Experimental Design for Laboratory Biologists

Maximising Information and Improving Reproducibility

Specifically intended for lab-based biomedical researchers, this practical guide shows how to design experiments that are reproducible, with low bias, high precision, and results that are widely applicable. With specific examples from research, using both cell cultures and model organisms, it explores key ideas in experimental design, assesses common designs, and shows how to plan a successful experiment. It demonstrates how to control biological and technical factors that can introduce bias or add noise, and covers rarely discussed topics such as graphical data exploration, choosing outcome variables, data quality control checks, and data preprocessing. It also shows how to use R for analysis, and is designed for those with no prior experience. An accompanying website (https://stanlazic.github.io/ EDLB.html) includes all R code, data sets, and the labstats R package.

This is an ideal guide for anyone conducting lab-based biological research, from students to principal investigators working either in academia or industry.

Stanley E. Lazic holds a PhD in neuroscience and a Masters in computational biology from the University of Cambridge and has conducted research at Oxford, Cambridge, and Harvard. He has written several papers on reproducible research and on the design and analysis of biological experiments and has published in *Science* and *Nature*. He is currently a Team Leader in Quantitative Biology (Statistics) at AstraZeneca.

Experimental Design for Laboratory Biologists

Maximising Information and Improving Reproducibility

STANLEY E. LAZIC

Cambridge University Press 978-1-107-07429-3 — Experimental Design for Laboratory Biologists Stanley E. Lazic Frontmatter More Information

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107074293

© Stanley E. Lazic 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United Kingdom by TJ International Ltd., Padstow, Cornwall

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-07429-3 Hardback ISBN 978-1-107-42488-3 Paperback

Additional resources for this publication at https://stanlazic.github.io/EDLB.html

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my teachers and mentors

Contents

Preface	<i>page</i> xi			
Abbreviations	xiv			
1 Introduction	1			
1.1 What is reproducibility?	1			
1.2 The psychology of scientific discovery	3			
1.2.1 Seeing patterns in randomness	4			
1.2.2 Not wanting to miss anything	5			
1.2.3 Psychological cliff at $p = 0.05$	6			
1.2.4 Neglect of sampling variability	8			
1.2.5 Independence bias	12			
1.2.6 Confirmation bias	15			
1.2.7 Expectancy effects	17			
1.2.8 Hindsight bias	17			
1.2.9 Herding effect	18			
1.2.10 How the biases combine	19			
1.3 Are most published results wrong?	21			
1.3.1 What statisticians say	22			
1.3.2 What scientists say	24			
1.3.3 Empirical evidence I: questionable research practices	25			
1.3.4 Empirical evidence II: quality of studies	26			
1.3.5 Empirical evidence III: reproducibility of studies	28			
1.3.6 Empirical evidence IV: publication bias	29			
1.3.7 Scientific culture not conducive to 'truth-finding'	30			
1.3.8 Low prior probability of true effects	32			
1.3.9 Main statistical sources of bias in experimental biology	34			
1.4 Frequentist statistical inference	37			
1.5 Which statistics software to use?	44			
Further reading	46			
2 Key Ideas in Experimental Design	48			
2.1 Learning versus confirming experiments	49			
2.2 The fundamental experimental design equation	52			
2.3 Randomisation				
2.4 Blocking	60 62			
2.5 Blinding				

vii

viii	Contents					
	2.6	Effect	type: fixed versus random		65	
	2.7		arrangement: crossed versus nested		66	
	2.8		ctions between variables		68	
	2.9	Sampl	-		72	
			f controls		74	
			aligned versus end-aligned designs		76 78	
	2.12		ogeneity and confounding Batches		78 82	
			Plates, arrays, chips, and gels		82 84	
			Cages, pens, and tanks		84	
			Subject/sample characteristics		85	
			Litters		85	
		2.12.6	Experimenter characteristics		86	
		2.12.7	Time effects		86	
		2.12.8	Spatial effects		89	
			Useful confounding		91	
	Furt	her read	ling		93	
:			what is ' N '?)		94	
	3.1	-	gical units		95	
	3.2	-	imental units		96	
	3.3		vational units		99	
	3.4		onship between units Randomisation at the top of the hierarchy		00	
			Randomisation at the bottom of the hierarchy		.05	
			Randomisation at multiple levels		18	
	3.5		s the experimental unit defined in other disciplines		21	
	4 Anal	ysis of Co	ommon Designs	1	23	
	4.1	-	inary concepts	1	24	
		4.1.1	Partitioning the sum of squares	1	24	
		4.1.2	Counting degrees of freedom	1	32	
		4.1.3	Multiple comparisons		35	
	4.2	-	round to the designs		44	
	4.3	-	letely randomised designs		44	
		4.3.1	One factor, two groups		44	
		4.3.2 4.3.3	One factor, multiple groups Two factors, crossed		45	
		4.3.3 4.3.4	One factor with subsamples (pseudoreplication)		49 57	
		4.3.4	One factor with a covariate		66	
	4.4				70	
		4.4.1	6		71	
		4.4.2	With genuine replication		73	
		4.4.3	With pseudoreplication	1	75	
	4.4	4.4.1 4.4.2		1 1	71 73	

ix	Contents				
	4.5	Split-unit designs	175		
	4.6		181 191		
	Further reading				
	5 Plan	nning for Success	192		
	5.1	Choosing a good outcome variable	192		
		5.1.1 Qualitative criteria	193		
		5.1.2 Statistical criteria	194		
	5.2	r i i ji i i i i i i i i i i i i i i i i	206		
		5.2.1 Calculating the sample size	207		
		5.2.2 Calculating power	210		
		5.2.3 Calculating the minimum detectable effect	210		
		5.2.4 Power curves	211		
		5.2.5 Simulation-based power analysis	212		
	5.3		220		
		5.3.1 Use equal n with two groups	223		
		5.3.2 Use more controls when comparing multiple groups to the control	225		
		5.3.3 Use fewer factor levels	227		
		5.3.4 Increase the variance of predictor variables	229		
		5.3.5 Ensure predictor variables are uncorrelated	235		
		5.3.6 Space observations out temporally and spatially	238		
		5.3.7 Sample more intensively where change is faster	240		
		5.3.8 Make use of blocking and covariates5.3.9 Crossed factors are better than nested	245 251		
			251		
		5.3.10 Add more samples instead of subsamples	252 253		
	5.4	5.3.11 Have 10 to 20 samples to estimate the error variance When to stop collecting data?	255 256		
	5.4		250 259		
	5.6		266		
	5.7	The statistical analysis plan	267		
	5.7	5.7.1 Why bother?	267		
		5.7.2 What to include in the SAP	269		
	Furt	ther reading	20)		
	-	loratory Data Analysis	272		
	6.1		273		
		6.1.1 Data layout	274		
		6.1.2 Possible and plausible values	276		
		6.1.3 Uniqueness	281		
		6.1.4 Missing values	289		
		6.1.5 Factor arrangement	294		
	6.2	1 6	296		
		6.2.1 Aggregating and summarising	296		
		6.2.2 Normalising and standardising	297		

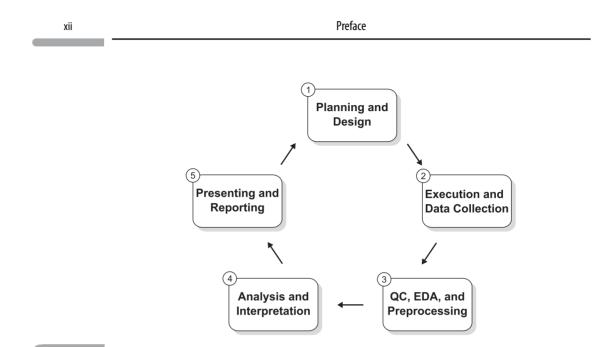
x	Contents				
	6	5.2.3	Correcting and adjusting	297	
	6	5.2.4	Transforming	297	
	6	5.2.5	Filtering	298	
	6	5.2.6	Combining	300	
	6	5.2.7	Pitfalls of preprocessing	300	
	6.3 U	Jnder	standing the structure of the data	307	
	6	5.3.1	Shapes of distributions	307	
	6	5.3.2	Effects of interest	313	
	6	5.3.3	Spatial artefacts	326	
	6	5.3.4	Individual profiles	335	
	Further	r read	ling	340	
	Appendix	A Intr	roduction to R	341	
	A.1 II	nstall	ing R	341	
	A.2 V	Vritin	g and editing code	342	
	A.3 E	Basic	commands	343	
	A.4 C	Obtain	ing help	346	
	A.5 S	Setting	g options	347	
	A.6 L	Loadir	ng and saving data	347	
	A.7 C	Object	s, classes, and special values	349	
	A.8 C	Condit	tional evaluation	353	
	A.9 C	Creatin	ng functions	355	
	A.10 S	357			
	A.11 L	361			
	A.12 C	364			
	A.13 E	371			
	A.14 F	Fitting	models	375	
	Appendix	B Glo	ssary	381	
	Reference	es		390	
	Index			411	

Preface

Everything of importance has been said before by somebody who did not discover it. Alfred North Whitehead

Everything that needs to be said has already been said. But since no one was listening, everything must be said again.

André Gide


True to the above quotes, most of this book's contents have appeared in print before, but often where biologists are unlikely to look – statistics journals and books, and methods papers in other fields. My task is to translate ideas known to statisticians into the language of experimental biology.¹ With a background in both biology (BSc, PhD, postdoc) and data analysis (MPhil in Computational Biology and over seven years working as a preclinical statistician in the pharmaceutical industry), hopefully I am fluent enough in both languages to perform a successful translation.²

The contents of this book have little overlap with other statistics-for-biologists books because they mostly focus on statistical analysis. Analysis is but one step of the scientific workflow (Figure 0.1), and before you can analyse data you need to do an experiment. This requires planning, good execution, and quality control checks. These critical topics are rarely taught to biologists, who are expected to learn them on their own. The consequence of this approach is predictable; some biologists obtain the necessary skills, but many do not. This book focuses on the first three steps of the scientific workflow, and data analysis is briefly discussed in Chapter 4.

This book was written to improve the quality of research conducted in academic, government, and industrial labs and institutions. Scientists and funders now recognise that bias and irreproducibility are undermining preclinical biomedical research [2, 5, 28, 30, 42, 80, 83, 84, 123, 172, 240, 251, 305, 316, 342]. There are many reasons why experiments cannot be reproduced (discussed in Chapter 1) and this book focuses on the role that experimental design and data analysis have on making results reproducible.

¹ The term *biology* refers to laboratory-based experimental biology throughout. 'Field biologists' also conduct experiments, and most statistics-for-biologists books target this audience.

² There are some novel ideas here, such as the distinction between front-aligned and end-aligned designs (Section 2.11) and the distinction between biological, experimental, and observational units, to replace the biological versus technical replicate distinction (all of Chapter 3).

The scientific workflow. This book focuses on steps 1–3. QC = quality control; EDA = exploratory data analysis.

Prerequisites

This book is for experimental biologists, at any level, conducting basic research or with an applied, clinical, or translational focus. Knowledge covered in an introductory statistics-for-biologists course is assumed, and concepts like the standard deviation and common statistical tests such as the *t*-test, analysis of variance (ANOVA), regression, and correlation should be familiar. It is fine if some time has passed since you formally covered these topics. Mathematical proofs are not included and equations are kept to a minimum, but given the subject, are unavoidable. The emphasis is on the ideas, concepts, and principles, and how to implement them. Hand calculations are unnecessary because statistical software is available.

Quantitative researchers who analyse biological data such as statisticians, bioinformaticians, and computational biologists might also find this book useful. Topics of interest include sources of heterogeneity and confounding in biological experiments (Section 2.12), quality control checks for biological data (Section 6.1), and understanding which types of replication address biologically interesting questions (Chapter 3).

The freely available R statistics language is used for data analysis and graphs.³ Prior knowledge is useful, but not required. The Appendix gives a brief introduction to R and the examples in the main text assume familiarity with this material. The topics however can be followed without learning or using R. The data sets can be found in the labstats package on CRAN⁴ and R code can be downloaded from GitHub.⁵

³ Available at www.r-project.com

⁴ https://cran.r-project.org/web/packages/labstats/

⁵ https://stanlazic.github.io/EDLB.html

Cambridge University Press 978-1-107-07429-3 — Experimental Design for Laboratory Biologists Stanley E. Lazic Frontmatter <u>More Information</u>

xiii

A

Preface

The key prerequisite to derive maximum value from this book is experience conducting biological experiments and analysing the subsequent data – and the more experience the better!

How to read this book

Chapters 1–5 should be read in order as later material depends on earlier ideas, but Chapter 6 on Exploratory Data Analysis can be read at any time. Chapters 1–3 contain no R code, but for Chapters 4–6 sitting in front of a computer and running the code will reinforce the ideas.

Ideas or concepts discussed in detail later in the book will inevitably have to be mentioned earlier. To avoid excessive cross-referencing, the glossary lists the page where the main discussion of the entry is located (if there is one). For example, the term *experimental unit* is mentioned for the first time in this preface, but is discussed extensively in Section 3.2. The glossary entry for this term provides a short definition and indicates that further information can be found on page 96.

Typographical conventions

Constant width font is used for R code, R output, and when referring to R functions or objects. Lines of code entered by the user start with '>' or '+'. These symbols do not need to be entered, only the code that follows them. A sign like the one in the margin draws attention to a warning, a key point, a subtlety with R, or a concept that is often misunderstood.

Acknowledgements

This book has benefited greatly from comments by Maarten van Dijk, Irmgard Amrein, and especially Lutz Slomianka. Pierre Farmer and Miguel Camargo also provided constructive feedback on earlier drafts. My wife, Brynn, has read every word in this book, which is beyond the call of duty, and her comments have improved it immensely. I also thank her for her support, well, at least until page 305, at which point she declared, 'You should stop now; no one wants to read that much about statistics.' I didn't always follow everyone's good advice, but I am grateful for their input.

Katrina Halliday and Jade Scard at Cambridge University Press were a pleasure to work with and made the whole process easy and enjoyable. I also thank Judith Shaw for her expert copy-editing. Finally, I would like to thank the developers and contributors of the free software R, Emacs, LaTeX, JabRef, knitr, and Inkscape, which I used to write this book.

> S.E. Lazic Cambridge, 2016

Abbreviations

AIPE	Accuracy in parameter estimation
ALS	Amyotrophic lateral scterosis
ANCOVA	Analysis of covariance
ANOVA	Analysis of variance
AUC	Area under the curve
BMI	Body mass index
BU	Biological unit
CCC	Concordance correlation coefficient
CCLE	Cancer Cell Line Encyclopedia
CI	Confidence (frequentist) or Credible (Bayesian) interval
CRAN	Comprehensive R archive network
CRD	Completely randomised design
CSF	Cerebrospinal fluid
CSR	Complete spatial randomness
CV	Coefficient of variation
DAMP	Damage-associated molecular pattern
df	Degrees of freedom
DoE	Design of experiments
DS	Diallyl sulfide
ED50	Median (half) effective dose
EDA	Exploratory data analysis
ES	Effect size
ESS	Emacs Speaks Statistics
EU	Experimental unit
FORE-SCI	Facilities of Research Excellence – Spinal Cord Injury
FOV	Field of view
GI	Gastrointestinal
GLM	Generalised linear model
GUI	Graphical user interface
Gst	Glutathione-S-transferase
HARKing	Hypothesising after the results are known
HSD	Honestly significant difference
ICC	Intraclass correlation coefficient
i.p.	Intraperitoneally
IQR	Interquartile range

xiv

xv	List of abbreviations		
	KO	Knock out	
	LME	Linear mixed-effects model	
	LOD	Limit of detection	
	LSD	Least significant difference	
	MAD	Median absolute deviation	
	MAR	Missing at random	
	MCAR	Missing completely at random	
	MED	Minimum effective dose	
	MNAR	Missing not a random	
	NGS	Next generation sequencing	
	NHST	Null hypothesis significance testing	
	NIH	National Institutes of Health (USA)	
	NINDS	American National Institute of Neurological Disorders and Stroke	
	OU	Observational unit	
	PCA	Principal components analysis	
	PI	Principal investigator	
	PK	Pharmokinetic	
	QC	Quality control	
	QRP	Questionable research practice	
	qPCR	Quantitative polymerase chain reaction	
	RE	Relative efficiency	
	RIN	RNA integrity number	
	RM-ANOVA	Repeated measures analysis of variance	
	SAP	Statistical analysis plan	
	SD	Standard deviation	
	SEM	Standard error of the mean	
	siRNA	small interfering RNA	
	SNP	Single nucleotide polymorphism	
	SOD1	Superoxide dismutase 1 (gene)	
	SS	Sum of squares	
	RSS	Residual sum of squares	
	SUTVA	Stable unit-treatment value assumption	
	TSS	Total sum of squares	
	VPA	Valproic acid	
	WT	Wild type	