Essentials of Anesthesia for Infants and Neonates
Essentials of Anesthesia for Infants and Neonates

Edited by

Mary Ellen McCann
Harvard Medical School, Boston, MA, USA

Christine Greco
Harvard Medical School, Boston, MA, USA

Kai Matthes
Harvard Medical School, Boston, MA, USA
Contents

List of contributors page vii
Preface xi

Section 1 – Newborn and Infant Physiology for Anesthetic Management

1 The Term Infant 1
 Mary Ellen McCann

2 The Preterm Infant 10
 Lauren R. Kelly Ugarte and Thomas J. Mancuso

3 Origin of the NICU 19
 Amy Vinson

4 Hemodynamics in the Infant 32
 Viviane G. Nasr and James A. DiNardo

5 Measures of Carbon Dioxide 38
 Lawrence Rhein

6 Glucose Control 45
 Monica Hoagland

7 Oxygen Management: Concerns About Both Hyperoxia and Hypoxia in Neonates During Critical Care and Intraoperatively 51
 Augusto Sola

8 Temperature Control 62
 Benjamin Kloesel and Laura Downey

9 Neonatal Resuscitation 69
 Monica E. Kleinman

10 Congenital Abnormalities and Syndromes 76
 Katherine R. Gentry and Anne M. Lynn

11 Myopathies of the Newborn 91
 Vincent Hsieh and Phil G. Morgan

Section 2 – Newborn and Infant Anesthesia

12 Preoperative Preparation 99
 Lynne R. Ferrari

13 Developmental Pharmacology: The Neonate 109
 Cynthia Tung and Robert S. Holzman

14 The Newborn Airway 124
 Shivani S. Patel and Narasimhan Jagannathan

15 Fluid and Transfusion Management 137
 Justin Long, Tiffany Frazee, and Hubert Benzon

16 Neonatal Ventilation Strategies 157
 Gerhard K. Wolf

17 Anesthetic-Induced Neurotoxicity 163
 Dusica Bajic and Sulpicio G. Soriano

18 New Anesthetic Agents on the Horizon 171
 Thomas Weismueller and Kai Matthes

19 Monitoring of the Newborn and Young Infant Under Anesthesia 175
 Michael R. King, Samuel Rodriguez, and Kathleen Chen

Section 3 – Specific Newborn and Infant Procedures

20 Anesthesia for Neurosurgical Procedures 191
 Roby Sebastian and Craig D. McClain

21 Anesthesia for Otolaryngologic Procedures in Infants and Neonates 199
 T. Anthony Anderson, Richard Anderson, and Charles Nargozian
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Anesthesia for Plastic Surgery</td>
<td>211</td>
</tr>
<tr>
<td>23</td>
<td>Anesthesia for Abdominal Wall Reconstruction Procedures</td>
<td>233</td>
</tr>
<tr>
<td>24</td>
<td>Anesthesia for Intra-Abdominal Procedures</td>
<td>242</td>
</tr>
<tr>
<td>25</td>
<td>Anesthesia for Urologic Surgery</td>
<td>252</td>
</tr>
<tr>
<td>26</td>
<td>Anesthesia for Thoracic Surgery</td>
<td>264</td>
</tr>
<tr>
<td>27</td>
<td>Congenital Diaphragmatic Hernia</td>
<td>276</td>
</tr>
<tr>
<td>28</td>
<td>Congenital Heart Disease in the Neonate and Infant: Cardiac Catheterization and Cardiac Surgery</td>
<td>280</td>
</tr>
<tr>
<td>29</td>
<td>Noncardiac Surgery in Neonates and Infants With Cardiac Disease</td>
<td>302</td>
</tr>
<tr>
<td>30</td>
<td>Neonatal and Infant Tumors</td>
<td>321</td>
</tr>
<tr>
<td>31</td>
<td>Anesthesia for Transplant Surgery</td>
<td>332</td>
</tr>
<tr>
<td>32</td>
<td>Anesthesia for Interventional Radiology Procedures</td>
<td>340</td>
</tr>
<tr>
<td>33</td>
<td>Anesthesia for Conjoined Twins</td>
<td>347</td>
</tr>
<tr>
<td>34</td>
<td>Anesthesia for Fetal Surgery</td>
<td>354</td>
</tr>
<tr>
<td>35</td>
<td>Pain Management in Neonates and Infants</td>
<td>369</td>
</tr>
<tr>
<td>36</td>
<td>Regional Anesthesia in Neonates and Infants</td>
<td>382</td>
</tr>
<tr>
<td>37</td>
<td>Procedural Sedation</td>
<td>398</td>
</tr>
<tr>
<td>38</td>
<td>Ambulatory Anesthesia in Infants</td>
<td>405</td>
</tr>
<tr>
<td>39</td>
<td>Apnea and Bradycardia</td>
<td>410</td>
</tr>
<tr>
<td>40</td>
<td>Neonatal Outcomes</td>
<td>415</td>
</tr>
<tr>
<td>41</td>
<td>Research on Newborns and Infants</td>
<td>426</td>
</tr>
</tbody>
</table>

Section 4 – Pain Management and Other Newborn and Infant Anesthesia Concerns

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Pain Management in Neonates and Infants</td>
<td>369</td>
</tr>
<tr>
<td>36</td>
<td>Regional Anesthesia in Neonates and Infants</td>
<td>382</td>
</tr>
<tr>
<td>37</td>
<td>Procedural Sedation</td>
<td>398</td>
</tr>
<tr>
<td>38</td>
<td>Ambulatory Anesthesia in Infants</td>
<td>405</td>
</tr>
<tr>
<td>39</td>
<td>Apnea and Bradycardia</td>
<td>410</td>
</tr>
<tr>
<td>40</td>
<td>Neonatal Outcomes</td>
<td>415</td>
</tr>
<tr>
<td>41</td>
<td>Research on Newborns and Infants</td>
<td>426</td>
</tr>
</tbody>
</table>

Index 439
Contributors

Richard Anderson, MD
Massachusetts General Hospital; Harvard Medical School, Boston, MA, USA

T. Anthony Anderson, MD, PhD
Massachusetts General Hospital; Harvard Medical School, Boston, MA, USA

Philip D. Bailey, DO
The Children's Hospital of Philadelphia, Philadelphia, PA, USA

Dusica Bajic, MD, PhD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Hubert Benzon, MD
Ann & Robert H. Lurie Children's Hospital of Chicago; Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Charles Berde, MD, PhD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Karen Boretsky, MD
Boston Children's Hospital, Boston, MA, USA

Morgan L. Brown, PhD, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Linda A. Bulich, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Evan Burke, MD
Hasbro Children's Hospital and Rhode Island Hospital; The Warren Alpert Medical School of Brown University, Providence, RI, USA

Kathleen Chen, MD
Boston Children's Hospital, Boston, MA, USA

Ellen Choi, MD
David Geffen School of Medicine, University of California, Los Angeles, CA, USA

Franklyn Cladis, MD, FAAP
University of Pittsburgh Medical Center, Pittsburgh, PA, USA

Edward Cooper, MD
Boston Children's Hospital, Boston, MA, USA

Joseph P. Cravero, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

James A. DiNardo, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Laura Downey, MD
Boston Children's Hospital, Boston, MA, USA

Elizabeth C. Eastburn, DO
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Lynne R. Ferrari, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Tiffany Frazee, MD
Children's Hospital Los Angeles; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

Katherine R. Gentry, MD
Seattle Children's Hospital; University of Washington School of Medicine, Seattle, WA, USA
Contributors

Jessica A. George, MD
Johns Hopkins University, Baltimore, MD, USA

Christine Greco, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Monica Hoagland, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Robert S. Holzman, MD, MA (Hon.), FAAP
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Vincent Hsieh, MD
Seattle Children's Hospital; The University of Washington, Seattle, WA, USA

Narasimhan Jagannathan, MD
Ann & Robert H. Lurie Children's Hospital of Chicago; Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Deepa Kattail, MD
Johns Hopkins University School of Medicine, Baltimore, MD, USA

Lauren R. Kelly Ugarte, MA, MD, FAAP
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Michael R. King, MD
Ann & Robert H. Lurie Children's Hospital of Chicago; Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Monica E. Kleinman, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Benjamin Kloesel, MD
University of Minnesota, Minneapolis, MN, USA

Mary Landrigan-Ossar, MD, PhD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Laura H. Leduc, MD
The Greenville Health System, Greenville, SC, USA

Justin Long, MD, FAAP
Children's Healthcare of Atlanta at Egleston Children's Hospital; Emory University School of Medicine, Atlanta, GA, USA

Anne M. Lynn, MD
Seattle Children's Hospital; University of Washington School of Medicine, Seattle, WA, USA

Thomas J. Mancuso, MD, FAAP
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Kai Matthes, MD, PhD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Lynne G. Maxwell, MD
The Children's Hospital of Philadelphia; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Mary Ellen McCann, MD, MPH
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Craig D. McClain, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Petra M. Meier, MD, DEAA
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Arielle Y. Mizrahi-Arnaud, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Phil G. Morgan, MD
Seattle Children's Hospital; The University of Washington, Seattle, WA, USA

Bridget L. Muldowney, MD
University of Wisconsin School of Medicine and Public Health, Madison, WI, USA

Charles Nargozian, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA
Contributors

Viviane G. Nasr, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Kirsten C. Odegard, MD
Boston Children's Hospital, Boston, MA, USA

Raymond Park, MD
Boston Children's Hospital, Boston, MA, USA

Shivani S. Patel
Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Sharon Redd, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Lawrence Rhein, MD
Boston Children's Hospital, Boston, MA, USA

Samuel Rodriguez, MD
Boston Children's Hospital, Boston, MA, USA

Ethan Sanford, MD
Boston Children's Hospital, Boston, MA, USA

Puneet Sayal, MD
Massachusetts General Hospital, Boston, MA, USA

Annette Y. Schure, MD, DEAA
Boston Children's Hospital, Boston, MA, USA

Roby Sebastian
Nationwide Children's Hospital, Columbus, OH, USA

Augusto Sola, MD
New York Medical College, Valhalla, NY, USA; Maimonides University, Buenos Aires, Argentina; Universidad del Norte, Barranquilla, Colombia

Sulpicio G. Soriano, MD
Boston Children's Hospital, Boston, MA, USA

Patcharee Sriswasdi, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Cornelius A. Sullivan, MD, FACS
Boston Children's Hospital, Boston, MA, USA

Kha M. Tran, MD
The Children's Hospital of Philadelphia, Philadelphia, PA, USA

Cynthia Tung, MD, MPH
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Amy Vinson, MD
Boston Children's Hospital; Harvard Medical School, Boston, MA, USA

Samuel H. Wald, MD, MBA
Stanford University, Stanford, CA, USA

Thomas Weismueller, MD
Brigham and Women's Hospital, Boston, MA, USA

Gerhard K. Wolf, MD, PhD
Ludwig-Maximilians-University, Munich, Germany; Children's Hospital Traunstein, Traunstein, Germany

Myron Yaster, MD
University of Colorado Denver; Children's Hospital Colorado, Aurora, CO, USA
The mortality of infants in the United States during the last 100 years has decreased from approximately 100 infants for every 1000 births to about 7 infants for every 1000 births. Most of the decline in infant mortality has been due to improvements in medical care, sanitation, improved standards of living, and better nutrition. But relatively speaking, infancy is still the time of highest mortality during childhood. In some studies, almost 10 percent of children will undergo an anesthetic in the first year of life. The leading cause of neonatal death is prematurity, accounting for 30 percent of all deaths in the first month of life. The leading cause of infant death is congenital cardiac disease, with about 25 percent of neonatal deaths attributed to heart defects.

There are great concerns within the pediatric anesthesia community about effects of anesthetic exposure during infancy on long-term neurologic development in humans. Many juvenile animal studies have shown that exposure to a wide variety of general anesthetics and sedatives at a young age lead to widespread neuroapoptosis and brain cell death. In addition, when these exposed animals are allowed to reach maturity, they demonstrate learning difficulties. Several human studies have shown an association between anesthetic exposure before the age of four years and later neurocognitive deficits. It is not clear that general anesthetic exposure causes learning disabilities or is just a marker for other possible causes, such as the effects of the surgery itself or the underlying reasons that these young children require surgery.

There is ongoing research in humans to try to determine whether general anesthesia is neurotoxic. The epidemiologic studies have been confounded by the effects of surgery and presurgical pathology on the neurodevelopment of babies. Prospective studies examining the effects of general anesthesia on human development have shown that there are great hemodynamic differences between general anesthesia compared with awake regional anesthesia in young infants. Physiologically there are great differences in infants compared to older children and adults, which may not always be intuitive to anesthesiologists who do not routinely care for very young infants. It is very possible that aspects of general anesthesia other than neurotoxicity may predispose young infants to later learning disabilities. Other factors might include overwarming the infants, hypopcapnia and hypotension under anesthesia, and hypo- or hyperglycemia. Over the last ten years there has been lots of research that has demonstrated the importance of hemodynamic and other physiologic variables in the care of newborns in critical care nurseries and the operating room.

This textbook focuses on the practical aspects of anesthesia care for our youngest patients. Interwoven through the chapters is information about the development and changing physiology of infants and how this should impact anesthetic practice. The chapters are written by nationally recognized experts in their topics who focus on state-of-the-art, evidence-based practice.