td>
</tr>
<tr>
<td>Capital (Marx), 13</td>
</tr>
<tr>
<td>Capitalism contradiction in, 67–69</td>
</tr>
<tr>
<td>cultural evolution of learning in school-going and, 78–79, 81</td>
</tr>
<tr>
<td>individualism and, 244</td>
</tr>
<tr>
<td>play and, 106–108</td>
</tr>
<tr>
<td>Carey, Susan, 187–188, 190, 193–194</td>
</tr>
<tr>
<td>Cartesianism, expansive learning theory as alternative to, xiii</td>
</tr>
<tr>
<td>Categories</td>
</tr>
<tr>
<td>chain of categories, 17</td>
</tr>
<tr>
<td>construction of, 23–24</td>
</tr>
<tr>
<td>germ cell category mediating between learning and expansion, 18</td>
</tr>
<tr>
<td>instruments necessary for mastery of expansive transitions, 18–19</td>
</tr>
<tr>
<td>making categories reach reality, 21–23</td>
</tr>
<tr>
<td>mechanism of transition from learning to expansion, 18 (See also Zones of proximal development)</td>
</tr>
<tr>
<td>processing out of data, 15–21</td>
</tr>
<tr>
<td>Caizen, C.B., 135</td>
</tr>
<tr>
<td>Chadwick, James, 214–215. See also Nuclear fission</td>
</tr>
<tr>
<td>Chain of categories, 17</td>
</tr>
<tr>
<td>Change Laboratory, xxxiii</td>
</tr>
<tr>
<td>Children's Campaign for Nuclear Disarmament, 15, 128–129, 131–132</td>
</tr>
<tr>
<td>Clarke, D., 114–115</td>
</tr>
<tr>
<td>Classificatory models, 227–228, 229–230</td>
</tr>
</tbody>
</table>
Index

Coding systems, 117
Cognitivism
concepts, cognitive theory of, 185–189
cultural-historical approach and, 25–28
Cole, Michael
activity theory and, xv
cultural-historical methodology and, 251
on development, 137, 171–172
on learning activity, 99
on “scaffolding,” 135–136
on school-going, 79–80
selection of data and, 12, 13
Collective development, 138
Collectively and expansively mastered activity, 222
Collective nature of learning activity, 125
Collective psyche, 52
Collective unconscious, expansion and, 4–5
Columbus, Christopher, 264
Commodities
art as, 98
contradiction and, 67–69
science as, 95
Complementarity
Davydov on, 196
of instruments, 184–185
Concepts
cognitive theory of, 185–189
Davydov on, 190–191, 194–198
dialectical logic and, 190–194
Ilyenkov on, 191–193, 194
Marx and, 191–192, 195
in mathematics, 196–198
in science, 193–194
theories and, 187–189
Vygotsky on, 189–190, 192
Conceptual Change in Childhood (Carey), 187
Concrete general labor, 65
Concrete specific labor, 65
Concrete thinking, 170–171, 191–193
The Conditions of Learning (Gagné), 1
Condon, Edward U., 220. See also Nuclear fission
Conscious awareness, 114–115
Contradiction
activity theory and, xv
The Adventures of Huckleberry Finn and, 140
in capitalism, 67–69
commodities and, 67–69
critiques of activity theory and, xxix
culture and, 70–71, 72
division of labor and, 66–67, 70, 72
exchange value versus use value, 70, 72
expansive cycles and, xxiii
expansive learning theory and, xviii
in human activity, 66–73
Ilyenkov on, xv, 73
individual versus collective, 66
internal versus external, 70
in Learning I, 123
in Learning II, 113–114, 120, 123
Leont’ev on, 69, 73
Marx on, 70
metacognition and, 102–103
“neighbor activities,” 71–72
nuclear fission and, 214–215, 216, 217
periodic law of elements and, 206–207
physician example, 72
in science, 95
Seven Brothers and, 154–161, 165
in work activity, 87–90
zones of proximal development and, 148,
151–152
Cooperation, 260
Coordination, 260
CRADLE research center, xxx
Craft, science as, 204–210
Created new aspect, 146–147, 150, 209–210, 218,
261–262
Criterion of development, 123–124
Critiques of expansive learning theory, xxvii
Cultural evolution of learning
in art, 75, 95–98
learning actions, 74–75
learning operations, 74
overview, 73–75
in school-going, 76–83 (See also School-going, cultural evolution of learning in)
in science, 92–98. (See also Science, cultural evolution of learning in)
in work activity, 83–92 (See also Work activity, cultural evolution of learning in)
Cultural-historical methodology; xiv, 249–251,
252–253
Curie, Marie, 213–214. See also Nuclear fission
Curie, Pierre, 213–214. See also Nuclear fission
Cycles of activity generation as zones of proximal development, 149, 152
Damerow, P., 65
Darwin, Charles, 30–32, 247
Darwin on Man (Gruber), 31–32
Darwin, Charles, 105, 107
Davydov, Vassily V.
activity theory and, xiv
on complementarity, 196
on concepts, 190–191, 194–198
on development, 136
on generation of new, 130–131, 133
on internalization, 26
interventionism and, xxx
on learning actions, 149–151
on learning activity, 99
models and, 231
on object of learning activity, 194–198
on play, 105, 107
selection of data and, 12
on sequence of learning activity, xx
Day, J.D., 102
DeCarlo, N., 114–115
Decontextualization of mediational means, 123
Deep structure of mind, 114–115
Delineation of activity system, 253–254
Dell, Paul, 113, 120
DeLoache, J.S., 101
Dennison, Becky, 128
Dennison, Susie, 128
Dequalification, 84–86
De Shancourt, A.E. Beguyer de, 205
Deutero-learning, 111, 112
Development, relationship with learning, 114–124
action response, 116–117
coding systems, 117
Cole on, 137, 171–172
criterion of development, 123–124
Davydov on, 136
decontextualization of mediational means, 123
direction of development, 124
generic learning, 117
ideologies of learning and, 121–122
language and, 126–127
in Learning III, 123
Leont’ ev on, 129, 135
object of learning activity and, 118–119
outcome and, 119
overview, 109
pauses and, 117–118
primary artifacts and, 119
Scribner on, 136
secondary artifacts and, 115–117
socialization of development, 124
tertiary artifacts and, 121
tools and, 115
triangle of learning activity, 122
Wartofsky on, 115
Developmental work research, xvi
Dewey, John, 12, 18–19, 177–178
D.I. Mendeleev Museum, 204
Dialectical derivation, 23–24
Dialectical logic, concepts and, 190–194
Dialectical Thinking and Adult Development (Basseches), 236
Dialectics
abstract formalism compared, 240–242
collective activity and, 239
culture and, 240
dyadic formations and, 236
Engels on, 240
Hegel and, 236
objectivity in, 239
object of learning activity and, 192–194, 242
overview, 18–19
practice in, 239
schemas, 237–238
subject of learning activity and, 237–238
of substance, 238–242
as tertiary instrument, 235–238, 248
thought and, 238–240, 242, 243
triangular models of human activity
(See Triangular models of human activity)
The Dialectics of the Abstract and the Concrete in Marx’s Capital (Ilyenkov), 191
Dichotomies
experience versus analysis, 172–176
narrative versus paradigmatic thought, 176–177
primitive thought versus advanced thought, 169–172
problems with, 177
Direction of development, 124
Distribution
learning actions and, 74–75
role in human activity, 62–65
Division of labor
activity theory and, xiv
contradiction and, 66–67, 70, 72
cultural evolution of learning in work activity and, 90
humanized science and, 221
Leont’ ev on, xiv
Doherty, M.E., 182–183
Dolphins, evolution of activity, 60–62
Double bind
The Adventures of Huckleberry Finn and, 140, 149
Bateson on, 112–113, 119, 145, 166
Children’s Campaign for Nuclear Disarmament and, 131–132
expansive methodology and, 256
Learning III and, 119
need states, transformation of, 139
nuclear fission and, 214–215, 216–217
periodic law of elements and, 207–208
Seven Brothers and, 158, 166, 256
Double-loop learning, 112
Double possibilities, 138–139
Double stimulation, xxxii
Dreyfus, Hubert, 11–12, 172–176, 225
Dreyfus, Stuart, 11–12, 172–176, 225
Durkheim, Emile, 17
Dyadic formations, 236
See also Nuclear fission
Eisenstein, Barbara, 79
Elliot, T.S., 140
El’konin, D.B., 12, 26, 58–59, 105, 107, 135
Elusiveness of expansion, 4–7, 23
Empirical knowledge, elements of, 195–196
Empirical research, theoretical research as, 8–9
The End of the Division of Labor (Kern and Schumann), 84–85
Engels, Friedrich, 21, 31–32, 231, 240
Engeström, Ritva, xxiv
Engeström, Yrjö, xvii
Epic form of literature, 245–247
Evolution
cultural evolution of learning (See Cultural evolution of learning)
of human activity, 59–66
of memory, 28–29, 30
Evolutionary epistemology, 39–40
Evolutionary nature of learning, 27–28
Exchange
learning actions and, 74–75
role in human activity, 62–65
Exchange value
overview, 70, 72
school-going and, 81, 82–83
Expansion
activity theory and, 7
analysis and modeling of, 7
collective unconscious and, 4–5
elusiveness of, 4–7, 23
instruments of, 169
integration into learning, 7
Leont’ev and, 253
perspective and, 6–7
psychoanalysis and, 4–5
transgressive model of man and, 5–6
Expansive cycles, xx
contradiction and, xxiii
individual to collective, xx
large-scale cycles, xxii
miniature cycles, xxii
transformative agency and, xxiii
vicious cycles, xxii
virtuous cycles, xxii
Expansive methodology
actual-empirical analysis, 255
analysis of activity system, 254–256
Cultural-historical methodology compared, 249–251, 252–253
cycle of, 252–253
delineation of activity system and, 253–254
double bind and, 256
formation of new instruments, 256–261
general models in, 255–256
microcosms, creating, 260–261
object-historical analysis, 254–255
object-typical notational systems, 257
object-unit and, 255–256
outcome and, 255–256, 262–263
phenomenology and, 253–254
practical application of new instruments, 261–262
reporting, 262–263
springboards, finding, 256–258
theory-historical analysis, 255
Experience
analysis versus, 172–176
Dewey on, 177–178
Explosive development, 126, 138
Externalization, 137
External properties of objects, 180–181
Fermi, Enrico, 219.
See also Nuclear fission
Fichtner, B., 12, 13, 73–74, 78–79, 260–261
Findings of study, 264
Flavell, J.H., 101
Flexible Manufacturing System (FMS), 259–260
Flying, 52–53
Formal-logical rules of thinking, 178–180
Index

Formal operations as tertiary instrument, 233
Formative interventions, xxx
abstract to concrete, ascending from, xxxiii, 195, 202
Change Laboratory and, xxxiii
double stimulation, xxxii
Hegel, influence of, xxxii
instrumentality and, xxxiv
Marx, influence of, xxxii
object of learning activity and, xxxi
outcome, xxxi
process, xxxi
reinstrumentation, xxxiii
remediation, xxxiii
research using, xxxi
role of researcher, xxxi
starting point, xxxi
traditional interventions versus, xxxi
Foundations of Dialectical Psychology
(Riegel), 235

The Foundations of Primitive Thought
(Hallpike), 169
See also Nuclear fission

Fundamentals of Chemistry (Mendeleev), 205

Furth, P., 65
Futility of learning, 1–3, 23
Future of expansive learning theory, xxxv

Gagné, Robert, 1, 2–3, 11–12
Galperin, P., 26
General models, 226, 258–260
General thinking skills, 234–235
Generic learning, 117
Gerhardt, Charles, 208
Germ cell category mediating between
learning and expansion, 18
Germ cell models, 231, 248
Given new aspect, 146–147, 150, 210, 258
Gladwin, H., 80–81
Glazman, M.S., 19
Goodman, Nelson, 172, 175–176, 187, 188
Gradual development, 126, 135
Graphic models, use of, 20–21, 24
“Grey zones,” 90
Griffin, Peg, 135–136, 137, 171–172
See also Manhattan Project

Gruber, Howard, 31–32
Grundrisse (Marx), 13, 62–64

Grünewald, G., 15

Habermas, Jürgen
making categories reach reality and,
21–22, 23
processing categories out of data and, 17, 19
selection of data and, 10–11, 12–13
theoretical research and, 9
triangular models of human activity and, 33
Habit, 115, 116
See also Nuclear fission
Haley, Jay, 9
Haldén, O., 148
Halliday, M., 45
Hallpike, C.R., 11–12, 169–170, 172
Handicrafts, 74
Harré, R., 12, 114–115
Hasu, M., xvii
Haug, Frigga, 106
Heidtmann, B., 65
Heisenberg, Werner, 223–224
Heller als Tausend Sonnen: Das Schicksal der
Atomforscher (Jungk), 213

Heteroglossia, 247, 248
Heuristic rules, 229
Hierarchy of activity, 122
Hierarchy of learning, 111–114
Hiromatsu, K.I., 243–244
Hirschhorn, L., 13, 15, 86–89
Historical emergence of expansive learning
theory, xviii
Historical mission of expansive learning
theory, 265

Historical types of activity, 219–225
collectively and expansively mastered
activity, 222

Habermas, Jürgen
making categories reach reality and,
21–22, 23
processing categories out of data and, 17, 19
selection of data and, 10–11, 12–13
theoretical research and, 9
triangular models of human activity and, 33

Habit, 115, 116
See also Nuclear fission

Haley, Jay, 9

Haldén, O., 148
Halliday, M., 45
Hallpike, C.R., 11–12, 169–170, 172
Handicrafts, 74
Harré, R., 12, 114–115

Hasu, M., xvii
Haug, Frigga, 106
Heidtmann, B., 65
Heisenberg, Werner, 223–224
Heller als Tausend Sonnen: Das Schicksal der
Atomforscher (Jungk), 213

Heteroglossia, 247, 248
Heuristic rules, 229
Hierarchy of activity, 122
Hierarchy of learning, 111–114

Hiromatsu, K.I., 243–244
Hirschhorn, L., 13, 15, 86–89

Historical emergence of expansive learning
theory, xviii
Historical mission of expansive learning
theory, 265
Historical types of activity, 219–225
collectively and expansively mastered
activity, 222

craft, science as, 204–210
humanized science, 221–222
rationalized science, 211–221
Hitler, Adolf, 216
Holquist, Michael, 245
Holzkamp, Klaus, xxv, 8, 9, 12, 138–139
Horizontal aspects of activity theory, xxiv
How We Think (Dewey), 177
Humanized science, 221–222
von Humboldt, Alexander, 247
Hundeide, Karsten, 6–7, 11–12
Hunter-gatherers, 62, 64
‘Hyperobjects,’ xxxvi
Ideality, 200
Ideologies of learning, 121–122
Ilyenkov, Evald V., on concepts, 191–193, 194
on contradiction, xv, 73
on critiques of activity theory, xxix
interventionism and, xxxii
models and, 231
selection of data and, 12
on work activity, 91
Imagery in Scientific Thought (Miller), 177
Individualism
capitalism and, 244
in literature, 245–247
Individual versus societal development, 109–111, 125–129
Induction, 175–176, 186, 187
Industrialization
of science, 95
of work activity, 83
Inflation, 4, 55
Inhelder, B., 116–118
Instruments
Bartlett and, 182–184
complementarity of, 184–185
creation of, 114
development and, 121
of expansion, 169
experience versus analysis, 172–176
formation of new instruments, 256–261
in humanized science, 221
of learning activity, 99–100
in Learning I, 115
in Learning III, 121
models as, 198–200
narrative versus paradigmatic thought, 176–177
necessary for mastery of expansive
transitions, 18–19
periodical law of elements and, 210
practical application of new instruments, 261–262
primary thought versus advanced thought, 169–172
secondary instruments (See Secondary instruments)
in Seven Brothers, 165
tertiary instruments (See Tertiary instruments)
Wartofsky on, 49–50
Wertheimer and, 181–182
Interaction among participants, xxv
Internalization, 26–27, 82, 137
Intersubjectivity, microcosms and, 260–261
Interventionist premise of expansive learning theory, xiii
Invariant, learning as, 27
"Invisible college," periodic law of elements
and, 204–205
Involuntary memory, 29, 30
Jackson, Don, 9
Joas, Hans, 44, 56
Joliot-Curie, Irène, 215–216. See also Nuclear fission
Judin, E.G., 121
Jung, C.G., 4–5, 7, 12, 52, 55
See also Nuclear fission
Karmiloff-Smith, A., 116–118
203, 204
Keil, P., 13
Keller, Helen, 37, 38–39
Kern, Horst, 84–85
Kidder, Tracy, 222
Kilmann, R., 237
Kivi, Alexis, 14, 153, 165–166. See also Seven Brothers (Kivi)
Klix, Friedhart, 11–12, 18, 25, 27–28, 30
Knotworking, xxv, xxxvi
Koestler, A., 227–228
Köhler, C., 118
Kolmogorov, A.N., 198
Kozielecki, Jozef, 5–6, 7, 11–12
Kruger, A.C., xviii
Kuchermann, R., 124
Index

Labor and Monopoly Capital (Braverman), 84
Langley, Pat, 11–12, 27
Language
development and, 126–127
symbols and, 76
as tool, xxxiv
Large-scale cycles, xxii
Lave, J., 80
Leakey, Richard E., 13, 62, 64, 65
Learning actions, 74–75, 98, 149–151
Learning activity
analysis, xxi
collective nature of, 125
Davydov on, 99
examination of model, xxi
implementation of model, xxi
instruments of, 99–100
Learning IIb as, 119
metacognition and, 101–103
models of, xxii, 99–100
motive of, 99, 146
object of (See Object of learning activity)
in ontogenesis, 104–108
overview, 108
play and, 104–108
questioning, xxi
reflection and consolidation, xxi
school-going not leading to, 79, 82–83
sequence of, xxi
in Seven Brothers, 166
structure of, 98–101
subject of (See Subject of learning activity)
triangle of, 122
work activity not leading to, 91–92
zones of proximal development (See Zones of proximal development)
Learning and Memory (Norman), 1
Learning I, 111–112, 118–119, 123
Learning II, 111–114, 115–117, 118–119, 123,
125–126, 127, 148
Learning IIa, 117, 123
Learning IIb, 117, 119, 123, 203
Learning IV, 111
Learning operations, 74, 98
Learning paradox, 25–26
Lefèvre, W., 13, 65, 94–95
Lenin, V.I., 239
Leont’ev, A.A., 56–57
Leont’ev, A.N.
on contradiction, 69, 73
on critiques of activity theory, xxix
cultural-historical methodology and, 251
on development, 129, 135
on division of labor, xiv
expansion and, 253
general models and, 258–259
on generation of new, 132
horizontal aspects of activity theory
and, xxiv
hunting example, 54, 64
influence of on expansive learning theory, xiv
on internalization, 26
on levels of activity, 114
on levels of human functioning, 53–56, 59
Mead compared, 42–44
on meaning of meaning, 36
on motive of learning activity, 146
on object of learning activity, 254
on play, 104–105
selection of data and, 12
on subject of learning activity, 104–105
on tools, 115
triangular models of human activity and, 33
on work activity, 91
Lerner, R.M., 11–12
Leroi-Gourhan, A., 36, 78
Levels of activity, 114–115
Levels of learning, 111–113. See also specific level
Lévi-Strauss, Claude, 238
Levy, R.L., 244
Levin, Roger, 63, 64, 65
Lewontin, R.C., 13, 39–40, 59, 130
Liberated action, 51–52
Lishin, O.V., 132–134, 139
Literature
epic form of, 245–247
individualism in, 245–247
novel form of, 245–247
subject of learning activity in, 223
Logical memory, 29–30
Logic as tertiary instrument, 233
Lomov, B.F., 56
Lopes, L.M., 118
Lukacs, Georg, 17
Luria, A.R., 12, 26, 170–171, 172, 251
Malinowski, B., 13, 36, 93
Manhattan Project, 211–219. See also Nuclear fission
created new aspect and, 218
industrialization of science and, 212
microcosms and, 217, 232
models and, 226–227, 230, 231
object of learning activity and, 217
overview, 14, 223–224
springboards and, 225
Markova, A.K., 105
Marková, Ivana, 186–187
Marshall, James C., 217. See also Manhattan Project
Marx, Karl
on automation, 87–88
concepts and, 191–192, 195
on contradiction, 70
cultural evolution of learning and, 13
dequalification and, 85–86
formative interventions, influence on, xxxii
making categories reach reality and, 21
models and, 231
production, distribution and exchange, 13, 62–64
sociality and, 245
sociological theory of, 17
triangular models of human activity and, 30–32
Marxism, activity theory and, xxiv
Mathematics, concepts in, 196–198
McCarthy, Thomas, 10–11
McNeill, David, 36–37
Mead, G.H., 12, 17, 33, 40–44, 46–47, 49, 58
Meaning of meaning, 36
Mechanical memory, 29–30
Mechanism of transition from learning to expansion, 18
Mechanization, 83
Mediation
Peirce on, 33–35
Vygotsky on, xiv, 47–53, 56, 59
Medin, D.L., 187–188, 190, 193–194
Meitner, Lise, 26–210
See also Nuclear fission
Memory
evolution of, 28–29, 30
historical context and, 30
involuntary memory, 29, 30
logical memory, 29–30
mechanical memory, 29–30
outcome and, 29–30
voluntary memory, 29–30
Mendelev, Dmitri I., 14, 204–210, 212, 215, 226–227, 229–230. See also Periodical law of elements
Mental Models (Gentner and Stevens), 198
Mental Models (Johnson-Laird), 198
Meshcheryakov, A., 26, 37, 56
Metacognition, 101–103
Method of Little Men, 258
Methodologies of learning, 121–122
Microcosms, 232
The Adventures of Huckleberry Finn and, 232
collaboration and, 260
coordination and, 260
examples, 232
in expansive methodology, 260–261
intersubjectivity and, 260–261
Manhattan Project and, 217, 232
overview, 18–19, 248
periodic law of elements and, 232
reflective communication and, 260–261
Seven Brothers and, 232
Militarization, nuclear fission and, 216–218
Miller, Arthur I., 11–12, 177
Mind, Self, and Society (Mead), 44
Mind over Machine (Dreyfus and Dreyfus), 172
Miniature cycles, xxii
Mitroff, Ian, 235–236, 237
Models, 226–231
actual-empirical analysis and, 255
The Adventures of Huckleberry Finn and, 226–237
analogy and, 201
Bateson on, 201
classificatory models, 227–228, 229–230
Davydov and, 231
exemplars, 227
in expansive methodology, 258–260
general models, 226, 258–260
germ cell models, 231, 248
graphic models, use of, 20–21, 24
Hegel and, 231
historical types of, 232
ideality and, 200
Ilyenkov and, 231
individuals and, 199
as instruments, 198–200
of learning activity, xxii, 99–100
Manhattan Project and, 226–227, 230, 231
Marx and, 231
nominalistic models, 227–228
overview, 18–19, 248
Index

Models (cont.)
periodical law of elements and, 226–227, 229–230
procedural models, 228–229
prototypes, 227
qualitative assessment of, 199
in science, 93
Seven Brothers and, 226
structural quality, 227
systemic models, 229–230
in theoretical thinking, 200–203
tools compared, 116
transgressive model of man, 5–6
triangular models of human activity
(See Triangular models of human activity)
type of rationality, 227
Wartofsky on, 199, 200, 201–202
Montessori, Maria, 134
Morris, N.M., 198
Morss, John R., 46–47
Murphy, G.I., 187–188, 190, 193–194
Mycorrhizae, xxxvi
Mynatt, C.R., 182–183
Narrative versus paradigmatic thought,
176–177
Nazis, nuclear fission and, 214–216
Need states
double bind, transformation into, 139
nuclear fission and, 213–214
overview, 132–134
periodic law of elements and, 205
in Seven Brothers, 154–156
"Neighbor activities," 71–72
Nelson, Katherine, 45, 186–187, 188, 194
Neo-Meadians, 46–47, 58
Nernst, Walter, 213–214. See also Nuclear fission
New, generation of, 111, 130–134, 143, 144–145
Newlands, John, 205
Newton, Isaac, 247
Nichols, Kenneth, 217. See also Manhattan Project
Nominalistic models, 227–228
Nonaka, I., xix
Norman, Donald, 1, 2, 11–12, 198
Novel form of literature, 245–247
Nuclear fission, 211–219. See also Manhattan Project
contradiction and, 214–215, 216, 217
double bind and, 214–215, 216–217
militarization and, 216–218
Nazis and, 214–216
need states and, 213–214
object of learning activity and, 216
outcome and, 216
sequential structure, 218
springboards and, 216, 217, 225
subject of learning activity and, 216
Object-activity, 90
Object-historical analysis, 254–255
Object-historical data, 8
Object of learning activity
in activity theory, xiv
in art, 98
culture and, 70–71
Davydov on, 194–198
developmental work research, xvi
development and, 118–119
dialectics and, 192–194, 242
formative interventions and, xxxi
of humanized science, 221
"hyperobjects," xxxvi
in Learning I, 115, 118–119
in Learning II, 118–119, 120
in Learning III, 120
Leont' ev on, 33–36, 254
in Manhattan Project, 217
Mead on, 40–44
nuclear fission and, 216
object/motive construction, 150
overview, 98–99, 107
Peirce on, 33–35
physicians and, 259
P. I. Zinchenko on, 51
in rationalized science, 220
in school-going, 80, 81, 82
in science, 93–95
shared object activity and, 56
springboards and, 256–258
in theoretical thinking, 200–203
Vygotsky on, 252
Wertheimer on, 180–181
Object-typical notational systems, 257
Object-unit, 255–256
Ogden, Charles K., 33, 35–37
Ong, W. J., 13
Ontogenesis, 45, 104–108, 111, 234, 252
Open problem, 148
Oppenheimer, Robert J., 217, 220, 226–227, 230, 231. See also Manhattan Project
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press
Yrjö Engeström
Index
More information
Index

The Origin of Species (Darwin), 31–32
Ottomeyer, Klaus, 56
Outcome
assessing, 262–263
Brehmer on, 174–175
development and, 119
expansive cycles and, xx
expansive methodology and, 255–256, 262–263
formative interventions and, xxxi
of humanized science, 221
in Learning I, 115
in Learning II, 111–113, 119
in Learning III, 112
memory and, 29–30
“neighbor activities” and, 71–72
nuclear fission and, 216
periodical law of elements and, 210
of rationalized science, 220
in science, 220, 221
selection of data and, 9–10
Paradigmatic thought versus narrative, 176–177
Parsons, Talcott, 17
Pauses, 117–118
Peirce, C.S., 12, 33–35, 36, 38, 47
Perceval's Narrative, 16
Periodical law of elements, 204–210
The Adventures of Huckleberry Finn compared, 208
contradiction and, 206–207
created new aspect and, 209–210
double bind and, 207–208
given new aspect and, 210
instruments and, 210
“invisible college” and, 204–205
microcosms and, 232
models and, 226–227, 229–230
need states and, 205
new instruments and, 210
outcome and, 210
overview, 14
sequential structure, 209
Seven Brothers compared, 208
specific to general in, 208–209
springboards and, 208, 225
Perspective, expansion and, 6–7
Phenomenology, 253–254
Phylogenesis, 111, 115, 119
Physicians
contradiction and, 72
object of learning activity and, 259
Piaget, J., xiv, 33, 233
Play
Bateson on, 107
capitalism and, 106–108
Davydov on, 105, 107
learning activity and, 104–108
Leont'ev on, 104–105
object of, 106–107
zones of proximal development and, 137–138
Podgijakov, N., 136
Polanyi, Michael, 210, 211, 225
Polarization, 84–86
Polyphony, 247, 248
Popper, Karl R., 12, 33, 37–40, 47, 189
Prigogine, Ilya, 12, 130, 230–231
Primary artifacts, 49–50, 115
Primitive thought versus advanced thought, 169–172
Printing press, impact on school-going, 78–79
Probabilistic situations, 173–176
The Problem of Involuntary Memory
(Zinchenko), 28
Problem solving, 1–3, 116–117, 119–120
Procedural models, 228–229
Processing categories out of data, 15–21
Production
learning actions and, 74–75
role in human activity, 62–65
skill-based production and, 89–90, 91
tools in, 44, 65
triangular models of human activity, role in, 62–65
unmanned factories, 89–90, 91
Productive Thinking (Wertheimer), 178
Psychoanalysis, expansion and, 4–5
Psychological tools, 48–49, 50
The Psychology of Art (Vygotsky), 253
Puonti, A., xvii
Querol, Marco, xxxv
Quotations, use of, 19–20
Rabin, Hannah, 128, 129
Rabin, Nessa, 128
Radzikhovskii, L.A., 12, 57–59
Raithel, A., 120
Ramus, Peter, 228
Rasmussen, Jens, 88–89
Rationalized science, 211–221
Index

Seven Brothers (Kivi)
cones of proximal development in, 153–166
collision and, 154–161, 165
double bind and, 158, 166, 256
instruments in, 165
learning activity in, 166
microcosms and, 232
models and, 226
need states in, 154–156
overview, 14
periodic law of elements compared, 208
science and, 223
springboards and, 158–159, 225
zones of proximal development in, 153–166, 167
S-Field Analysis, 257
Shared object activity, 56
Sharp, D.W., 80
Shotter, J., 145
Shumilin, E.A., 105
Simon, Herbert A., 11–12, 27, 177
Single-loop learning, 112
Situation, metacognition and, 102
Skill acquisition, 172–173
Skill-based production, 89–90, 91
Skinner, B.F., 181
Snyder, B.R., 103
Social behaviorism, 40–44
Sociality, 183, 243–247
Social movements, expansive learning theory and, xxixii
Social orders, 114–115
Societal character of work, 84, 90
Societalization of development, 124
The Soul of a New Machine (Kidder), 222
Springboards, 225–226
The Adventures of Huckleberry Finn (Twain) and, 225
defined, 225
elements, 225
in expansive methodology, 256–258
Manhattan Project and, 225
nuclear fission and, 216, 217, 225
object/motive construction and, 150
object of learning activity and, 256–258
overview, 18–19, 248
periodic law of elements and, 208, 225
Seven Brothers and, 158–159, 225
Strassmann, Fritz, 215–216. See also Nuclear fission
Structuring, 1–3

Subject of learning activity
in activity theory, xiv
collective nature of, 22–23
dialectics and, 237–238
Dreyfus and Dreyfus on, 173–176
Hegel on, 120
of humanized science, 221
in Learning III, 121–122
Leont’ev on, 104–105
in literature, 223
Luria on, 170–171
metacognition and, 101–103
nuclear fission and, 216
in rationalized science, 221
in theoretical thinking, 200–203
thought and, 37
V.P. Zinchenko on, 51–52
Vygotsky on, xxxii
work activity and, 91
Substance, dialectics of, 238–242
Sumo wrestling, 243–244
Symbolic interactionism, 40–44
Symbol-mediated interaction, 40–44
Symbols
language and, 76
Mead on, 42–44, 46, 49
Ogden and Richards on, 35–37
in school-learning, 76, 77–78
Systemic models, 229–230
Szillard, Leo, 216–217. See also Nuclear fission
Takeuchi, H., xix
Taylorization, 83
Technology, learning and, 2
Tertiary artifacts, 121
Tertiary instruments, 232–235
dialectics as, 235–238, 248
formal operations as, 233
general thinking skills and, 234–235
logic as, 233
overview, 248
post-formal approach, 234
Theoretical knowledge, elements of, 195–196
Theoretical research
Bateson and, 9
chain of categories, 17
dialectical derivation, 23–24
as empirical research, 8–9
graphic models, use of, 20–21, 24
Habermas and, 9
Theoretical research (cont.)	Tran Duc Thao, 36, 42–44, 49
making categories reach reality, 21–23	Transformative agency, xxiii
(See also Categories)	Transgressive model of man, 5–6
processing categories out of data, 15–21	Transitions between levels of learning, 129
(See also Categories)	Trevarton, Colwyn, 44–46, 49, 58
quotations, use of, 19–20	Triangular models of human activity
selection of data, 9–15 (See also Selection of data)	animal activity compared, 59–62
Theoretical substantiations, 121	contextual or ecological analysis, 32, 66
Theoretical thinking, models in, 200–203	critiques of, xxvii
Theories	culturally mediated analysis, 33, 66
concepts and, 187–189	determination, 34
models compared, 201–202	distribution, role of, 62–65
Theory-historical analysis, 255	dynamic analysis, 32, 65–66
Theory-historical data, 8	exchange, role of, 62–65
The Theory of Communicative Action (Habermas), 9	Habermas and, 33
Hegel and, 30–32	instrumental acts, 50, 56
Theory-response, 116–117	learning activity, 122
Theses on Feuerbach (Marx), 31–32	Leon'tev on, 53–56
Thinking (Bartlett), 182	levels of human functioning, 53–56
Thinking and Speech (Vygotsky), 50, 189	liberated action, 51–52
Thought	Marx and, 30–32
dialectics and, 238–240, 242, 243	Mead and, 40–44
Hegel on, 238–240, 242, 243	meaning of meaning, 36
narrative versus paradigmatic thought, 176–177	mediation (Peirce), 33–35
primitive thought versus advanced thought, 169–172	mediation (Vygotsky), 47–53
subject of learning activity and, 37	Ogden and Richards and, 35–37
Three Mile Island, 15, 86–88	overview, 30–33
Toikka, K., 259–260	Peirce and, 32–35
Tolman, Charles, 237	production, role of, 62–65
Tomasello, M., xviii	psychological tools, 48–49, 50
Tool-mediated action, 50–51	representation, 34
Tools	secondary artifacts, 49–50
in activity theory, xv	secondary intersubjectivity, 44–46, 49
animal activity, role in, 60–62	shared object activity, 56
apes and, 60	simplest unit, 32, 65
language as, xxxiv	social behaviorism, 40–44
in Learning I, 115	symbolic interactionism, 40–44
Leon'tev on, 115	symbol-mediated interaction, 40–44
models compared, 116	tool-mediated action, 50–51
in production, 44, 65	Trevarton and, 44–46
psychological tools, 48–49, 50	triplicity, 37–40
in science, 182–183	V.P. Zinchenko on, 50–53
shared object activity and, 56	Vygotsky and, 33, 47–53
Vygotsky on, xxxiv, 116–137	Triplicity, 37–40
Wartofsky on, 116	Twain, Mark, 14, 139, 146. See also The Adventures of Huckleberry Finn (Twain)
Toward a Theory of Schizophrenia (Bateson et al.), 9	Tweney, R.D., 182–183
Traditional interventions formative interventions versus, xxxi	Union Carbide, 88–89
Universalism, expansive learning theory moving beyond, xviii	
Index

Unmanned factories, 89–90, 91
Use value
 overview, 70, 72
 school-going and, 81, 82–83
Ushakova, T.N., 126–127
Vertical aspects of activity theory, xxiv
Vicious cycles, xxii
Virtuous cycles, xxii
Vogel, Peter, 189
Voluntary memory, 29–30
Vygotsky, L.S.
 on art, 97
 on concepts, 189–190, 192
 cultural-historical methodology and, 249–251
 on development, 123
 history and, xxiv
 horizontal aspects of activity theory and, xxiv
 individual versus collective activity, xv
 influence of on expansive learning theory, xiv
 on internalization, 26
 interventionism and, xxx
 on learning, 148
 on levels of learning, 123
 on mediation, xiv, 47–53, 56, 59
 on object of learning activity, 252
 selection of data and, 12, 13
 on subject of learning activity, xxxii
 on tools, xxxiv, 136–137
 triangular models of human activity and, 33, 47–53
Vygotsky’s Uses of History (Scribner), 249–251
Wartofsky, Max
 on art, 96–97, 98
 on development, 115
 on instruments, 49–50
 on models, 199, 200, 201–202
 on science, 93
 selection of data and, 12, 13
 on tools, 116
Weakland, John, 9
Weber, Max, 17
von Weizsäcker, Carl Friedrich, 223
Wertheimer, Max, 12, 18–19, 178–182
Wertsch, James, xxiv, 50, 123, 135, 136
Whole task, 147–148
Wigger-Kösters, A., 124
Wigner, Eugene, 216–217. See also Nuclear fission
Wilde, L., xxix
“Wildfire activities,” xxxvi
Work activity, cultural evolution of learning
 in, 83–92
 alienation and, 84–86
 contradiction in, 87–90
 dequalification and, 84–86
 division of labor and, 90
 “grey zones,” 90
 Ilyenkov on, 91
 industrialization and, 83
 learning activity, not leading to, 91–92
 Leont’ev on, 91
 mastery over whole work activity, 91
 mechanization and, 83
 object-activity and, 90
 overview, 75
 polarization and, 84–86
 skill-based production and, 89–90, 91
 societal character of work and, 84, 90
 subject of learning activity and, 91
 Taylorization and, 83
 unmanned factories and, 89–90, 91
 “Worldmaking,” 172
World outlooks of learning, 121–122
Wundt, Wilhelm, 177
Zero learning, 111
Zilsel, E., 13
Zinchenko, P.I., 28–30, 51, 75
Zinchenko, V.P., 12, 50–53, 130–131, 133, 145
Zones of proximal development, 134–139
 in The Adventures of Huckleberry Finn, 139–146, 152
 contradiction and, 148, 151–152
 cycles of activity generation as, 149, 152
 defined, 134, 138, 147
 instruction and, 134–135
 overview, 18, 167–168
 play and, 137–138
 “scaffolding” and, 135–136
 in Seven Brothers, 153–166, 167