Index

5HTT gene polymorphisms, 762
5-HTTLPR gene, 430
Aanat gene, 430
Abbott Concussion IQ Survey, 100
abbreviations, 683–20.1
acceleration forces in CBI, 139
acetyl-CoA role in CBI pathophysiology, 140, 141, 143
Achenbach Adult Behavior Checklist (ABCL), 445
Achenbach Behavior Checklists, 218
Achenbach System of Empirically Based Assessment, 290
Acquired Capability for Suicide Scale, 436
Acute Concussion Evaluation (ACE), 653
Adams, Francis, 36–37
adenosine role in the homeostatic sleep drive, 757
adenosine triphosphate (ATP), 762
consumption/production imbalance following CBI, 140
adrenocorticotropic hormone (ACTH), 775
deficiency symptoms, 768–26.1
adrenocorticotropin (ACTH), 767
Advanced Trauma Life Support/ American College of Cardiology (ATLS/ACS) guidelines on CT scan after concussion, 602
Affective Lability Scale, 384
age risk factor for CBI, 101
risk factor for poor outcomes of CBI, 343–45
risk factor for sports concussion, 111–12
aggressive behavior assessment in concussion patients, 385
in concussion patients, 385–86
epidemiology, 446
incidence after TBI, 385
irritability after trauma, 385
personality change after TBI, 385
treatments for concussion patients, 385–86
aging antagonistic pleiotropy theory of aging, 505
attempts to distinguish from Alzheimer's disease, 520–25
defining, 502–7
disposable soma theory of aging, 505
force-of-mortality factors, 505
history of changing human life expectancy, 503
lack of universally agreed definition, 502–3
phenopositivity theory of aging, 505
programmed theory of aging, 503–4
stochastic (chance) theory of aging, 504–5
theories of aging, 503–5
time-passing-related life-history concept, 505–7
agitation following TBI, 444
alcohol enhanced response after TBI, 751
use/abuse in TBI patients, 751
all-terrain vehicle riding concussion risk, 114
Allen Human Brain Atlas project, 68
Altmann, Joseph, 173
Alzheimer's disease, 639
Alzheimer's original description, 513–14
APOE ε4 allele risk factor, 313–15
ttempts to distinguish from aging, 520–25
case of Auguste Deter, 501, 513–14, 517
conflicting results from TBI studies, 512–13
defining, 512–26
distinguishing between aging and AD, 514–17
fallacy of attributing causality to biomarkers, 517
inflammation and activated microglia, 519–20
physiological and pathological roles of amyloid beta, 517–20
proliferation of competing diagnostic criteria, 514–17
questioning its existence as a natural kind, 525–26
risk after earlier CBI(s), 329–35
Alzheimer's Disease Neuroimaging Initiative (ADNI), 559
amantadine, 385, 386, 753
use in post-concussive aggression, 451
American Academy of Neurology (AAN) consensus definition of concussion, 81–82
guideline on CT scan after concussion, 603
American College of Emergency Physicians (ACEP) guideline on CT scan after concussion, 600–1
American College of Rehabilitation Medicine (ACRM) diagnostic criteria for CBI, 95–96
American College of Sports Medicine (ACSM), 646
definition of concussion, 82–83
American Medical Association Guidelines to the Evaluation of Permanent Impairment (GEPI), 738–39
American Medical Society for Sports Medicine Position Statement on Concussion and Sports, 729
American Neuropsychiatric Association, 416
American Psychiatric Association (APA), 346, 347, 403
AMPA receptor binding in CBI, 139
amygdala, 388, 389, 392
functions, 179
response to aversive and safety cues, 392
vulnerability to concussion, 179–82
amyloid beta (Aβ) aggregation and plaque formation, 639
disruption caused by TBI, 331–32
pathology after TBI, 575–76
physiological and pathological roles, 517–20
potential influential factors in TBI pathology, 576
role in neurodegeneration, 168–71
amyloid precursor protein (APP), 168
transgenic mice, 169
amyloid-related processes, 640–41
amyotrophic lateral sclerosis (ALS), 171, 537
anger following TBI, 444
anger management approaches, 449
anger self-management programs, 385
animal models of concussion abnormal activity of dysfunctional neurons, 180, 187
Alzheimer's disease does not occur in rodents, 168–71
association between concussion and later dementia, 188
Barnes maze, 166
beam walking test, 165
behaviors assessed are not comparable in humans, 165–67
animal models of concussion
behaviors assessed
lack ecological
validity, 165–67
blast injury models, 162–63
Closed Head Injury
Model of Engineered
Rotational Acceleration
(CHIMERA), 162–63, 164
competing helpful and
harmful brain
change, 178–79
conscusive force does not
predict the degree of
brain injury, 156–58
Controlled Cortical Impact
Model (CCI), 160–64
damage to areas associated
with functional
deficits, 179–82
defining brain injury, 180
detecting neuron death in
'mild' injuries, 183–85
detecting neuron death in
moderate to severe
injuries, 182–83
disproportionate damage
to certain brain
cells, 179–82
early animal experiments, 45
ethical issues, 162
experiments with abrupt
external force, 154–55
failure to replicate
typical human
conclusion, 159–65
Fluid Percussion Injury Model
(FPI), 160–61, 162–64
force best approximating
human concussion is not
known, 156–58
fragile brain structures
associated with
post-concussion
neurobehavioral
problems, 179–80
genetic variation and post-CBI
gene expression, 187–88
hitting the wrong thing in
the wrong way, 159–65
Impact Acceleration Injury
Model (IAI), 160–61
inability to know how
animals feel after
concussion, 165
inability to study persistent
problems, 167–68
individuality of humans
is not considered in
animals, 153
issues relating to sedation, 162
key questions for animal
studies, 153–54
lack of investigation of late
effects, 154–55
lack of long-term
studies, 167–68
limits of optical microscope
detection of brain
change, 176–78
medium- to long-term
studies, 188–96
methodological issues, 8
Morrison Water Maze, 166
naturalistic assessments, 167
neurobiological melee of
conclusion, 178–79
neurodegenerative
features, 168–71
neurogenesis, 171–76
neurogenesis found in
rodents, 156
neuron death, 182–88
parts of the brain damaged in
mice and humans, 179
parts of the brain damaged in
milder concussions, 179
presence of brain
changes, 180
popular experimental
models, 159–65
post-concussive memory
tests, 166–67
problems with animal
models, 155–78
progressive
neurodegeneration, 180
questionable relevance to
human conclusion, 153
Radial Arm Maze, 166
role of connectivity in brain
cell survival, 187
Rotarod test, 166
significance of neuronal
loss, 185–88
standardization
versus individual
validity, 159–60
T-Maze, 166
use of species which never
develop Alzheimer’s
disease, 156
use of transgenic mice, 169
Weight Drop Acceleration
Injury Model
(WDAI), 160–61
what they reveal, 178–96
anosognosia, 216
anterolateral cortica cortex
(ACC), 388
anterolateral cingulate gyrus,
179
anticonvulsants, 390
antidepressants, 389
anti-diuretic hormone
(ADH), 751
APOE genotype
arguments for and against
testing, 313–18
ethical conditions for
disclosure, 315
influence on CBI
outcomes, 313
risks in childhood, 315–18
APOE polymorphisms, 168
APOE e4 allele
health risks associated with, 313
pleiotropic effects, 505
possible influences on TBI
outcome, 310–11
risk factor for Alzheimer’s
disease, 313–15
susceptibility to chronic
traumatic brain injury in
boxers, 313–14
APOE e4 carriers
functional neuroimaging of
TBI, 565–66
neuroimaging of TBI, 567–68
Applied Behavioral Analysis
(ABA), 753
Apoptendence, Fabricius ab, 40
gargin acids (AVP), 767, 773
deficiency symptoms, 76826.1
aripiprazole, 385, 390
Aristotle, 499, 500
arterial dissections
headache associated with, 735
ASPA gene, 141
aspartate N-acetyl
transferase, 140
aspartoacylase (ASPA), 141
assessment tools, 216–18
astrogial injury
CSF biomarkers, 640
athletes
pressures not to report
conclusion and
symptoms, 25–26
atypical antipsychotics, 390
Auburtin, A., 293
authority
misplaced faith in, 14
Automated Neuropsychological
Assessment Metrics
(ANAM), 656, 675
automobile accidents
traumatic brain injuries, 50
autonomic nervous system (ANS)
changes in the changes in TBI
and PTSD, 392
role in sleep regulation, 757
axonal injury
CSF biomarkers, 640
diffuse axonal injury, 639
lim dare element (FEX)
modeling, 266
maximal axonal strain
measurement, 302
spectrum of injuries in
CBI, 59–63
white matter damage in
TBI, 262–63
axonal stretch in TBI
disruption of axonal
beta, 331–32
disruption of tau, 332–34
Babinski, Joseph, 338
Balance Error Scoring System
(BESS), 648, 658, 673–75, 728
Baragazzi, Jacobo, 39–38
Barnes Maze, 166
Barroso Fatigue Scale (BFS), 748
Barrow Neurological Institute
(BNI) Fatigue Scale, 74824.2
Overall Severity Index
Score, 74824.2
baseball
concussion risk, 114
basketball
concussion risk, 114
Bayer, Shirley, 173
BDNF gene, 392, 434
polyrphoderms, 762
valotmet polymorphism, 387
beam walking test, 165
Beck Depression Inventory-II, 688
Beckett, William, 42–43
Behavioral Modification
Therapy, 449
Behavioral Neurology &
Neuropsychiatry
certification, 416
Bell, Benjamin, 43
Bender Visual Motor Gestalt
test, 403
Benson, D. Frank, 79, 328, 348, 404
Benton, Arthur, 403
Betz, Vladimir, 45–46
bicycling
concussion risk, 114–18
Bigler, Erin
Distinguished
Neuropsychologist
Award Lecture, 18–19
Binet, Alfred, 403
biomarkers
fallacy of attributing causality
to, 517
individualized neuroimaging
bio marker
detection, 274–77
biomarkers for concussion
biomarkers for chronic brain
injuries after TBI, 642
candidate biomarkers for
CBL, 9–10
chronic traumatic
encephalopathy
(CTE), 639
CSF biomarkers, 639–41
CSF biomarkers for
amyloid-related
processes, 640–41
CSF biomarkers for astroglial
injury, 640
CSF biomarkers for axonal
injury, 640
CSF biomarkers for
neuroinflammation, 640
CSF biomarkers for
neuroinflammation, 640
CSF/serum albumin
ratio, 639–40
definition of biomarker, 639
definition of concussion or
mTBI, 639
compensation issues in CBI (cont.)
proportion of compensation-seekers which exaggerates, 354–55
unique circumstances of each CBI, 353–54
victim blaming, 351–53
ways in which compensation systems might influence symptom reporting, 353–54
compensation seeking litigation overlay, 346
compensation-system induced stress, 354
Computerized Cognitive Assessment Tool (CCAT), 656
CONT gene polymorphisms, 762
compensation changing meanings over time, 156–57
defined as a mechanical force, 353–78
origins of association with ‘mild’, 37
use of the term in medicine, 33
Concussion in Sport Group (CISG) consensus statements, 15–16
definition of concussion, 82, 83
Concussion Resolution Index (CRI), 656
Concussion Vital Signs, 656, 675
conusive brain injury (CBI) controversy over persistent post-concusive symptoms, 1–2
defining, 33–35, 157
defining recovery, 78–79
diagnostic semantics, 79–80
diffuse injury, 34
efforts to produce consensus definitions, 80–84
long-term effects of injuries, 35–36
measuring the extent of the injury burden, 35–36
multifocal effects, 34
spectrum of harm, 34
Congress of Neurological Surgeons
Committee on Head Injury Nomenclature, 80–81
consensus groups
misplaced faith in, 14–16
contact forces in CBI, 139
Contingency Management Therapy, 449
contrecoup injury, 43
Controlled Cortical Impact Model (CCI), 160–64
conversion disorder, 346, 347
cortical-limbic disconnection model, 388
cortisol deficiency, 775–76
Courville, Cyril Brian, 3, 58
COX-2 gene, 144
crianiomandibular syndrome headache caused by, 731
creatine, 74–75
MR spectroscopy, 273
CREB (cyclic AMP response element binding protein), 181
Creutzfeldt–Jakob disease, 170
CSF biomarkers for amyloid-related processes, 640–41
for astroglial injury, 640
for axonal injury, 640
for neuroinflammation, 640
for neuronal injury, 640
upcoming biomarkers for TBI, 641
CSF/serum albumin ratio, 639–40
CT scan after concussion
Advanced Trauma Life Support/American College of Cardiology (ATLS/ACS) guidelines, 602
American Academy of Neurology (AAN) guideline, 603
American College of Emergency Physicians (ACEP) guideline, 600–1
applications and limitations in CBI, 262–63, 408
Canadian CT Head Rule (CCHR), 599–600, 600f15.2
classification of scan results, 598–99
clinical decision support (CDS) system, 613
considerations in decision making, 603
cost-benefit analysis, 595–96
CT cannot definitively diagnose CBI, 598–99
deciding whether or not concussion patients should have a CT scan, 595–96
definition of an unnecessary scan, 619–20
Eastern Association for the Surgery of Trauma (EAST) guideline, 601–2
ethics of withholding a scan, 623
health implications if carried out or not, 596–97
implications of a negative scan, 598–99
ineffectiveness of selection algorithms, 598–99
information required by patients, 620–21
informed consent, 622–23
intra-cranial lesion detection rate by CT in adults, 603–4
limited information from research findings, 597–98
National Institute for Health and Clinical Excellence (NICE) guideline, 603–5
New Orleans Criteria (NOC), 600, 600f15.3
New South Wales (NSW) protocol, 601–2
objecting based on cost, 618–19
objecting based on radiation exposure risk, 616–18
objecting to early scanning, 615–16
ongoing debate, 596–97
Ontario Neurotrauma Foundation (ONF) guidelines, 602
patient participation in decision making, 621–22
physicians’ non-compliance with protocols, 612–13
proposed protocols, 599–605
psychosocial influences on decision making, 613–15
quality of studies, 608–11
reassuring the patient, 621
reliability of risk factor assessments, 611–12
Scandinavian Neurotrauma Committee (SNC) protocol, 602–4
scientifically defensible and ethical options, 623
Scottish Intercollegiate Guidelines Network (SIGN) guideline, 601
sensitivities and limitations of CT, 598–99
significance of non-surgical intracranial lesions, 604–5
studies used to determine CT protocols, 606–8
Veterans Administration/Department of Defense (VA/DoD) guideline, 601
what patients want, 620–23
cytokines and sleep, 762
da Carpi, Berengario, 39–38
Damianus, Tertius, 40
Darwin, Charles, 52, 305, 501–2
Dax, Marc, 401
Dear Leader Experiment, 214–16
default mode network, 388
Defense and Veterans Brain Injury Center (DVBIC), 6, 694
defining CBI, 33–35
efforts to achieve consensus definitions, 80–84
definitions of concussion as a mechanical force, 33
diffuse injury, 34
dehydration headache, 731
dementia
amyloid beta pathology after TBI, 575–76
competing contemporary definitions, 510–11
defining, 509–12
factors influencing risk after TBI, 574
historical meaning of the term, 509–10
influence of disease pathology after TBI, 578
investigating the link with CBI, 511–12
late effects of CBI, 497–98
pathological protein accumulation after TBI, 574–75
polypathology after TBI, 578
potential contributing biological factors in TBI, 511
questions on the relationship with TBI, 511
tau pathology after force, 354–78
TBI risk factor, 573–74
dementia pugilistica, 526, 529, 582, 639
Denecker, Sven J., 220–21
Denny-Brown, D.E., 56–58
depression definition, 427
See also mood disorders; post-concussive depression, 427
Descartes, René, 52, 328
D’Esposito, M, 412
dextroamphetamine, 389, 753
diabetes insipidus, 751, 773
diagnosis of concussion approach to diagnosis, 672
Balance Error Scoring System (BESS), 673–75
clinical and laboratory processes, 640–41
depression, 33–54
diagnostic considerations in decision making, 613–15
diagnostic frameworks, 79–80
diffusion tensor imaging (DTI), 678–79
electroencephalography (EEG), 678–79
event-related potentials (ERPs), 678
functional MRI (fMRI), 678–79
gait measures, 677
Military Acute Concussion Evaluation (MACE), 673
multi-modal concussion assessment battery, 677
neuropsychological assessment tools, 677–79
neuropsychological testing, 675–77
on-field evaluation, 672
problems with operational model, 388
diagnostic criteria, 95–96
Sensory Organization Test (SOT), 676
side line tools, 672–75
Sport Concussion Assessment Tool – 3rd edition (SCAT-3), 675
Standardized Assessment of Concussion (SAC), 673
summary of assessment tools, 679–80
symptom checklists, 672–73
virtual reality (VR) testing, 676–77
diagnosis threat after CBI, 346
discord, 295
diffuse axonal injury, 62, 263, 639
diffuse injury description, 34
diffusion tensor imaging (DTI), 62–63, 678–79
Diller, Leonard, 403
Disability Assessment Schedule 2.0 (WHO), 289, 357–58
disability payments expansion of, 51–52
disease changing conceptions of, 290–91
dopamine, 767
dorsal nucleus of the vagus nerve, 392
dorsolateral prefrontal cortex (DLPFC), 179, 389
dorsomedial thalamus, 392
dorsomedial thalamic nucleus, 388
drama of attribution, 348, 357–58
draw-a-person test, 403
drugs use/abuse in TBI patients, 751
DSM-5, 346, 347
classification of mood disorders, 386
DSM system problems with, 502
DTI (diffusion tensor imaging), 264, 265–66
ADC (apparent diffusion coefficient), 266–67
fractional anisotropy (FA), 266–70
hemisodrin detection, 269–75
role in CBI investigation, 267–75
dualism resistance to the idea that brains mediate mental functions, 209
straw man issue, 328
dysautonomic headaches, 735
eyearly brief interventions systematic review of research, 791
ey early single session interventions systematic review of research, 791
Eastern Association for the Surgery of Trauma (EAST) guideline on CT scan after concussion, 601–2
Ebañ, Alba, 14
Ebbinghaus, Hermann, 401
Edwin Smith Surgical Papyrus, 38
effort-induced headache, 731
Eif6g2 gene, 145
electroconvulsive therapy (ECT), 389
electroencephalography (EEG), 678
electrotransport chain, 141, 145
emotional distress prioritizing emotions in neuropsychology, 415
stress vulnerability genes, 312–13
emotional disturbances barriers to accurate incidence and prevalence accounting after concussion, 387
characteristics of emotions, 383
complexity of human emotions, 383
disruption of prefrontal circuits by TBI and CBI, 384
emotional lability, 384–85
features of, 384
interplay of factors in TBI and CBI, 383
irritability and aggression, 385–86
lack of evidence for post-concussion syndrome, 383–84
new approaches and understandings, 383
pathophysiology associated with TBI and CBI, 383
post-concussive symptoms, 383–84
post-traumatic stress disorder (PTSD), 383
recognition that post-CBI brain change is common, 383
relation to the circumstances of the concussion, 384
role of the prefrontal cortex in emotional regulation, 384
See also mood disorders; post-traumatic stress disorder (PTSD), 390
emotional lability, 384–85
Affective Lability Scale, 384
assessment change in personality pattern, 384
conditions associated with, 384–85
features of, 384
overlap with other disorders, 384–85
possible pharmacotherapies, 385
prevalence following concussion, 384
treatments for persistent emotional lability, 385
emotions characteristics of, 383
Empedocles, 500
Enhancing Neuro Imaging
Genetics through Meta-Analysis (ENIGMA) study, 298–300
epidemiology of CBI age risk factor, 101
causes, 102–3
CDC pyramid barriers to complete accounting of CBI, 98–100
estimates of unreported concussions, 100
sources of the CDC figures, 97–100
CDC triangle estimates of annual incidence of CBI, 100–1 estimates of lifetime cumulative incidence, 101
potential sources of numerical error, 100
human and health care costs, 128–29
implications of lack of data, 94–97
military concussion, 104–8
risk factors for CBI, 101
risk of recurrence, 103–4
sex differences in CBI risk, 101–2
sports-related concussion, 108–28
unreported cases, 96
what counts as brain injury, 93–94
why prevalence of brain injury may never be known, 128–29
epigenetics, 306–7
epilepsy post-traumatic, 387
epistasis, 306
Epworth Sleepiness Scale (ESS), 753
equestrian sports concussion risk, 118–19
Erchsen, John, 44, 48, 49
esicatolopram, 385
estrogen replacement therapy, 776
ethics
restraints on concussion research, 213–16
Evaluation of Lifetime Stressors, 687
event-related potentials (ERPs), 678
excitatory amino acids (EAAs), 139
exercise interventions for post-CBI fatigue, 750
systematic review of research, 789–90
exertional headache, 730–31
expert witnesses
collective bargaining approach, 806
dues under the British system, 804
expert shopping by parties to litigation, 804–5
history of use of, 803–4
position in the U.S. legal system, 804–5
pressures on, 803
problem of biased experts in the U.S., 805
voluntary duty clause, 803–6
Eye Movement Desensitization and Reprocessing (EMDR), 469–71
Fabry, Wilhelm, 40
factitious disorder, 346
fatigue after concussion anatomical considerations, 744–46
assessment, 747–48
behavioural/lifestyle interventions, 749–52
causal factors, 744
energy conservation, 751–52
enhanced response to alcohol, 751
enhanced response to caffeine, 751
environmental modifications, 752
epidemiology, 743–44
exercise interventions, 750
features of post-TBI fatigue, 743
fluid dysoxiria after TBI, 751
genetic influences, 746
growth hormone deficiency, 746–47
hydration, 751
hypopituitarism, 746–47
incidence and prevalence, 743
individual variation, 746
fatigue after concussion (cont.)
management, 748–53
management recommendations, 753–54
medication review, 753
mental fatigue, 744–46
neuroendocrine assessment, 748
neuroendocrine considerations, 746–47
neurostimulants, 753
pharmacological approach, 752–53
phenotypic fatigue measurement, 746
sleep hygiene, 750–51
substance use, 751
Fatigue Impact Scale (FIS), 748, 748:24.2
fatigue management, 749–95
Fatigue Severity Scale (FSS), 744, 748, 748:24.2, 753
FBP:5 gene, 392
fear conditioning
role of the hippocampus, 392
Federal Interagency TBI Research (FITBIR) informatics system, 696–710
female sex
risk factor for poor outcomes of CBI, 337–43
FIFA Medical Assessment and Research Centre, 82
finite element modeling (FEM) of CBI, 300–2
FLAIR, 264.61
fluid dysregulation after TBI, 751
Fluid Percussion Injury Model (FPI), 160–61, 162–64
flouoxetine, 389
Foley, Joe, 24
football (American style)
CBIs classified as non-concussions, 121–23
concussion reporting methods, 119–23
concussion risk, 119–23
See also sport-related concussion, 123
force of the CBI impact predictive value for outcomes, 299–302
Ford, Henry, 50
fractional anisotropy (FA), 266–70
Freud, Anna, 403
Freud, Sigmund, 11, 52, 54, 402, 403
frontal lobotomy, 403
frontotemporal dementia (FTD), 121
frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), 537
Functional Independence Measures (FIM), 289
functional MRI (fMRI), 76, 678–79
advantages and limitations in TBI, 724
applications in mTBI, 716
BOLD response, 716–17
clinical challenges in fMRI research following TBI, 722–23
effects of TBI on the fMRI response, 716–17
emotional sequelae following TBI, 723
impetus for developing objetivo psychiatric metrics, 723
methodological and analytical challenges in TBI studies, 717–18
neurovascular coupling, 716–17
physiology of the fMRI response, 716–17
recognition the CBI can cause brain change, 716
review of current findings from the literature, 718–22
studying chronic effects of brain injury, 559–60
functional neuroimaging APOE e4 carriers with TBI, 565–66
multipleconcussions, 560–63
subconcussive head trauma, 564–65
gait measures, 677
Galen, 39, 289, 291, 360, 501
Galileo Galilei, 33
Gall, Franz Joseph, 292
Gallon, Francis, 16
Galveston Orientation and Amnesia Test (GOAT), 96
Gama, Jean-Pierre, 45, 262
Gandhi, Mahatma, 501
Gap43 gene, 145
Garrod, Archibald E., 210, 288
Gass, Franz, 58
Gaskin, 46
gonadotrophins, 767
Global Fatigue Index (GFI), 748
globus pallidus, 388
glucose metabolism derangement following CBI, 140
Glut2 gene, 145
glutamate, 179, 762
binding to ionic channels in CBI, 139
glutamate and glutamine (Glx) MR spectroscopy, 271
glutathione
MR spectroscopy, 273
glycogenesis
temporary increase following CBI, 140
Golden, C.J., 406
Goldstein, Kurt, 56, 58
Golgi, Camillo, 45–46
gonadotrophins, 767
deficiency symptoms, 768:26.1
good-old-days bias in symptom reporting, 346
Grin2d gene, 145
growth hormone, 767
deficiency after concussion, 746–47
deficiency symptoms, 768:26.1
replacement therapy, 776
guiding principles for clinical practice, 793–96
acute and sub-acute management, 793–94
balancingrestversusactivity, 794–95
fatigue management, 794–95
neurobiology as a guiding principle, 794
post-acute assessment, 794
prioritizing and treating comorbidities, 795
tailoring subsequent treatment to the individual, 795–96
Gulf War Syndrome, 684
Guthrie, G.J., 44
gyrus rectus, 388
Haddon Matrix, 210, 358–60, 430, 432, 446
hallucinations
related to sleep disorders, 760
Halstead, W.C., 406
Halstead-Reitan Neuropsychological Battery, 406–7
Hartmann, Heinz, 403
Head Impact Telemetry System, 300
headache variants, 730–35
cervicogenic headache, 731–32
cranio-mandibular syndrome, 731
dehydration headache, 731
dysautonomic headaches, 735
effort-induced headache, 731
dei ciency symptoms, 731
treatment of neuropathic pain, 731
related to sleep disorders, 760
Headache associated with medication overuse headache,
ei effort- induced headache, 731
dehdration headache, 731
related to sleep disorders, 760
Hippocampus, 731–32
hippocampus, 388
hominid evolution, 753
Horta, 392
Horton, John, 392
Hox genes, 119
Hurley, John, 392
hypersomnia, 392
hypothalamus, 392
Huntington’s disease, 392
Hurt, Jim, 392
Huxley, Thomas Henry, 392
Hypoxia-Ischemia Neonatal Injury (HINI), 592
Hyperactivity, 753
hyperactivity and impulsivity, 753
Hyperbaric Oxygen Therapy (HBOT), 753
hypertension, 753
Hypothermia, 753
hypothyroidism, 753
hypothyroidism and recent lung transplant, 753
hypothalamic dysfunction, 753
hypothalamic-pituitary-adrenal axis, 753
hypothalamic-pituitary-adrenal axis dysfunction, 753
functions, 179
neurogenesis during sleep, 756
neurogenesis in adults, 173
role in fear conditioning, 392
volume reduction in PTSD patients, 392
vulnerability to
conclusion, 179–82
Hippocrates, 33, 360
Hippocratic view of
conclusion, 36–38
histamine, 757
histopathology versus
imaging, 263
historical views of
conclusion, 36
1600–1700, 40–42
1700–1800, 42–43
1800–1900, 44–45
1900–1925, 50–53
1930 and beyond, 55–56
Ancient Egypt, 38
arrival of the
microscope, 45–49
association with ‘mild’, 37
attorneys and the invention of
mild TBI, 54
beyond the
Hippocratics, 38–40
blast injury victims, 53
casualties of World War I, 50–52
Cellini, Benvenuto, 39
clarity at the outset of the 20th
century, 49–50
commotio cerebri, 39
controversy over the
accepted benignity of
conclusion, 56–58
da Carpi, Berengario, 39–38
early animal experiments, 45
Edwin Smith Surgical
Papyrus, 38
effect of workers’ injury
compensation
schemes, 47–49
expansion of payments for
personal injury, 51–52
experimental concussion, 45
fallacy of benignity, 53–54
Hippocratic view, 36–38
Homer’s Iliad, 38–39
hysteria, 47–49
illogical approach to
categorization, 37
influence of increasing
litigation, 54–55
means to avoid injury
compensation
liability, 52–53
narrowing of the definition, 37
Paré, Ambroise, 39–40
popularity of psychological
explanations, 52–53
pressure to rate the severity of
conclusion, 54–55
progress in recognition of
structural change, 55
reasons for inconsistent
use of the term
‘concussion’, 54–55
shell shock, 30–32, 33
tendency to view as a single
disorder, 37
translation by Francis
Adams, 36–37
translation by William
Caxton, 37
traumatic neurosis, 47–49
history of prior TBI
influence on later CBI
outcome, 329–35
Hitler, Adolf, 403
Holbourn, A.H.S., 59–60, 262
homeostatic sleep drive, 757
Homer’s Iliad, 38–39
Hooke, Robert, 45
hormones
risk factors for PTSD, 391–92
Hovda, David, 94
human brain
Brommann’s areas, 292–93
diaschisis, 295
difficulties in MZ
twins, 294–95
evidence against
localizationism, 294–99
gene-mediated variation in
size and shape of brain
parts, 297
genetic variation in brain
structure, 312
history of
localizationism, 292–93
variations in, 292
human concussion debate, 205–6
accurate baseline data is rarely
available, 210
clinical endpoint non-
representative samples of
CBI survivors, 208
Dear Leader
Experiment, 214–16
determining persistent change
requires effort, 210–12
difficulty of determining
clinico pathological
correlations, 209
ethical restraints on
research, 213–16
individual variation not
considered in Western
neurology, 210
lack of a systematic review of
human outcome
data, 218
limitations of animal
experiments, 210
no single method assesses
outcome with reliability and
ecological
validity, 216–18
opinions harden in the face of
uncertainty, 213
patient-generated barriers to
understanding, 212
persistent belief in mind/brain
dualism, 209
post-concussion
syndrome, 210
reasons why there is still a
debate, 208–18
recovery is not
confirmable, 212
resistance to the idea that
brains mediate mental
functions, 209
socioeconomic pressures on
patients with persistent
complaints, 212–13
three-month recovery
myth, 210–12
typical post-CBI
problems, 207–8
Western medical approach
to concussion
assessment, 210–12
Human Connectome Project,
264–65, 297–99
human studies review, 218
approaches to analysing the
results, 234–41
challenge of comparing study
results, 234–41
conclusions, 249–50
effect of controlling for pre-
morbid status, 241
estimating the prevalence of
persistent neurobehavioral
problems, 248
features of the Tables of
results, 221–34
group averages hide individual
variations, 220–21
normal test scores do not
exclude the possibility of
brain injury, 221
quantitative approach when
meta-analysis is not
possible, 248
recovery may be behavioral
adaptation, 248–49
studies included in the
results, 242
study by Sven J. Dencker
(Sweden, 1954), 220–21
study selection
criteria, 219–20
Table 3 (studies without
controls), 242
Table 4 (studies with
controls), 242–44
Table 5 (medium- to
long-term studies with
healthy or ill
controls), 244–47
unreliability of predictions of
long-term outcome, 221
weaknesses in study
designs, 249
Hunter, John, 44
hydration in CBI patients, 751
hypersomnia, 758
hypocretin receptor
blockers, 763–64
hypocretin-1, 760
hypopituitarism after
concussion, 746–47
hypothalamic-pituitary-adrenal
(HPA) axis
changes in PTSD, 392
effect of childhood
abuse, 391
hypothalamus, 388, 392
interaction with the anterior
pituitary, 767
production of orexin, 760
hypoxic/ischemic theory of
CBI, 262
hystera, 47–49
explanation given for female
CBI outcomes, 338
ICD diagnostic criteria, 95
ice hockey
concussion risk, 123–24
IL-1b gene, 144
imaginary/intentional
dichotomy of
symptoms, 13–14
Immediate Post-Concussion
Assessment and
Cognitive Testing
(IMPACT), 656, 675
Impact Acceleration Injury
Model (IAI), 160–61
Impact of Event Scale, 459
incomplete sentences
tests, 403
individualized neuroimaging
biomarker
detection, 274–77
inertial forces in CBI, 139
inflammation role in CBI
pathophysiology, 66–68
inflammatory hypothesis
tauopathy development, 536
insula, 388
interleukin-1 (IL-1), 762
interleukin-4 (IL-4), 762
interleukin-6 (IL-6), 762
intermittent explosive
disorder (IED)
following TBI, 444
International Collaboration
on MTBI Prognosis, 384
International Ice Hockey
Federation (IIHF), 82
International Mission on
Prognosis Analysis of
Clinical Trials in
Traumatic Brain Injury
(IMPaCT) initiative, 7
International Olympic
Committee (IOC)
Medical Commission, 82
inter-subject variability, 296
intra-subject variability, 296
IQ testing, 403
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irritability at er trauma, assessment in concussion patients</td>
<td>385–86</td>
</tr>
<tr>
<td>Patient sample size</td>
<td>47–48</td>
</tr>
<tr>
<td>Assessment approaches for expert witnesses</td>
<td>346–47</td>
</tr>
<tr>
<td>Legal implication of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Lethality of Suicide Attempts Rating Scale</td>
<td>436</td>
</tr>
<tr>
<td>Life Events Checklist</td>
<td>687</td>
</tr>
<tr>
<td>Life Span Study (LSS) of atomic bomb survivors</td>
<td>617</td>
</tr>
<tr>
<td>Linear no-threshold (LNT) model</td>
<td>673, 675</td>
</tr>
<tr>
<td>Lithium carbonate</td>
<td>385–86</td>
</tr>
<tr>
<td>Laser therapy</td>
<td>643</td>
</tr>
<tr>
<td>Late failures of TBI</td>
<td>385–93</td>
</tr>
<tr>
<td>Late effects of TBI</td>
<td>385–86</td>
</tr>
<tr>
<td>Late effects of TBI functional neuroimaging studies</td>
<td>385–86</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury study</td>
<td>385–86</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury study</td>
<td>385–86</td>
</tr>
<tr>
<td>Laser therapy</td>
<td>643</td>
</tr>
<tr>
<td>Late failures of TBI</td>
<td>385–93</td>
</tr>
<tr>
<td>Late effects of TBI</td>
<td>385–86</td>
</tr>
<tr>
<td>Late effects of TBI functional neuroimaging studies</td>
<td>385–86</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury study</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury study</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury study</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury study</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal implications of sport-related concussion</td>
<td>127–28</td>
</tr>
<tr>
<td>Late Effects of Traumatic Brain Injury</td>
<td>385–86</td>
</tr>
<tr>
<td>Lateral orbitofrontal circuit (LOPFC)</td>
<td>385–86</td>
</tr>
<tr>
<td>Legal cases</td>
<td>385–86</td>
</tr>
</tbody>
</table>
neuroimaging of CBI (cont.)
asking the right questions, 278–79
asymptomatic persistent brain change, 356
candidate neuroimaging biomarkers, 263–77
delayed onset persistent symptoms, 556–75
DTI (diffusion tensor imaging), 264, 265–66, 267–75
finite element (FE) modeling, 266
FLAIR, 264t6.1
future developments in biomarkers, 278–79
hemoglobin detection, 269–75
heterogeneity of late effects of repeated CBI, 629–30
histopathology versus imaging, 263
Human Connectome Project, 264–65
hypoxic/ischemic theory of CBI, 262
improvements in technology, 263
individualized neuroimaging biomarker detection, 274–77
interest in the late effects of CBI, 555–56
levels of structure within the nervous system, 265–67
limitations of CT (computed tomography), 262–63
MEG (magnetoencephalography), 274–77
MRS (MR spectroscopy), 266, 271–76
MRS studies of multiple concussions, 566–67
near-infrared spectroscopy, 277
need for a multi-modal approach, 568
need for biomarkers of brain change, 261–62
network analyses that integrate structural and functional neuroimaging, 274
network theory of CBI outcomes, 556–57
neurobiological significance of observed changes, 266–67
hematoma, 263
new clinical paradigm of CBI, 277–78
pediatric concussion, 658–59
PET (positron emission tomography), 277
quantitative MRI, 264t6.1
repeated subconcussive trauma, 567
review of studies of late effects of TBI, 557–59
shear injury in TBI, 262–63
situation before neuroimaging was available, 260–61
SPECT (single photon emission computed tomography), 277
structural MRI, 263–75
structural neuroimaging, 263
SWI (susceptibility weighted imaging), 264t6.1
symptomatic persistent brain change, 356–57
white matter damage in TBI, 262–63
neuroinflammation
CSF biomarkers, 640
neurologists
ability to care for concussion survivors, 416
neurology
anti-intellectualism in medicine, 803
psychological traits of neurologists, 801–2
resistance to a logical nosology, 801–2
neurametabolic cascade, 63–66, 94, 263, 762
neuronal injury
CSF biomarkers, 640
neuropsychological assessment tools, 677–79
Neuropsychiatric Inventory (NPI), 445
neuropsychiatrists
ability to care for concussion survivors, 416
Neuropsychiatric Inventory (NPI), 385
neuropsychological assessment need for biomarkers of brain change, 261–62
three month myth of CBI recovery, 260–61
neuropsychological testing, 675–77
limitations, 124
neuropsychologists
ability to care for concussion survivors, 417–18
neuropsychology
acknowledgment of the limitations of the discipline, 413–14
beginnings of professional neuropsychology, 403–4
behavioral observations during psychological testing, 414–15
care for the persistently distressed CBI patient, 415–18
changing views on the use of psychological testing, 412
comparison of brain imaging and psychological testing, 404
consequences of World War II, 402–3
damage versus dysfunction debate, 407
development of batteries of tests, 406–7
development of testing methods, 403–4
developments using virtual reality, 414
distinction between psychiatric disorders and brain disorders, 402–3
early controversies, 404–5
ethical issues, 413–14
forensic role and ethics, 413–14
future directions of the discipline, 414
historical development of the discipline, 401–12
implications of recognition of persistent distress in CBI, 399
influence of psychoanalysis, 403
limitations of psychological testing in concussion, 408–11
limitations of psychological testing in sports-related brain injury, 411–12
limitations of testing and imaging, 407–8
new approaches to administering stimuli, 414
observing responses, 414–15
prioritizing emotions, 415
psychological testing to identify brain damage, 402–3
question of validity of testing methods, 403–7
reinventing the field, 399–401
sports neuropsychology, 411–12
neuropsychology in sports-related concussion, 411–12
timing of testing and imaging in CBI, 407–8
treatment and the healthcare system, 415–18
what tests to administer, 412–13
neurotransmitters, 753
neurovascular coupling, 716–17
New Orleans Criteria (NOC), 600, 600t15.3
New South Wales (NSW) protocol
for CT scan after concussion, 601–2
nitrite oxide (NO) synthase activation in CBI, 139
nitrosative stress caused by CBI, 139–40
nitrosyl, 139
NMDA receptor binding in CBI, 139
non-cognitive behavioral complications of CBI, 384
nosology
conservative approach in neurology, 801–2
illogical approach to categorization of concussion, 37
lack of consideration of individual variation, 210
lack of valid criteria for psychiatric conditions, 346
limitations which delay understanding of CBI, 802–3
towards a rational neurological nosology, 540–42
Nottebohm, Fernando, 173
NPY gene, 392
Nrf41 gene, 145
NSE biomarker, 640, 641, 642
nuclear factor kappa B (NFκB), 763
nucleus of the solitary tract, 392
obstructive sleep apnea, 758–60
ocipital neuralgia, 732
Ohio State University TBI Identification Method, 687
olanzapine, 390
oligodendrocytes, 141
Ontario Neurotrauma Foundation (ONF) guidelines on CT scan after concussion, 602
Oppenheimier, D.R., 66–67
orbital-ventromedial prefrontal circuit (OVMPFC) role in post-TBI mood disorders, 388
orbitofrontal cortex, 388
orexin, 757, 760
disruption after CBI, 762
orexin receptor blockers, 763–64
organic/psychological dichotomy of symptoms, 12–13
non-existence of, 320–28
Osler, William, 210, 291
Osnato, Michael, 3
outcome measures. See Common Data Elements (CDEs) project
outcomes of CBI
age-related risk for poor outcomes, 343–45
APOE genotype risks to children, 315–18
arguments for and against APOE genotype testing, 313–18
bad outcome risk factors most commonly cited in studies, 318–19
barriers to understanding persistent post-CBI symptoms, 345–48
brain individuality in structure and function, 292–99
brain injury is not a disease, 290–91
brain-mind reciprocating trauma, 360
brain reserve hypothesis of social disadvantage, 356–57
changing conceptions of disease, 290–91
compensation issues, 348–55
difference between cause and risk factor, 291
different causal pathways to post-CBI symptoms, 328–29
drama of attribution, 348, 357–58
duration of impact, 301–2
effects of axonal stretch on Aβ and tau, 331–34
emergence of PTSD, 303
epigenetic influences, 306–7
evidence against localizationism, 294–99
failure to return to work, 356
female sex risk factor for poor outcomes, 337–43
finite element modeling (FEM) of CBI, 300–2
functional outcome measures, 289
gene-environment interactions, 306
gene–gene interaction, 306
gene variants which appear to influence outcome, 310–11
genetic variation in brain structure, 312
Haddon Matrix, 358–60
Head Impact Telemetry System, 300
heterogeneity of outcomes, 285–86
history of localizationism, 292–93
how brainstuff produces the different CBI symptoms, 328–29
idealized and actual recovery trajectories compared, 285–86
influence of APOE genotype, 313
influence of prior TBI(s), 329–35
influence of premorbid neuropsychiatric problems, 335–37
inherited acquisition of changes in DNA (epigenetics), 306–7
interactions between the force and individual biology, 328–29
interplay of multiple factors, 338–60
lack of a meaningful outcome measure, 11
lack of valid psychiatric nosology, 346
measures of outcomes, 289–90
non-existence of the organic/psychological dichotomy of symptoms, 328
non-linear course of recovery, 302–5
number of alternative pathways, 290
point-of-no-return theory, 334–35
post-concussion syndrome, 292
predictive value of maximal axonal strain, 302
predictive value of the force of the impact, 299–302
problems of explaining why outcomes vary, 286–87
problems with psychological explanations, 345–48
professional concussion assessors (PCDs), 346–47
recognition that there is no single outcome, 288–89
relative change from baseline, 289–90
relative change from baseline on multiple measures, 290
response bias in symptom reporting, 345–49
risk factors for persistent problems (systematic review), 319–20
risk factors for worse outcome, 291–92
risk of later Alzheimer's disease, 329–35
risk of later chronic traumatic encephalopathy (CTE), 329–35
similar forces are followed by different effects, 290
social disadvantage risk factor for poor outcome, 355–57
straw man issue of mind/body duality, 326
stress vulnerability genes, 312–13
symptoms at different follow-up times, 302–5
three-dimensional patterns of gene expression, 307–10
threshold between injury and non-injury, 334–35
transcriptomics, 305–10
uniqueness of every concussion, 360
up- and down-regulation of genes in response to CBI, 305–10
variance related to genetic factors, 350–18
variance related to time after impact, 302–5
output brainstem nuclei, 392
oxcarbazepine, 390
oxidative stress caused by CBI, 139
OXYR gene, 306
oxytocin, 767
Paaw, Peter, 40
Page, James D., 403
Pain Disability Questionnaire (PDQ), 738
Paré, Ambroise, 39–40
Parker, Harry L., 555
paroxetine, 389
paroxysmal hemicrania, 735
pathological change definition, 540
pathophysiology of CBI altered protein degradation, 72–77
ATP/ADP ratio, 140, 141, 142, 145, 146
biological definition of CBI, 58–59
clinical implications, 147–49
competition between degenerative and regenerative pathways, 144–45
complexity and individual variation, 68–72
consequences of misleading terminology and definitions, 138
consistent findings, 59
contact forces, 139
defining CBI as a disease or a biological problem, 77
defining recovery, 78–79
derangement of glucose metabolism, 140
e external force and the metabolic cascade, 138–40
from biomechanical to biochemical effects, 138–40
gene expression after CBI, 68–72
gen modulation after concussion, 144–45
goal of reducing the toll of TBI/CBI, 84
imbalance between ATP consumption and production, 140
inertial (acceleration) forces, 139
inflammatory response, 66–68
ionic cellular derangement, 139
key issues for future studies, 149
linear acceleration, 139
measuring and monitoring post-concussive metabolic imbalance, 140–43
mechanical forces involved, 139
misleading use of the term "mild", 77–78, 138
mitochondrial calcium overloading, 139
neurodegeneration, 72–77
neurometabolic cascade, 63–66
nitrosative stress, 139–40
oxidative stress, 139
possible causes of CBI symptoms, 138
post-concussive meele, 144–45
potential public health impact of CBI, 138
proteolysis of voltage-gated sodium channels, 139
release of neurotransmitters, 139
role of acetyl-CoA, 140, 141, 143
role of N-acetyl aspartate (NAA), 140–43
role of neuroglobin, 139–40
rotational acceleration, 139
second impact syndrome, 145–47
shear forces, 139
spectrum of axonal injuries, 59–63
stretch or strain forces, 139
temporary increase in glycolysis, 140
toxic accumulation, 72–77
transfer of mechanical forces, 139
vulnerability of the post-concussive brain, 145–47
window of metabolic brain vulnerability, 141–42
patient-generated barriers to understanding concussion, 212
Patient Health Questionnaire-9, 436
patients anosognosia, 216
pediatric concussion acute symptom onset and recovery, 648–49
benefits of physical activity for the brain, 666
brain changes in children with no symptoms, 646
research (cont.)
pressing research issues, 8–10
TBI research initiatives in the 21st century, 6
uncertainties which delay understanding of CBI, 802–3
response bias in CBI symptom reporting, 345–55
reticular activating system (RAS), 757
retractions bulbs of Cajal, 61
Replay tagging of bipolar disorder, 757
Rey Auditory Verbal Learning Test (RAVLT, Rey), 409
Rey-Osternieck Complex Figure Test, 21–22
Rhazes, 39
ribonucleoprotein (RNP) granules, 171–72
Richardson, Natasha, 96
Risk of Suicide
Questionnaire, 436
risperidone, 390
Rivermead Post-concussion Symptoms Questionnaire (RPSQ), 217, 289, 290, 445, 653, 744
Rockl gene, 145
roduo
concentration risk, 125–26
Rorschach Inklblot Test, 402, 403
Rotarod test, 166
rotational acceleration in CBI, 139
rugby
concentration risk, 126
Russel, Colin, 55–56
Russell, W.R., 56–58
S100B biomarker, 640, 641, 642
Sachs, Hans, 403
Scandinavian Neurotrauma Committee (SNC)
CT protocol, 602–4
Schaller, Walter, 51
Scottish Intercollegiate Guidelines Network (SIGN)
guideline on CT scan after concussion, 601
second impact syndrome, 103, 113, 145–47, 537
pediatric patients, 650
selective serotonin reuptake inhibitors (SSRIs), 385, 389
Sensory Organization Test (SOT), 676
serotonin–norepinephrine reuptake inhibitors, 389
serotonin transporter (SHTT) polymorphisms, 387
sertraline, 385, 389
serum neourolactin light (NFL) assays, 218
sex differences in CBI outcome, 380
risk of CBI, 101–2
sport-related concussion risk, 112–13
sex differences in CBI outcome differences observed in concussed brains, 341
hysteria explanation, 338
pediatric sport-related concussion, 652
risk factors, 337–43
sexual dimorphism in heads and brains, 338–40
vulnerable phase of the female menstrual cycle, 342–43
Sh3glb1 gene, 145
shear forces in CBI, 139
shear injury in TBI, 262–63
Shelden, C.H., 60
shell shock (World War I), 50–52, 53, 104, 684
single nucleotide polymorphisms (SNPs), 306, 461
Ske, F.M.T., 47
skateboarding
concentration risk, 126
skewing
concentration risk, 126
SLC6A4L gene, 392
sleep disorders after CBI atypical post-CBI sleep disorders, 738–60
changes in sleep architecture, 757–58
circadian rhythm, 757
clinical problems associated with, 761
control and regulation of sleep, 757
cytokines and sleep, 762
distinction from post-concusive fatigue, 756
genetic factors, 761–62
homeostatic sleep drive, 757
hypersomnia, 758
hypnagogic/hypnopompic hallucinations, 780
importance of sleep for CBI recovery, 756
management, 762–63
management alternatives, 763–64
management of mTBI plus PTSD nightmares, 763
melatonin and orexin disruption, 762
narcolepsy, 760
neurometabolic cascade, 762
normal sleep cycle, 757
obstructive sleep apnea, 758–60
pathophysiology, 760–61
prevalence, 758
quality of life impacts, 756–57
range of sleep disorders, 756
REM and NREM sleep, 757
role of the autonomic nervous system, 757
sleep hygiene, 750–51
sleep paralysis, 760
Smeaton, John, 803
snowboarding
concentration risk, 126
soccer
concentration risk, 126–28
effects of deliberate heading of the ball, 126–28
social disadvantage
brain reserve
hypothesis, 356–57
component risk factors, 355
failure to return to work, 356
inequality, 355
low socioeconomic status (SES), 356
minority status, 355–56
neurobiology of, 356–57
poor social support, 355
poverty, 357
race, 355–56
risk factor for poor outcome in CBI, 355–57
underlying mechanisms of social stress, 355–56
unmarried status, 355, 356
why it is associated with worse outcome for CBI, 356–57
social support
role in human CBI recovery, 167
Society for Behavioral and Cognitive Neurology, 416
somatic symptoms disorder (SSD), DSM-5, 3, 347
somatoform disorders, 346
SPECT (single photon emission computed tomography), 277
spectrin breakdown products (SBDPs), biomarkers, 641
all-spectrin breakdown products (SBDPs), 641
Spencer, Herbert, 295
Spiering, Stefan, 25
Sport Concussion Assessment Questionnaire (SCAT-3), 675
soccer
concentration risk, 126–28
effects of deliberate heading of the ball, 126–28
social disadvantage
brain reserve
hypothesis, 356–57
component risk factors, 355
failure to return to work, 356
inequality, 355
low socioeconomic status (SES), 356
minority status, 355–56
neurobiology of, 356–57
poor social support, 355
poverty, 357
race, 355–56
risk factor for poor outcome in CBI, 355–57
underlying mechanisms of social stress, 355–56
unmarried status, 355, 356
why it is associated with worse outcome for CBI, 356–57
social support
role in human CBI recovery, 167
Society for Behavioral and Cognitive Neurology, 416
somatic symptoms disorder (SSD), DSM-5, 3, 347
somatoform disorders, 346
SPECT (single photon emission computed tomography), 277
spectrin breakdown products (SBDPs), biomarkers, 641
all-spectrin breakdown products (SBDPs), 641
Spencer, Herbert, 295
Sport Concussion Assessment Tool - 3rd edition (SCAT-3), 675
sport-related concussion activity–related differences in risk, 113
age-related risk factors, 111–12
all-terrain vehicle riding, 114
annual rates of concussions in sports, 111
approach to diagnosis, 672
awareness and responsibility for long-term damage caused, 315–18
Balance Error Scoring System (BESS), 673–75
barriers to epidemiological assessment, 109–10
basketball, 114
baseball, 114
bicycling, 114–18
boxing, 118
cheerleading, 118
clinical and laboratory tools, 675
Common Data Elements (CDEs) outcome measures, 696
diffusion tensor imaging (DTI), 678–79
electroencephalography (EEG), 678
equestrian sports, 118–19
event-related potentials (ERPs), 678
football (American style), 119–23
functional MRI (fMRI), 678–79
gait measures, 677
genetic susceptibility in children, 315–18
Head Health Initiative, 7
ice hockey, 123–24
implications of exposing children to likely brain injury, 127–28
incidence in pediatric patients, 646
karate, 124
lack of recognition of the problem of brain injury, 108–9
lacrosse, 124–25
late effects of pediatric concussion, 665–66
legal implication, 127–28
limitations of neuropsychological testing, 124
martial arts, 124
Military Acute Concussion Evaluation (MACE), 673
multi-modal concussion assessment battery, 677
neuropsychological assessment tools, 677–79
neuropsychological testing, 675–77
on-field evaluation, 672
pressures on athletes not to report concussion and symptoms, 25–26
rate of CBI incidence in various sports, 113–17
rate of CBI recurrence in various sports, 113–17
relative incidence in various sports, 113–14
repeat-unti-demented cycle, 104
risk of recurrence, 103–4
risk of recurrent concussions, 113
risks associated with APOE genotype, 315–18
rodes, 125–26
rugby, 126

© in this web service Cambridge University Press
www.cambridge.org
Index

- treatment research systematic review (cont.)
- physical therapy interventions, 790
- psychotherapy, 788–89
- results, 783–91
- sampling subpopulations, 793
- search strategy, 782
- sensitivity of assessment measures, 792–93
- study quality evaluation, 783
- tricyclic antidepressants (TCAs), 389
- Trotter, Wilfred Batten Lewis, 53–54, 55, 57, 58
- Tsc22d3 gene, 145
- tumor necrosis factor (TNF), 762
- twin studies differences in the brains of MZ twins, 294–95
- U.S. Centers for Disease Control, 95
- CDC Blue Book, 97
- definition of concussion, 83
- ubiquitin C-terminal hydrolase-L1 (UCHL1) biomarker, 641
- United Council for Neurologic Subspecialties (UCNS), 416
- unreported cases of CBI, 96
- estimates of numbers, 100
- valproate, 385, 390
- van Leeuwenhoek, Anton, 45
- variable number tandem repeats (VNTRs), 306, 461
- Vdac1 gene, 145
- Vegfa gene, 145
- ventrolateral prefrontal cortex, 388
- ventromedial prefrontal cortex, 179
- Veterans Administration/Department of Defense (VA/DoD) guideline on CT scan after concussion, 601
- Vietnam Head Injury Study, 6
- virtual reality (VR) testing environment, 676–77
- Visual Analogue Scale for Fatigue (VAS-F), 748
- Wailoo, Keith, 25
- Wallace, Alfred Russell, 305
- war neurasthenia (World War I), 684
- war neurosis (World War I), 684
- water consumption dysregulation at er TBI, 751
- Wechsler, David, 403
- Weight Drop Acceleration Injury Model (WDAI), 160–61
- Wernicke, Carl, 293, 296, 401
- Western medicine approach to concussion assessment, 210–12
- white matter assessing damage in TBI, 262–63
- spectrum of axonal injuries in CBI, 59–63
- Willis, Thomas
- brains mediate mental functions (1664), 209, 328
- Witkowski, L., 46
- workers’ injury compensation schemes effects on views of concussion, 47–49
- World Health Organization, 95, 96, 98
- definition of mTBI, 84
- prognosis for mTBI, 14
- World War I blast injury victims, 53
- head injury casualties, 50–52
- shell shock, 50–52, 53, 104, 684
- World War II post-concussion syndrome or neurosis, 684
- wrestling concussion risk, 127
- Wundt, Wilhelm, 401
- Zangwill, Oliver, 403–4
- ziprasidone, 390