QUANTUM FIELD THEORY APPROACH TO
CONDENSED MATTER PHYSICS

A balanced combination of introductory and advanced topics provides a new and unique perspective on the quantum field theory (QFT) approach to condensed matter physics (CMP). Beginning with the basics of these subjects, such as static and vibrating lattices, independent and interacting electrons, the functional formulation for fields, different generating functionals and their roles, this book presents a unified viewpoint illustrating the connections and relationships among various physical concepts and mechanisms. Advanced and newer topics bring the book up-to-date with current developments and include sections on cuprate and pnictide superconductors, graphene, Weyl semimetals, transition metal dichalcogenides, topological insulators and quantum computation. Finally, well-known subjects such as the quantum Hall effect, superconductivity, Mott and Anderson insulators, spin-glasses, and the Anderson-Higgs mechanism are examined within a unifying QFT-CMP approach. Presenting new insights on traditional topics, this text allows graduate students and researchers to master the proper theoretical tools required in a variety of condensed matter physics systems.

EDUARDO C. MARINO is Professor of Physics at the Federal University of Rio de Janeiro. He was Postdoctoral Fellow at Harvard University and a Visiting Professor at Princeton University. He is an elected member of the Brazilian National Academy of Sciences and in 2005 was awarded the National Order of Scientific Merit by the president of Brazil.
QUANTUM FIELD THEORY APPROACH TO CONDENSED MATTER PHYSICS

EDUARDO C. MARINO

Institute of Physics
Federal University of Rio de Janeiro
Concerning matter, we have been all wrong. What we have been calling matter is actually energy, the vibration of which has been lowered so much as to be perceptible to the senses. There is no matter.

A. Einstein
Contents

Preface

Part I Condensed Matter Physics

1 Independent Electrons and Static Crystals 3
 1.1 Crystal Lattices 3
 1.2 The Reciprocal Lattice 7
 1.3 Independent Electrons in a Periodic Potential 12
 1.4 Bloch’s Theorem 13

2 Vibrating Crystals 25
 2.1 The Harmonic Approximation 25
 2.2 Classical Description of Crystal Oscillations 27
 2.3 Quantum Description of Crystal Oscillations 28
 2.4 Thermodynamics of Phonons 32

3 Interacting Electrons 35
 3.1 Quantum Theory of Many-Electron Systems 35
 3.2 Non-Interacting Electrons 38
 3.3 Electron-Electron Interactions: the Coulomb Interaction 39
 3.4 The Hubbard Model 40
 3.5 Exchange Interactions and Magnetism 41
 3.6 The Heisenberg Model 43
 3.7 Electron-Phonon Interactions 44

4 Interactions in Action 48
 4.1 Magnetic Order 48
 4.2 Strongly Correlated Systems 56
 4.3 Conductivity 60
 4.4 Superconductivity 65
Contents

Part II Quantum Field Theory

5 *Functional Formulation of Quantum Field Theory* 75

5.1 Functional Integration and Differentiation 75
5.2 Gaussian Functional Integrals 80
5.3 Fermion Fields 81
5.4 Table of Functional Derivatives and Integrals 83
5.5 Classical Fields 84
5.6 Quantum Fields 84
5.7 The Whole Physics in Three Formulas 87
5.8 Finite Temperature 88
5.9 Prescriptions: Meanings and Purposes 90

6 *Quantum Fields in Action* 94

6.1 Green Functions and Their Generating Functionals 94
6.2 Proper Vertices and Their Generating Functional 95
6.3 Free Fields 97
6.4 Interacting Fields 99
6.5 Feynman Graphs 100
6.6 The Effective Action and the Effective Potential 102
6.7 Renormalization 106
6.8 Renormalization Group 109

7 *Symmetries: Explicit or Secret* 112

7.1 Symmetry Principles 112
7.2 Symmetries: Exposed or Hidden 115
7.3 Spontaneous Symmetry Breaking 116
7.4 Static \times Dynamical Spontaneous Symmetry Breaking 119

8 *Classical Topological Excitations* 122

8.1 Inequivalent Topological Classes 122
8.2 Topological Invariants: Identically Conserved Currents 126
8.3 Classical Solitons 131
8.4 Classical Vortices 134
8.5 Classical Skyrmions 135
8.6 Classical Magnetic Monopoles 136

9 *Quantum Topological Excitations* 139

9.1 Order-Disorder Duality and Quantum Topological Excitations 139
9.2 Duality in Statistical Mechanics 142
9.3 Quantum Field Theory of $Z(N)$ Solitons 145
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Quantum Field Theory of Vortices</td>
<td>154</td>
</tr>
<tr>
<td>9.5</td>
<td>Quantum Field Theory of Magnetic Monopoles</td>
<td>162</td>
</tr>
<tr>
<td>10</td>
<td>Duality, Bosonization and Generalized Statistics</td>
<td>168</td>
</tr>
<tr>
<td>10.1</td>
<td>The Symmetrization Postulate and Its Violation: Bosons, Fermions and Anyons</td>
<td>168</td>
</tr>
<tr>
<td>10.2</td>
<td>Order \times Disorder Fields</td>
<td>172</td>
</tr>
<tr>
<td>10.3</td>
<td>Arbitrary Statistics Out of Bosons in $D = 2, 3, 4$</td>
<td>175</td>
</tr>
<tr>
<td>10.4</td>
<td>The Bosonic Fields Associated to a Dirac Field in D-Spacetime Dimensions</td>
<td>179</td>
</tr>
<tr>
<td>10.5</td>
<td>Bosonization in One Spatial Dimension</td>
<td>182</td>
</tr>
<tr>
<td>10.6</td>
<td>Quantum Sine–Gordon Solitons</td>
<td>189</td>
</tr>
<tr>
<td>10.7</td>
<td>Bosonization in Two Spatial Dimensions</td>
<td>194</td>
</tr>
<tr>
<td>10.8</td>
<td>Bosonization in Three Spatial Dimensions</td>
<td>197</td>
</tr>
<tr>
<td>11</td>
<td>Statistical Transmutation</td>
<td>205</td>
</tr>
<tr>
<td>11.1</td>
<td>Generalized BF Theories</td>
<td>205</td>
</tr>
<tr>
<td>11.2</td>
<td>The Chern–Simons Theory</td>
<td>206</td>
</tr>
<tr>
<td>11.3</td>
<td>Statistical Transmutation in $D = 3$</td>
<td>208</td>
</tr>
<tr>
<td>11.4</td>
<td>Topological Aspects of the Chern–Simons Theory in $D = 3$</td>
<td>210</td>
</tr>
<tr>
<td>12</td>
<td>Pseudo Quantum Electrodynamics</td>
<td>212</td>
</tr>
<tr>
<td>12.1</td>
<td>Electrodynamics of Particles Confined to a Plane</td>
<td>212</td>
</tr>
<tr>
<td>12.2</td>
<td>Coulomb Potential</td>
<td>214</td>
</tr>
<tr>
<td>12.3</td>
<td>Green Functions</td>
<td>215</td>
</tr>
<tr>
<td>12.4</td>
<td>Scale Invariance</td>
<td>216</td>
</tr>
<tr>
<td>12.5</td>
<td>Causality: Huygens Principle</td>
<td>216</td>
</tr>
<tr>
<td>12.6</td>
<td>Unitarity</td>
<td>217</td>
</tr>
<tr>
<td>12.7</td>
<td>Screening</td>
<td>219</td>
</tr>
<tr>
<td>Part III</td>
<td>Quantum Field Theory Approach to Condensed Matter Systems</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Quantum Field Theory Methods in Condensed Matter</td>
<td>225</td>
</tr>
<tr>
<td>13.1</td>
<td>Quantum Fields and Many-Particles</td>
<td>225</td>
</tr>
<tr>
<td>13.2</td>
<td>The Time-Evolution Operator and the Green Operator</td>
<td>228</td>
</tr>
<tr>
<td>13.3</td>
<td>The Spectral Operator and the Spectral Weight</td>
<td>228</td>
</tr>
<tr>
<td>13.4</td>
<td>The Green Function</td>
<td>229</td>
</tr>
<tr>
<td>13.5</td>
<td>The Spectral Function</td>
<td>230</td>
</tr>
</tbody>
</table>
Contents

14 Metals, Fermi Liquids, Mott and Anderson Insulators

14.1 Metals 233
14.2 The Fermi Liquid: a Quantum Field Theory Approach 236
14.3 Quasi-Particles and Their Lifetime 239
14.4 Quantum Field Theory Model for Conductivity 241
14.5 The Mott Insulator: Interaction-Induced Gap 244
14.6 Anderson Localization: Disorder-Induced Insulators 247

15 The Dynamics of Polarons

15.1 The Polaron Hamiltonian 252
15.2 Field Theory Description 253
15.3 Exact Solution 256
15.4 Optical Conductivity 257
15.5 Bipolarons 257
15.6 Polaronic Excitons 258
15.7 Polaronic Plasmons 259

16 Polyacetylene

16.1 The Su–Schrieffer–Heeger Model 262
16.2 The Takayama–Lin-Liu–Maki Model 264
16.3 The Gross–Neveu Model 266
16.4 The Peierls–Yukawa Mechanism 269
16.5 Solitons in Polyacetylene 271
16.6 Polarons in Polyacetylene 274
16.7 The Charge and Spin of Solitons 276
16.8 Conductivity in Polyacetylene 277
16.9 Index Theorem and Fermion Fractionalization 278

17 The Kondo Effect

17.1 The Kondo Model 281
17.2 The Chiral Gross–Neveu Model 282
17.3 Exact Solution and Phenomenology 285

18 Quantum Magnets in 1D: Fermionization, Bosonization, Coulomb Gases and “All That”

18.1 From Spins to Fermions 287
18.2 From Fermions to Bosons 292
18.3 From Bosons to Gases 299
18.4 Applications: Magnetic Systems 306
18.5 Applications: Strongly Correlated Systems 317
Contents

19 **Quantum Magnets in 2D: Nonlinear Sigma Model, \(CP^1 \) and “All That”**

19.1 From Heisenberg Model to Nonlinear Sigma Model 321
19.2 From the NL\(\sigma \) Model to the \(CP^1 \) Formulation 328
19.3 Quantum and Thermal Fluctuations: the Antiferromagnetic Case 330
19.4 Quantum and Thermal Fluctuations: the Ferromagnetic Case 333
19.5 The Topological Charge and the Hopf Term 335
19.6 Classic and Quantum Skyrmions 336

20 **The Spin-Fermion System: a Quantum Field Theory Approach**

20.1 Itinerant Electrons and Ordered Localized Spins 338
20.2 The Gauge Coupling Replaces Magnetic Coupling 341
20.3 Competing Electronic Interactions 342
20.4 Phases 343

21 **The Spin Glass**

21.1 The Quantum SO(3) Spin Glass 345
21.2 Quantum Field Theory Approach to the SO(3) Spin Glass 347
21.3 The Quenched Free Energy 349
21.4 The Phase Diagram 351
21.5 Thermodynamic Stability 357
21.6 Duality and the Nature of the Spin-Glass Phase 360

22 **Quantum Field Theory Approach to Superfluidity**

22.1 Basic Features of Superfluidity 362
22.2 Classical Vortices 363
22.3 The Goldstone Mode 365
22.4 The Kalb–Ramond Field 366
22.5 Quantum Vortices 367

23 **Quantum Field Theory Approach to Superconductivity**

23.1 Superconductivity of Regular Electrons 369
23.2 A Dynamically Generated Effective Potential 372
23.3 Superconductivity of Dirac Electrons 374
23.4 The Effective Potential at \(T \neq 0 \): the Phase Diagram 376
23.5 The Onset of Superconductivity at \(T = 0 \): A Quantum Phase Transition 377
23.6 The Effect of an External Magnetic Field 380
Contents

23.7 Overview 383
23.8 The Anderson–Higgs–Meissner Mechanism 384

24 The Cuprate High-Temperature Superconductors 387
24.1 Crystal Structure, \(CuO_2 \) Planes and Phase Diagram 387
24.2 Phenomenology 390
24.3 The Undoped System 392
24.4 A Mechanism of Doping: Skyrmions 393
24.5 Overview 401

25 The Pnictides: Iron-Based Superconductors 402
25.1 Crystal Structure, \(FeAs \) Planes and Phase Diagram 402
25.2 The \(J_1 - J_2 \) Localized-Itinerant Model 404
25.3 The Magnetic Spectrum 405
25.4 The Electronic Spectrum 407
25.5 Thermodynamic Properties 409
25.6 Basic Questions 411

26 The Quantum Hall Effect 412
26.1 The Classical Hall Effect 413
26.2 The Integer Quantum Hall Effect 414
26.3 The Fractional Quantum Hall Effect 425
26.4 The Zhang–Hansson–Kivelson Theory 430
26.5 The Edges 434
26.6 Even Denominators 435

27 Graphene 437
27.1 Crystal Structure and Tight-Binding Approach 437
27.2 A Concrete Realization of the Dirac Sea 440
27.3 Pseudo-Chirality, Klein Phenomena and Zitterbewegung 443
27.4 Quantum Hall Effect in Graphene 445
27.5 Electronic Interactions in Graphene 446
27.6 Velocity Renormalization 448
27.7 DC-Conductivity 450
27.8 The Quantum Valley Hall Effect 452
27.9 The Electronic Spectrum of Graphene 453

28 Silicene and Transition Metal Dichalcogenides 458
28.1 The Gapped Dirac Hamiltonian 459
28.2 Time Reversal Symmetry 461
28.3 Parity Anomaly: Total and Valley Conductivities 461
28.4 Overview 462
Contents

29 Topological Insulators
- 29.1 Chern Topological Insulators
- 29.2 The Haldane Topological Insulator
- 29.3 Chiral Edge States in the Haldane Model
- 29.4 \mathbb{Z}_2 Topological Insulators
- 29.5 The \mathbb{Z}_2 Topological Invariant
- 29.6 The Kane–Mele Topological Insulator
- 29.7 Edge States and the Quantum Spin Hall Effect

30 Non-Abelian Statistics and Quantum Computation
- 30.1 Bits, Qubits and Logic Gates
- 30.2 Non-Abelian Statistics
- 30.3 The Non-Abelian Chern–Simons Theory
- 30.4 Quantum Correlation Functions of Charged Vortices
- 30.5 Majorana Vortices with Non-Abelian Statistics
- 30.6 Non-Abelian Statistics in Dirac Systems in 1+1D
- 30.7 Majorana Spinors with Non-Abelian Statistics
- 30.8 Majorana Qubits and Coherence Protection
- 30.9 Superselecting Sectors and Coherence Robustness
- 30.10 Overview
- 30.11 Appendix: Commutators

Further Reading: 501
References: 502
Index: 512
The inception of quantum field theory (QFT) occurred in 1905, when Einstein, inspired by the work of Planck, postulated the quantization of the electromagnetic radiation field in terms of photons in order to explain the photoelectric effect. Two years later, Einstein himself made the first application of this incipient QFT in the realm of condensed matter physics (CMP). By extending the idea of quantization to the field of elastic vibrations of a crystal, he used the concept of phonons in order to obtain a successful description of the specific heat of solids, which has become one of the first great achievements of the quantum theory. Since their early days, therefore, we see that CMP and QFT have been evolving together side by side.

In 1926, the quantum theory of the electromagnetic field was formulated according to the principles of quantum mechanics, thereby providing a rational description for the dynamics of photons, which were postulated by Einstein more than 20 years before. QFT soon proved to be the only framework where the two foundations of modern physics, namely, quantum mechanics and the special theory of relativity, could be combined in a sensible way.

From then on, QFTs grew up mainly in the realm of particle physics, until they eventually became some of the most successful theories in physics. Familiar examples are the Standard Model (SM) of fundamental interactions and, more specifically, Quantum Electrodynamics (QED), which exhibits some theoretical predictions that can match the experimental results up to twelve decimal figures. It is difficult to find any other model, ever proposed, possessing such accuracy.

Condensed Matter Physics (CMP), by its turn, has proved to be one of the richest areas of physics, keeping under its focus of investigation an incredible variety of systems and materials. These exhibit a plethora of unsuspected kinds of behavior, frequently associated to different responses to all types of external agents, such as electric and magnetic fields, voltage and temperature gradients, pressure, elastic stress and so on. The understanding of these phenomena is an enterprise that is frequently as interesting as it is challenging. Furthermore, like in no other area of
physics, mastering the principles and mechanisms of the phenomena under investigation has produced countless technological by-products. These sometimes have produced such impact on the society that its whole structure has been transformed, and many human habits changed. One such example was the development of the transistor, which occurred after the physics of doped semiconductors was mastered. The whole revolution of electronics, miniaturization and informatics would have been impossible without it.

For decades, CMP made a description of solids that was based on the concept of independent electrons moving on a crystalline substrate. This picture has worked extremely well due to the peculiar properties of the quantum-mechanical behavior of electrons in a periodic potential and served for understanding an enormous amount of properties of metals, insulators and semiconductors. Adding further elements to this picture has enabled the understanding of magnetic materials. Then superconductivity, one of the most beautiful, interesting and useful phenomena in physics, was understood by including the interaction of independent electrons with the crystal lattice vibrations.

By the 1980s, however, the discovery of the quantum Hall effect and the following efforts employed to understand it brought two important features to the center of attention in the realm of CMP. The first one is the existence of material systems where the electrons, rather than being independent, are strongly correlated due to interactions. The second one is the fact that the physical properties of certain states of matter are determined by sophisticated topological constraints that fix the value of some quantities with an incredible accuracy and guarantee the conservation of others, a fact that would not be otherwise anticipated. Both features usually lead to unsuspected results.

Since that time, a large number of new materials either have been developed or are being designed that present strongly correlated electrons, topological phases or both. For understanding such a large amount of new sophisticated advanced materials, an efficient method, capable of describing the quantum-mechanical properties of a system of interacting many-particle systems and their possibly nontrivial topological aspects, was required. QFT was the natural response to this demand. By then, it had become one of the most powerful theoretical tools available in physics, with applications ranging from particle physics to quantum computation, passing through hadron physics, nuclear physics, quantum optics, cosmology, astrophysics and, most of all, condensed matter physics, which is the subject of this book.

Here I present a QFT approach to many different condensed matter systems that have attracted the interest of the scientific community, always trying to explore the beauty, depth and harmony that are provided by a unified vision of physics in such approaches. This not only fosters a deeper understanding of the subject; it opens new ways of looking at it.
Preface

An extremely interesting example of the interplay between CMP and QFT is the Anderson–Higgs mechanism, which plays a central role in the Standard Model, and its relation to the Meissner–Ochsenfeld effect of superconductivity. Here, the Landau–Ginzburg field of the superconducting system plays the role of the Anderson–Higgs field of the SM, the only difference being the gauge group. In both cases, a mass is effectively generated to the gauge field, which causes the corresponding propagators to decay exponentially. In the former case, this exponential decay accounts for the extremely short range of the weak interaction, whereas in the later it leads to an extremely short penetration length for the magnetic field inside the bulk of a superconductor, thereby effectively expelling it from inside superconductors, a phenomenon known as the Meissner–Ochsenfeld effect. The fact that the particle excitations associated to the Landau–Ginzburg field reveal themselves as electron-bound states (Cooper pairs) strongly suggests, both on logical and esthetic grounds, that the Anderson–Higgs boson particle should also be composite. This should be a central issue in the realm of particle physics in the near future.

Another beautiful example that is explored in this book is the equivalence between the Yukawa mechanism of mass generation for leptons and quarks in the SM and the Peierls mechanism of gap generation in polyacetylene. Both involve identical trilinear interactions containing a Dirac field, its conjugate and a scalar field. In the former case, the lepton or quark Dirac fields interact with the Anderson–Higgs field, whereas in the later the electron, which can be shown to be described by a Dirac field, interacts with the elastic vibrations field of the polymer lattice. In both cases, the scalar field acquires a nonzero vacuum expectation value: the first one by a judicious choice of the Anderson–Higgs potential, while the second one by the dimerization of the polyacetylene chain. Therefore, the same mechanism that causes polyacetylene to be an insulator generates the mass of all familiar matter. This amazing unification of phenomena that are separated by more than ten orders of magnitude in energy indicates the existence of a deep, underlying unity in physics. A universal unified vision of this science is, consequently, required nowadays. This book is aimed to provide such a unified picture of CMP and QFT.

Writing a book on applications of QFT in CMP, however, is a formidable challenge, in view of the large number of excellent books that already exist on the subject, some of them listed under Further Reading at the back of this book. One can, indeed, always ask: why another book on QFT in CMP? Nevertheless, because of its peculiar characteristics, which include a balanced combination of introductory, advanced and traditionally known material, I feel that this book has its own place in the literature and will be helpful and useful to a broad group of readers.

The book has been divided into three parts. Part I provides a four-chapter introduction to CMP. Part II contains eight chapters on QFT, including an introduction.
Preface

that starts from the very basic principles of QFT as well as a description of the main features of QFT, which may be relevant for applications in CMP. Part III is made up of eighteen chapters covering different applications of QFT in CMP, which include metals, Fermi liquids, Mott insulators, Anderson insulators, polarons, polyacetylene, materials exhibiting the Kondo effect, quantum magnetic chains, quantum magnetic planar systems, the spin-fermion system, spin glasses, superfluids, conventional superconductors, Dirac superconductors, cuprate superconductors, pnictide superconductors, systems presenting the quantum Hall effect, graphene, silicene, transition metal dichalcogenides, topological insulators, Weyl semimetals and systems that are candidates for topological quantum computation.

This book covers topics for which there is, so far, no complete understanding and, consequently, about which no consensus has been reached in the community. Cuprate and pnictide superconductors, for instance, are examples of such topics. Besides these, the book includes some very recent advanced topics, such as Weyl semimetals, topological insulators and materials potentially relevant for quantum computation. I am aware that the inclusion of such topics in the book is a bold venture; nevertheless, I decided to face it and take the involved risks. I feel the inclusion of these topics has made this work much more interesting and exciting. I hope the reader will understand this point and will share the constructive attitude that stands behind the inclusion of such topics.

The book can be used in many different ways. Chapters 1–7 can be used as an introductory course in CMP and QFT. After this introduction, one can follow the sequence of QFT subjects presented in Chapters 8–12, which comprise classical and quantum topological excitations, order-disorder duality, bosonization and anyons, statistical transmutation and Pseudo Quantum Electrodynamics. Then, after a bridge between QFT and CMP offered in Chapter 13, the reader will find in Chapters 14–30 the QFT approach to a variety of materials and mechanisms of CMP.

Alternatively, the book contains several avenues that will take the reader along certain sequences of QFT procedures, which play an important part in different CMP systems. The first of such avenues starts with symmetries (Chapter 7), and then order-disorder duality and quantum topological excitations (Chapter 9), bosonization and generalized statistics (Chapter 10), bosonization of polarons (Chapter 15), bosonization of quantum magnetic systems in 1d (Chapter 18) and anyons with non-Abelian statistics (Chapter 30).

A second avenue deals with electromagnetic interaction of planar systems. It starts with pseudo quantum electrodynamics (Chapter 12) and then goes to graphene (Chapter 27) and silicene and transition metal dichalcogenides (Chapter 28). A third starts with symmetries (Chapter 7), followed by classical Sine–Gordon solitons (Section 8.3), quantum Sine–Gordon solitons (Section 10.6), 2d...
Preface

Coulomb gas (Section 18.3), application to copper benzoate (Section 18.4.2) and application to the Kosterlitz–Thouless transition (Section 18.4.3). Then, we have an avenue on superconductivity, which starts in superconductivity (Section 4.4), then goes to electron-phonon interactions (Section 3.7), from this to superconductivity of regular electrons (Sections 23.1–2) and then superconductivity of Dirac electrons (Sections 23.3–6). The reader is kindly invited to find further avenues as such.

The book is mainly meant for researchers, postdocs and graduate students in the areas of CMP, QFT, materials science, statistical mechanics and related areas. Nevertheless, being self-contained in the sense that no previous knowledge of either CMP or QFT is required, the book can also be used by undergraduate students who feel inclined toward QFT and CMP.

I want to express my gratitude to people who contributed in different ways toward the completion of this book. First of all, my editor Simon Capelin, who in the many phases of this work never hesitated to provide his unconditional support. To Roland Köberle, who followed the writing of the book for 3 years, thank you for numerous useful suggestions. Thank you to Curt Callan for taking the time to read the manuscript, to Mucio Continentino for the constructive critical reading of selected chapters, to Hans Hansson for helpful suggestions and to Cristiane de Morais Smith for invaluable comments and remarks. I would also like to thank Vladimir Gritsev, Amir Caldeira, Chico Alcaraz, Nestor Caticha, Luis Agostinho Ferreira and Carlos Aragão for (hopefully) reading the manuscript. Special thanks also go to my collaborators of the most recent years: Van Sérgio Alves, Leandro Oliveira do Nascimento and Lizardo Nunes for the fruitful exchange of points of view. I also take this opportunity to thank my home institution, the Institute of Physics of the Federal University of Rio de Janeiro, for all the support received along many years.

Finally, I would like to thank my family for the many, many, many hours taken from their company in order to keep this project going. Most especially, I thank my wife Norma, without whose love, support and patience everything would have been impossible.

Eduardo C. Marino