

FLUID DYNAMICS

This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied mathematics, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study.

The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter S. Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function.

Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion, including developing flow simulations based on techniques described in the book.

Peter S. Bernard has 35 years' experience teaching graduate-level fluid mechanics at the University of Maryland. He is a Fellow of the American Physical Society and Associate Fellow of the American Institute of Aeronautics and Astronautics. In addition to his many research articles devoted to the physics and computation of turbulent flow, he is the coauthor of the highly regarded volume *Turbulent Flow: Analysis, Measurement, and Prediction*.

Fluid Dynamics

Peter S. Bernard

University of Maryland

CAMBRIDGEUNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107071575

© Peter S. Bernard 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data Bernard, Peter S., author.

Fluid dynamics / Peter S. Bernard, University of Maryland. pages cm

Includes bibliographical references and index.

ISBN 978-1-107-07157-5 (hardback)

1. Fluid dynamics. I. Title.

QC151.B387 2015

532'.05-dc23 2014044742

ISBN 978-1-107-07157-5 Hardback

Additional resources for this publication at www.cambridge.org/bernard

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To my wife, Susan Bradshaw Sullivan

Contents

Pre	face		page xi
1	Int	oduction	1
	1.1	What Is a Fluid?	1
	1.2	Molecular Structure and the Continuum Hypothesis	1
		Dilatation and Vorticity	4
	1.4	The Big Picture	5
	1.5	Vector and Tensor Analysis	7
		1.5.1 Vectors	8
		1.5.2 Tensors	9
		1.5.3 Skew Tensors	10
		1.5.4 Gradient Tensor	11
		1.5.5 Basis Vectors and Change of Coordinates	12
2	Eul	erian and Lagrangian Viewpoints, Paths, and Streamlines	15
	2.1	Eulerian versus Lagrangian Viewpoints	15
	2.2	Fluid Particle Paths	15
	2.3	Curves	18
	2.4	Streamlines	21
3	Str	eam Function	24
	3.1	Two-Dimensional Planar Flow	24
	3.2	Axisymmetric Flow	30
4	He	mholtz Decomposition	36
	4.1	Three-Dimensional Flow	36
	4.2	Bounded Domains	38
	4.3	Two-Dimensional Flow	40
5	Sou	rces, Sinks, and Vortices	44
	5.1	Sources and Sinks in Two Dimensions	44
	5.2	Point Vortices	46

vii

viii Contents

	5.3	Accommodating Boundaries in Two Dimensions	48
	5.4	Sources and Sinks in Three Dimensions	51
6	Dou	ıblets and Their Applications	57
	6.1	Three-Dimensional Source/Sink Doublet	57
	6.2	Doublets in Two Dimensions	61
7	Con	nplex Potential	65
	7.1	Connection to Complex Analysis	65
	7.2	Flows Derived from a Power Law	67
		Forces in 2D Potential Flows	71
	7.4	Inviscid Flow Past a Cylinder	75
8	Acc	elerating Reference Frames	82
	8.1	Orientation	83
	8.2	Position Vector	85
		Velocity	86
	8.4	Acceleration and Fictitious Forces	89
9	Flui	ds at Rest	91
	9.1	Forces in a Fluid at Rest	91
		9.1.1 Micromanometer	94
		9.1.2 Force on a Dam	95
	9.2	Buoyancy	96
	9.3	Accelerating Fluids at Rest	97
		9.3.1 Accelerating Fish Tank9.3.2 Rotating Bucket	98 99
10	Inco	ompressibility and Mass Conservation	. 104
	10.1	Some Useful Mathematics	104
	10.2	Incompressibility	106
	10.3	Mass Conservation	107
11	Stre	ss Tensor: Existence and Symmetry	. 110
	11.1	Existence of the Stress Tensor	110
	11.2	Symmetry of the Stress Tensor	112
12	Stre	ss Tensor in Newtonian Fluids	. 116
	12.1	Relative Fluid Motion at a Point	116
	12.2	The Stress Tensor	120
13	Nav	ier-Stokes Equation	. 126
	13.1	Rate of Change of Momentum	126
	13.2	Surface Forces	127
	13.3	The Navier-Stokes Equation	128

Contents ix

14	Thermodynamic Considerations	131		
	14.1 Overview	131		
	14.2 First Law of Thermodynamics	132		
	14.3 Perfect Gases	137		
15	Energy Equation	140		
16	Complete Equations of Motion	. 147		
	16.1 Differential Equations of Fluid Flow	147		
	16.2 Bernoulli Equation	148		
	16.2.1 Bernoulli Equation for Steady Flow	149		
	16.2.2 Bernoulli Equation for Nonsteady Flow	151		
	16.2.3 Crocco's Relation	152		
	16.3 Control Volume Equations	153		
	16.3.1 Mass Conservation	153		
	16.3.2 Momentum Conservation	154		
	16.3.3 Conservation of Angular Momentum	157		
	16.3.4 Conservation of Energy	158		
17	Applications of Bernoulli's Equation and Control Volumes	160		
	17.1 Fluid Impinging on a Plate	160		
	17.2 Draining a Tank	165		
	17.3 Water Sprinkler	168		
18	Vorticity			
	18.1 Vorticity Equation	173		
	18.2 Vortex Stretching and Reorientation	175		
	18.3 Kelvin's Circulation Theorem	178		
	18.4 2D Vortex Methods	180		
	18.5 Simulation of a Wing Wake	183		
19	Applications to Viscous Flow	. 188		
	19.1 The Reynolds Number	188		
	19.2 Unidirectional Flow	190		
	19.3 Flow in a Narrow Gap	191		
	19.4 Stokes Flow Past a Sphere	194		
	19.4.1 Problem Formulation	195		
	19.4.2 An Equation for the Stream Function	195		
	19.4.3 Solution for Stokes Flow	196		
	19.4.4 Forces on the Sphere	199		
	19.4.5 Self-Consistency of the Solution	200		
	19.5 Motion of a Sphere at Higher Reynolds Numbers	201		
20	Laminar Boundary Layers	. 211		
	20.1 Boundary Layer Scaling	212		
	20.1 Boundary Layer Scaling20.2 Blasius Boundary Layer	212 214		

x Contents

21	Som	ne Applications to Convective Heat and Mass Transfer	225
	21.1	A Thermal Boundary Layer	225
		Monte Carlo Schemes for Modeling Convective Diffusion	229
		21.2.1 Probabilistic Interpretation of Diffusion	229
		21.2.2 Monte Carlo Model of Diffusion	230
		21.2.3 Monte Carlo Simulation Including Convection	232
		21.2.4 Monte Carlo Solution to a Thermal Boundary Layer	233
API	PPENDIX A: Equations in Curvilinear Coordinates		239
	A .1	Polar Coordinates	239
	A.2	Cylindrical Coordinates	240
	A.3	Spherical Coordinates	240
AP	PENI	DIX B: Tensors	242
	B.1	Divergence of a Tensor	242
		Vector Cross	243
	B.3	Principal Directions	244
Bib	liogra	nphy	247
Indi	or		240

Preface

This book is inspired by a graduate-level course in fluid dynamics that I have taught at the University of Maryland for many years. The typical student taking this course, which is the starting point for graduate studies in fluid mechanics, has had one undergraduate course on fluids and a limited exposure to vector and tensor analysis. Consequently, the goal of this book is to provide a background in the physics and mathematics of fluid mechanics necessary for the pursuit of advanced studies and research at the graduate level. It is my experience that an effective route to these objectives is via a synthesis of the best features of two very excellent books, namely, An Introduction to Fluid Dynamics by George Batchelor, which presents the physics of fluid mechanics with exceptional clarity, and An Introduction to Continuum Mechanics by M. E. Gurtin (and now expanded and revised as The Mechanics and Thermodynamics of Continua by Gurtin, Fried, and Anand), which demonstrates the advantages of direct tensor notation in simplifying the expression of physical laws. Thus, to a large extent, this book combines the physics of Batchelor with the mathematics of Gurtin. The hope is that, in this way, an environment is created that helps make the subject of fluid dynamics clear, focused, and readily understandable. As a practical matter, this book should serve as an effective stepping-stone for new graduate students to enhance their accessibility to the books by Batchelor and Gurtin as well as those by many others.

Stylistically, this book follows an arc through the material that builds steadily toward the derivation and then application of the Navier-Stokes equations. The sequence of topics is also chosen so as to provide some significant exposure to examples of fluid flow and problem solving, before a relatively long and unavoidable set of chapters that deal in detail with the derivation of the flow equations. Most of what is in this book is covered in a one-semester course at Maryland, and no attempt is made to provide the depth of topics covered by Batchelor or Gurtin nor the comprehensive treatment of the subject matter typically found in other advanced textbooks. After studying this book, it is hoped that students will be well prepared to venture in any number of directions into more specialized and advanced topics in fluid dynamics.

Among the topics in the book, some represent a review of subjects normally encountered in undergraduate fluids courses (e.g., Chapter 9, on fluids at rest). This is intended to keep the book self-contained, to aid in the review of this material and

xii Preface

as a needed introduction to these topics for the occasional applied math or other nonengineering student who has never previously studied fluid mechanics.

The problems at the end of the chapters attempt to reflect the graduate level of the book by pursuing directions that are often somewhat challenging rather than repeating the formulaic engineering problems that are traditional to the undergraduate curriculum. For many of the problems, students are strongly encouraged to take full advantage of high-order computer languages such as MATLAB to help derive relations via symbolic manipulation, to solve algebraic and differential equations, and to calculate and plot numerical results. For example, in the case of MATLAB, facility with using commands such as diff, int, solve, dsolve, subs, ode45, and bvp4c greatly reduces the labor necessary to solve many problems in this book. In some cases, without the power of the symbolic solvers, the difficulty in obtaining solutions can be quite formidable if attempted with pencil and paper.

Some of the material in the book is specifically designed to be a launching point for writing computer code (e.g., with MATLAB) that solves interesting flow problems and displays results in the form of animations. Such material includes Sections 18.4 and 18.5, on the discrete vortex method; Section 19.5, on the motion of a sphere and other bodies; and Section 21.2, on the use of the Monte Carlo method for simulating scalar transport in fluid flows. In each of these cases, the numerical simulations can be carried out with a modest investment in programming yet bring to life intriguing aspects of fluid flow.

The author would like to express his great appreciation to Professor Bruce Berger for his many contributions toward improving the quality and clarity of the exposition in this book. I also appreciate the insights of Carl Biagetti of the Space Telescope Science Institute and graduate student Eric Leonard in reading some of the chapters.