Cambridge University Press 978-1-107-06975-6 - Thermodynamics with Chemical Engineering Applications Elias I. Franses Frontmatter More information

Thermodynamics with Chemical Engineering Applications

Master the principles of thermodynamics with this comprehensive undergraduate textbook, carefully developed to provide students of chemical engineering and chemistry with a deep and intuitive understanding of the practical applications of these fundamental ideas and principles.

- Logical and lucid explanations introduce core thermodynamic concepts in the context of their measurement and experimental origin, giving students a thorough understanding of how theoretical concepts apply to practical situations.
- Numerous real-world applications relate key topics to contemporary issues, such as energy efficiency, environmental engineering, and climate change, and further reinforce students' understanding of the core material.
- A carefully organized, highly pedagogical treatment, including over 500 open-ended study questions for discussion, over 150 varied homework problems, and clear and objective standards for measuring student progress.

Elias I. Franses has been a Professor of Chemical Engineering at Purdue University for over 30 years. An expert in thermodynamics, he has taught numerous courses on this topic to chemical engineering students of all levels.

Cambridge Series in Chemical Engineering

Series Editor Arvind Varma, Purdue University

Editorial Board

Christopher Bowman, University of Colorado Edward Cussler, University of Minnesota Chaitan Khosla, Stanford University Athanassios Z. Panagiotopoulos, Princeton University Gregory Stephanopoulos, Massachusetts Institute of Technology Jackie Ying, Institute of Bioengineering and Nanotechnology, Singapore

Books in series

Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems Chau, Process Control: A First Course with MATLAB Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition Cussler and Moggridge, Chemical Product Design, Second Edition De Pablo and Schieber, Molecular Engineering Thermodynamics Denn, Chemical Engineering: An Introduction Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction Fan and Zhu, Principles of Gas-Solid Flows Fox, Computational Models for Turbulent Reacting Flows Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes Lim and Shin, Fed-Batch Cultures: Principles and Applications of Semi-Batch Bioreactors Marchisio and Fox, Computational Models for Polydisperse Particulate and Multiphase Systems Mewis and Wagner, Colloidal Suspension Rheology Morbidelli, Gavriilidis, and Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes Noble and Terry, Principles of Chemical Separations with Environmental Applications Orbey and Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and their Mixing Rules Petyluk, Distillation Theory and its Applications to Optimal Design of Separation Units Rao and Nott, An Introduction to Granular Flow Russell, Robinson, and Wagner, Mass and Heat Transfer: Analysis of Mass Contactors and Heat Exchangers Schobert, Chemistry of Fossil Fuels and Biofuels Sirkar, Separation of Molecules, Macromolecules and Particles: Principles, Phenomena and Processes Slattery, Advanced Transport Phenomena Varma, Morbidelli, and Wu, Parametric Sensitivity in Chemical Systems

"This book offers a refreshing pedagogical approach to thermodynamics and is very valuable for chemical and mechanical engineers alike. Its modern examples go beyond traditional thermodynamics and provide students with insight into 21st century macroscopic and microscopic phenomena. Many detailed examples and study questions will encourage independent learning and will enforce the application of fundamental concepts."

Jochen Lauterbach University of South Carolina Cambridge University Press 978-1-107-06975-6 - Thermodynamics with Chemical Engineering Applications Elias I. Franses Frontmatter More information

Cambridge University Press 978-1-107-06975-6 - Thermodynamics with Chemical Engineering Applications Elias I. Franses Frontmatter More information

Thermodynamics with Chemical Engineering Applications

ELIAS I. FRANSES Purdue University

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107069756

© E. I. Franses 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Franses, Elias I.
Thermodynamics with chemical engineering applications / Elias I. Franses, Purdue University. pages cm - (Cambridge series in chemical engineering)
Includes bibliographical references and index.
ISBN 978-1-107-06975-6 (Hardback)
1. Thermochemistry. 2. Thermodynamics–Industrial applications. 3. Chemical engineering. I. Title.
QD511.F737 2014
541'.36-dc23 2014006002

ISBN 978-1-107-06975-6 Hardback

Additional resources for this publication at www.cambridge.org/fransesthermodynamics

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-06975-6 - Thermodynamics with Chemical Engineering Applications Elias I. Franses Frontmatter More information

In loving memory of Iosafat S. Franses, Linda I. Franses, and Ying-Chuen Wang.

And to Linda, Joseph, Nikki, Alex, and William, who liven up my life every day.

Cambridge University Press 978-1-107-06975-6 - Thermodynamics with Chemical Engineering Applications Elias I. Franses Frontmatter More information

CONTENTS

	Preface and acknowledgments	<i>page</i> xix
	List of symbols	xxi
1	Introduction and synopsis	1
•	1.1 Scope and importance of thermodynamics	1
	1.2 Bases and validity of thermodynamics	1
	1.3 Goals of the book	2
	1.4 Macroscopic, microscopic, and molecular aspects of thermodynamics	3
	1.5 Summary of the key principles of thermodynamics	4
	1.6 Equilibrium and non-equilibrium effects in thermodynamic analysis	5
	1.7 Overview of the book	6
	1.7.1 What this book covers	6
	1.7.2 What this book does not cover	10
	1.8 Some metrics for learning and understanding thermodynamics	12
2	Problems and concepts at the interface of mechanics and thermodynamics	14
	2.1 Spatial distributions in gravity of pressure, density, and temperature for	
	liquids or gases	14
	2.1.1 Pressure distributions in incompressible liquids at a fixed temperature	14
	2.1.2 Compressible liquids	17
	2.1.3 Pressure, density, and temperature distributions in gases	18
	2.1.4 Summary	26
	2.2 A review of key concepts and some principles of mechanics: length, time, and mas	s 27
	2.3 A review of forces: definitions and types	28
	2.4 Area, volume, velocity, and acceleration	30
	2.5 Pressure and stress	32
	2.6 Mechanical work	35
	2.7 Mechanical energy: potential energy and kinetic energy	37
	2.8 Energy units	39
	2.9 Other forms of work and of energy	40
	Summary	41
	Study questions	42
	Problems	44

Х

Contents

3	Phases, interfaces, dispersions, and the first three principles of thermodynamics	47
	3.1 Introduction	47
	3.2 "Equilibrium" and "non-equilibrium" phases	47
	3.3 Types of phases: gases, liquids, and solids	50
	3.3.1 Amorphous solid phases	52
	3.4 Other types of phases: liquid crystals	53
	3.5 Phase transitions and phase equilibria	55
	3.6 Phase boundaries, interfacial regions, interfaces, and surfaces	58
	3.7 Biphasic dispersions, colloidal dispersions ("colloids") and dispersions of nanoparticles	59
	3.8 Extensive and intensive properties of a phase	61
	3.9 The first two major principles of thermodynamics	61
	3.10 The Zeroth Law and the concept of the empirical temperature θ	62
	3.11 Equations of state	65
	3.12 Ideal gas temperature	66
	Summary	67
	Study questions	67
	Problems	69
4	Internal energy, the First Law, heat, conservation of total energy,	
-	mass and energy balances, enthalpy, and heat capacities	70
	4.1 Internal energy, U, the First Law, and heat	70
	4.1.1 Joule's experiments. Evidence for the existence of internal energy	70
	4.1.2 The first postulate of the First Law	71
	4.1.3 The first generalization of the First Law and the principle of conservation	
	of total energy	72
	4.1.4 Definition and measurement of heat, Q , and further generalizations of the First Law	72
	4.1.5 Generalized First Law and generalized energy conservation principle for	
	closed systems in time derivative form and in differential form	75
	4.1.6 Exact differentials of state thermodynamic functions and inexact	
	differentials of path-dependent thermodynamic quantities	76
	4.2 Convection of energy, convective heat transfer, and mass/energy balances	
	for open systems	83
	4.2.1 Convection of energy	83
	4.2.2 Mass and energy balances for open systems. Elementary coverage	84
	4.2.3 Mass and energy balances. Advanced treatment and use of the enthalpy function	89
	4.2.4 Enthalpy function. Definition and measurement	92
	4.3 Heat capacities	93
	4.3.1 Definitions and measurements of heat capacities	93
	4.3.2 Values of measured heat capacities for various systems, gases, liquids	
	and solids, and their interpretations	95
	Summary	99
	Study questions	100
	Problems	102

		Contents	xi
5	Equa	ations of state for one-component and multicomponent systems	103
	5.1	Introduction and measurements	103
		5.1.1 Examples of equations of state	104
	5.2	The ideal gas equation of state and its molecular interpretation	105
	5.3	Nonideal gas equations of state: the van der Waals equation and its	
		molecular interpretation	109
		5.3.1 Additional notes on the van der Waals equation of state	
		(for the advanced student)	112
	5.4	Vapor pressure. Definition, measurements, and applications	116
		5.4.1 Definition and measurements	116
		5.4.2 Equations for $p^{\circ}(T)$	117
		5.4.3 Applications of vapor pressure data	118
	5.5	Use of the van der Waals equation of state to predict vapor pressures	
		and molar volumes of vapor and liquid phases at equilibrium	120
	5.6	Other equations of state for nonideal gases and vapor-liquid systems	122
	5.7	The corresponding states principle and generalized correlations for gases, vapors,	
		and liquids	125
	5.8	Equations of state for liquids and solids	126
	5.9	Specific volume and equation of state of one-component biphasic systems. Wet steam	127
	5.10	Partial pressures and ideal gas mixtures	129
	5.11	Absolute and relative humidity of air	129
	5.12	Ideal and nonideal gas, liquid, and solid solutions. Molar volume, volume	101
	C 10	of mixing, and partial molar volumes	131
	5.13 S	Equations of state for gas mixtures and vapor-liquid biphasic mixtures	135
	Sum	mary	135
	Droh	loms	130
	F100		157
6	Арр	lications of the mass and energy balances and the equations of	
	stat	e to several classes of thermodynamic problems	139
	6.1	Introduction	139
	6.2	Closed systems. Expansion of an ideal gas	140
	6.3	Closed systems. Problems with nonideal gases, liquids, and wet steam	147
		6.3.1 Isothermal, reversible, non-adiabatic expansion of a nonideal gas	147
		6.3.2 Mixing in an isolated vessel	147
		6.3.3 Heating of a liquid in an electrical pot. The "coffee-pot" problem	150
	6.4	Open systems at steady state or unsteady state. General guidelines	155
	6.5	The "coffee-pot" problem for an open evaporating system	157
	6.6	Steady-state heat exchanger problems	158
		6.6.1 Introduction and general equations	158
		6.6.2 Cocurrent flow of ideal gases	159
		6.6.3 Countercurrent flow of ideal gases	160
		6.6.4 Cocurrent or countercurrent flow of liquids	160

xii Contents

	6.6.5 Heating of a liquid using steam as hot fluid	161
	6.6.6 Heating using superheated steam with complex temperature patterns	161
	6.6.7 Determining heat transfer coefficients of heat exchangers	162
	6.7 Throttling processes	166
	6.7.1 Overview and general equations	166
	6.7.2 Ideal gas	168
	6.7.3 Nearly ideal gas	168
	6.7.4 Wet steam at input, and a method for the determination of steam quality	169
	6.8 Filling and emptying a tank with gases or liquids	170
	6.8.1 Overview	170
	6.8.2 Filling an empty tank with a gas from a gas source at constant properties	170
	6.8.3 Other cases of tank filling or emptying	173
	Summary	176
	Study questions	176
	Problems	177
7	The Second Law, absolute temperature, entropy definition and calculation,	
	and entropy inequality	181
	7.1 Introduction	181
	7.2 The experimental basis of, and need to develop, the Second Law of thermodynamics	182
	7.3 The first postulate or hypothesis of the Second Law. Efficiency of heat engines	185
	7.4 Idealized heat engines, the Carnot cycle, and quantitative treatment of the energy	
	efficiency of heat engines	186
	7.5 The discovery of the thermodynamic temperature T as a universal function of the	
	empirical temperature θ	188
	7.6 The discovery that $T = T_{ideal}$ and measurement of T	190
	7.7 Ideal and actual efficiency of heat engines	192
	7.8 Using heat engines in reverse. Refrigerators air-conditioners, and heat pumps	194
	7.9 The discovery of a new state function called entropy. Definition and measurement	198
	/.10 Combination of the First and Second Laws. General method for calculating	205
	7.11 Entropy changes for adjoint is reversible and for adjoint isolity improversible.	205
	7.11 Entropy change for adiabatic reversible and for adiabatically inteversible	206
	7.12. Summary of the various various of the Second Law	200
	7.12 Summary of the various versions of the Second Law	207
	Summary	209
	Study questions	210
	Problems	210
Q	Further implications of the Second Law Introduction of the Holmholtz	
0	free energy Gibbs free energy chemical notential and applications to	
	nhase equilibria heat transfer and mass transfer	212
	8.1 Introduction	213

		Contents	xiii
	8.2	First introduction of the Helmholtz and Gibbs free energy functions.	
		First and Second Laws combined in four versions	213
	8.3	Dependence of S, U, H, A, and G on T, p, and V. Maxwell's relations	215
		8.3.1 Entropy vs. $p-V-T$	215
		8.3.2 Internal energy vs. $p-\overline{V}-T$	217
		8.3.3 Enthalpy vs. $p-\overline{V}-T$	219
		8.3.4 Helmholtz free energy vs. $p-\overline{V}-T$	219
		8.3.5 Gibbs free energy vs. $p-\overline{V}-T$	220
		8.3.6 Maxwell's relations	221
	8.4	Application to the direction of heat transfer	221
	8.5	Direction and maximum possible work for systems at fixed (m, T, V) or fixed (m, T, p)	223
	8.6	Applications to phase equilibria for one-component systems	226
	8.7	The Clapeyron equation and the Clausius-Clapeyron equation. How the temperature	
		of a phase transition varies with pressure, or how the boiling point varies with pressure	228
	8.8	Determination of vapor pressure in vapor-liquid equilibrium with Maxwell's	
		equal area construction	229
	8.9	The First and Second Laws for an open multicomponent multiphase system.	
		Introduction of the concept of the chemical potential	231
	8.10	Direction of mass transfer and phase equilibrium in one- and two-component	
		systems, in one or two phases	234
	8.11	The Gibbs phase rule	236
		8.11.1 Notes	237
	8.12	Some quantitative tests of the First and Second Laws	238
	Sum	imary	239
	Stud	y questions	240
	Prob	olems	242
9	The	rmodynamic fugacity, thermodynamic activity, and other thermodynamic	
	func	ctions (U, H, S, A, G, μ_i) of ideal and nonideal solutions	243
	9.1	Introduction	243
	9.2	Fugacity and fugacity coefficients of one-component gases, vapors, liquids, and solids	243
		9.2.1 Introduction and definition of fugacity and fugacity coefficients	243
		9.2.2 Determination of fugacity of ideal gases, nonideal gases, and vapors	245
		9.2.3 Fugacity of liquids	247
		9.2.4 Dependence of fugacity on temperature and pressure	248
		9.2.5 Summary	248
	9.3	Internal energy and enthalpy of gases, liquids, and solid solutions	249
	9.4	Entropy and Gibbs free energy of ideal gases and nonideal gas, liquid,	
		and solid solutions. Fugacities and activities in solution	252
		9.4.1 Introduction	252
		9.4.2 Ideal gas mixtures	253
		9.4.3 Fugacities and fugacity coefficients of components of nonideal gas mixtures	255
		9.4.4 Activities of components in solution and the Lewis and Randall rule	256

Х	IV

Contents

	9.4.5 Liquid or solid solutions	257
	9.4.6 New formulations of chemical potential equations in terms of fugacities or activities	258
	9.4.7 Summary	259
	9.5 Phase separation in nonideal solutions	259
	9.5.1 Introduction and solution models	259
	9.5.2 General conditions for phase separation. Spinodals and binodals	261
	9.5.3 Application to the regular solution model and other solution models	263
	9.5.4 Application to binary temperature-composition phase diagrams	265
	9.5.5 Application to ternary systems and to ternary isothermal phase diagrams	266
	Summary	270
	Study questions	271
	Problems	272
10	Vapor–liquid equilibria with applications to distillation	274
	10.1 Introduction	274
	10.2 Vapor-liquid equilibria for ideal liquid solutions, ideal vapor solutions,	
	and low pressures. Raoult's law	276
	10.2.1 Derivation of the general equations for two components	276
	10.2.2 Calculations of bubble-point and dew-point curves for two components	279
	10.2.3 Extension to three or more components	285
	10.3 Vapor-liquid equilibrium for nonideal solutions at any pressure	286
	10.3.1 General equations for two components	286
	10.3.2 Calculations of bubble-point and dew-point curves	287
	10.3.3 Azeotropy effects	290
	10.3.4 Effects of liquid-liquid phase separation	293
	10.3.5 Extension to three or more components	294
	Summary	295
	Study questions	295
	Problems	296
11	Gas–liquid equilibria and applications to gas absorption or desorption	298
	11.1 Introduction	298
	11.2 Gas-liquid equilibria for ideal solutions. Henry's law	299
	11.2.1 General equations for two-component systems	299
	11.2.2 Calculations of bubble and dew points and of solubilities	301
	11.3 Gas-liquid equilibria for nonideal solutions	303
	11.3.1 Formulation with activities and fugacities	303
	11.3.2 Further discussion of the CO_2 -H ₂ O system. Comparison of two methods	
	for describing liquid solutions	304
	11.4 Extension to three or more components	305
	Summary	305
	Study questions	306
	Problems	306

	Contents	XV
12	Applications to liquid-liquid equilibria and liquid-liquid extraction	307
	12.1 Introduction	307
	12.2 Three components with one liquid solute	309
	12.3 Three components with one non-liquid solute	310
	12.4 Implications and applications to liquid-liquid extraction	311
	12.5 Two or more solutes	312
	Summary	312
	Study questions	313
	Problems	313
13	Osmosis, osmotic pressure, osmotic equilibrium, and reverse osmosis	315
	13.1 Introduction	315
	13.2 Origins and derivation of osmotic pressure for one or more solutes	315
	13.3 Applications to determining salt dissociation in electrolytes, molecular masses	
	of polymer solutes, and solution nonideality parameters	319
	13.3.1 Electrolytes	319
	13.3.2 Polymers	319
	13.3.3 Determination of number-average molecular mass by osmometry	320
	13.3.4 Solution nonideality parameters	321
	13.4 Reverse osmosis applications. Water purification	322
	Summary	323
	Study questions	324
	Problems	324
14	The Third Law and the molecular basis of the Second and Third Laws	325
	14.1 Introduction	325
	14.2 The experimental and classical thermodynamic basis of the Third Law	
	and of the absolute entropy	327
	14.3 Various statements of the Third Law of thermodynamics	328
	14.4 Some key concepts of classical and quantum statistical mechanics and thermodynamics	329
	14.4.1 Microcanonical ensemble	331
	14.4.2 Canonical ensemble	331
	14.5 Connections of statistical mechanics and thermodynamics with classical	
	thermodynamics	334
	14.6 Molecular and statistical interpretation of thermodynamic concepts and laws	336
	Summary	338
	Study questions	338
	Problems	339
15	Some special implications and applications of the First and Second Laws	341
	15.1 Introduction	341
	15.2 The Gibbs-Duhem equations and conditions for thermodynamic consistency	
	of experimental data	341

xvi

16

Contents

	15.2.1 Introduction	341
	15.2.2 The main form of the Gibbs–Duhem equation	342
	15.2.3 Other Gibbs–Duhem equations for partial molar properties	344
	15.2.4 The Gibbs–Duhem equations for activity coefficients of components	
	in liquid solutions	345
	15.2.5 The Gibbs–Duhem equations for biphasic systems with a fluid interface	
	and the Gibbs adsorption isotherm	347
15.3	Vapor pressure of a solution with a non-volatile solute. Applications to the	
	determination of mole fractions, molecular weights, activity coefficients,	
	and binary phase diagrams	349
15.4	Boiling point elevation for a solvent with a non-volatile solute. Ebullioscopy	352
15.5	Freezing point (or melting point) depression. Cryoscopy	354
15.6	Predictions of the solubility of a solid in an ideal liquid solution	354
Sum	nary	356
Study	y questions	356
Probl	ems	357
Cher	nical reaction equilibria. One reaction	358
16.1	Introduction	358
16.2	Reaction equilibrium vs. reaction kinetics	360
16.3	Stoichiometry and atom balances	362
16.4	The equilibrium extent of a chemical reaction	363
16.5	Enthalpy changes, $\Delta H^{\circ}(T)$ of a chemical reaction. Standard heats of reaction	364
16.6	The temperature dependence of $\Delta H^{\circ}(T)$	366
16.7	Calculation of the "adiabatic reactor temperature" or "adiabatic flame	
	temperature"	368
16.8	Implications for the operation and design of internal combustion engines	371
16.9	Thermodynamic prediction of the direction of a chemical reaction and of the	
	equilibrium extent of a chemical reaction	372
16.10) The standard Gibbs free energy change for a reaction and definition of the	
	equilibrium constant for gas-phase reactions	374
16.11	The temperature dependence of the reaction equilibrium constant	377
16.12	2 Reaction equilibria for gas-phase reactions. Examples for ideal or nonideal	
	gas mixtures	380
	16.12.1 Introduction	380
	16.12.2 Ideal gas-phase solutions. Effects of the reaction pressure, the initial	
	number of moles, and the presence of inert gas components	381
	16.12.3 Reaction equilibria for nonideal gas mixtures	387
16.13	Reaction equilibria for liquid-phase and other homogeneous reactions	388
16.14	Reaction equilibria of heterogeneous reactions	392
Sum	nary	394
Study	y questions	395
Probl	ems	396

	Contents	xvii
17	Chemical reaction equilibria. Two or more reactions occurring simultaneously	399
	17.1 Introduction	399
	17.2 Determination of the number of independent reactions from the rank of the	
	atomic matrix	400
	17.3 Determining the equilibrium yields of two or more reactions from the equilibrium	
	constants	402
	17.4 Determination of the equilibrium yields of two or more reactions from the	40.0
	minimization of the Gibbs free energy under constraints	403
	17.5 An example of one reaction vs. multiple reactions	409
	Summary	415
	Study questions	415
	Problems	410
18	Applications of thermodynamics to energy engineering and environmental	
10	engineering	417
	18.1 Introduction	417
	18.2 Energy sources and types and energy interconversion	417
	18.3 Energy efficiency in buildings, transportation, agriculture, industrial production.	
	and fuel use	418
	18.4 Mass balances for methane and carbon dioxide in the atmosphere and carbon footprints	419
	18.5 Energy balances for the Earth's surface and atmosphere. Key issues for models	
	of global warming and climate change	420
	18.6 Energy costs of materials used in energy production and industrial products	421
	18.7 Thermodynamics in problems of air pollution and water pollution	422
	Summary	423
	Study questions	423
	Problems	424
	Appendix A A guide to thermodynamic data and bibliography	425
	A.1 A guide to thermodynamic data	425
	A.2 A guide to bibliography of thermodynamics and related areas	427
	References	428
	Index	433

Cambridge University Press 978-1-107-06975-6 - Thermodynamics with Chemical Engineering Applications Elias I. Franses Frontmatter More information

PREFACE AND ACKNOWLEDGMENTS

This book should be used primarily as a textbook. It is also designed to be used for self-study, including many essay-style sections, which may be appropriate for a more general audience. Over the last 30 years I have taught thermodynamics, chemical reaction engineering, and surface thermodynamics in courses for sophomores, juniors, seniors, and graduate students in chemical engineering at Purdue University. On the basis of such experiences, I believe that this book may be used either for sophomore/junior courses in thermodynamics in chemical engineering or as a reference for graduate thermodynamics courses.

I am grateful to many of my previous teachers and mentors. As an undergraduate student at the National Technical University of Athens, Greece, I took valuable courses on the thermodynamic theory and on laboratory measurements of thermodynamic quantities from Professors Theodoros Skoulikidis and Nicolaos Koumoutsos. As a graduate student at the University of Minnesota, I benefited greatly from the courses given by, and discussions with, Professors L. E. (Skip) Scriven and H. Ted Davis. I also got valuable lessons in solution thermodynamics, phase behavior, and experimental methods from Professor Wilmer G. Miller.

Most of the chapters of this book were typed by Ms. Karen Heide; some were typed by Dr. Jiannan Dong. I have appreciated their work. Several graduate students from Purdue University, namely Dr. Jiannan Dong, Dr. Yoonjee Park, Dr. Hung-Wei Tsui, Ms. Betty Yang, and my son, Dr. Joseph W. Franses, helped prepare many figures and did some of the calculations for these figures. I am indebted to them for their help. I thank Professor Arvind Varma, who is the Chemical Engineering series editor of Cambridge University Press, and Head of the School of Chemical Engineering at Purdue University, for his support. Professor Chongli Yuan provided valuable comments on some of the chapters. Throughout the writing, my wife, Professor Nien-Hwa Linda Wang, provided support, inspiration, and invaluable criticisms.

I am grateful to the staff of Cambridge University Press for their hard and careful work in producing this book. I am particularly thankful to Dr. Michelle Carey, who undertook the project and provided valuable advice and encouragement. Ms. Elizabeth Horne and Ms. Sarah Payne provided additional advice and support; and Dr. Steven Holt guided the final editing with patience, diligence, thoroughness, and expert technical feedback when needed.

This book is dedicated to the loving memory of my parents, Iosafat S. Franses and Linda I. Franses, and of my father-in-law Ying-Chuen Wang. It is also dedicated to my dear family

ХХ

Preface

members: my wife Nien-Hwa Linda Wang; her mother Yun Lan Wang; my brother Simon I. Franses; my sister-in-law, Roula Atoun Franses; my sister, Nelli I. Franses; my brother-in-law, Paul Zadik; my sister-in-law, Nellie Lin; my brother-in-law, Shengyen Lin; and my son Joseph W. Franses, his wife Nicole A. C. W. Franses, and our two lovely grandsons Alex and William Franses.

LIST OF SYMBOLS

A	area, m ²
A	area of heat exchanger, Section 6.6.7
$A_{\rm i}$	inside area of heat exchanger, Section 6.6.7
Ao	outside area of heat exchanger, Section 6.6.7
A	Helmholtz free energy, J
A	specific Helmholtz free energy, J/kg, or molar Helmholtz free energy in J/mol
A	constant in heat capacity of ideal gas, liquid, or solid, Eqs. (4.123)-(4.126)
A	constant in Antoine's equation, Eq. (5.57)
A	constant in Clausius-Clapeyron equation, Eq. (5.63)
A	constant in virial equation of state Eq. (5.70)
A	constant in regular solution model Eq. (9.74)
A	constant in Redlich-Kister equation, Eq. (9.77)
A_{12}, A_{21}	constants in Margules equation, Eq. (9.78)
A	Poynting factor, Eq. (10.15)
A	constant in heat capacity equation, Eq. (14.4)
A	correction term in pressure for van der Waals equation in Section 5.3
а	constant in van der Waals equation, Eq. (5.34)
а	constant in Redlich-Kwong Eq. (5.65)
a_1	activity coefficient of component 1
а	acceleration, m/s ²
a _o	area per molecule, Å ² /molecule
В	constant defined in Eq. (2.26)
В	second virial coefficient constant in virial equation of state Eq. (5.70)
B'	second virial coefficient constant in Eq. (5.72)
B'	second virial coefficient constant in Eq. (13.28) for osmotic pressure
В	constant in heat capacity of ideal gas, liquid, or solid, Eqs. (4.123) – (4.126) , K ⁻¹
В	constant in Antoine's equation, Eq. (5.57)
В	constant in Clausius-Clapeyron equation, Eq. (5.63)
В	constant in Redlich-Kister equation, Eq. (9.77)
b	excluded molar volume, m ³ /mol
b	constant in van der Waals equation of state Eq. (5.34)
b	constant in Redlich-Kwong equation of state Eq. (5.65)
С	number of components in the Gibbs phase rule Eq. (8.89)

xxii List of symbols

С	integration constant
С	heat capacity, J/K
С	constant in heat capacity of ideal gas, liquid, or solid, Eqs. (4.123) – (4.126) , K ⁻²
С	constant in Antoine's equation, Eq. (5.57)
С	constant in virial equation of state Eq. (5.70)
C'	constant in Eq. (5.72)
С	constant in Redlich-Kister equation, Eq. (9.77)
C_p	specific or molar heat capacity at constant pressure, J/K · mol, Eq. (4.104)
\overline{C}_p	specific heat capacity per unit mass at constant pressure, $J/K \cdot kg$, Eq. (4.104)
\overline{C}_p	molar heat capacity of a mixture, Eq. (4.127)
C_{v}	specific or molar heat capacity at constant volume, J/K · mol, Eq. (4.98)
\overline{C}_{v}	specific heat capacity per unit mass at constant volume, J/K · kg, Eq. (4.98)
С	concentration, in gas or liquid phase, mol/l or mol/m ³ , Section 16.13
С	speed of light, 3×10^8 m/s
D	constant in Section 2.1.2
D	constant in heat capacity of ideal gas, liquid, or solid, Eqs. (4.123) – (4.126) , K ²
D	constant in virial equation of state Eq. (5.70)
D'	constant in Eq. (5.72)
d	thickness, m or cm
d	differential, exact
d	differential, inexact
Ε	energy, J
Ε	electric field, V/m, Eq. (2.74)
E_k	kinetic energy, J
E_k	specific kinetic energy, J/kg
$E_{\rm p}$	potential energy, J
E_p	specific potential energy, J/kg
$E_{\rm T}$	total energy, J
\mathbf{e}_x	unit vector in x-direction
\mathbf{e}_{y}	unit vector in y-direction
\mathbf{e}_z	unit vector in z-direction
F F	number of degrees of freedom in the Gibbs phase rule Eq. (8.89)
F F	function in Section 17.4
$\frac{\Gamma}{\overline{E}}$	force, in or dyn
Г F	huovaney force. Section 2.3
Г _b F	compressive force
F compress	gravity force. N
r _g F	pressure force. N
F,	tensile force. N
r pul	surface tension force. N
rγ f	function generally
ј f	function in Section 17.4
J	

List of symbols

xxiii

function in Eq. (7.9)
fugacity, atm or bar
fugacity of pure component <i>i</i> , atm or bar
fugacity of component <i>i</i> in a solution, atm or bar
efficiency of a real engine divided by the efficiency of an ideal heat engine,
Eq. (7.24)
Gibbs free energy, J
specific Gibbs free energy, J/kg; or molar Gibbs free energy in J/mol
universal gravitational constant, $6.674 \times 10^{-10} \text{ N m}^2/\text{kg}^2$
function defined in Eq. (14.35), related to the probabilities of various states
acceleration due to gravity, m/s ²
gravity vector
component of gravity vector in the z-direction
function in Eq. (7.11)
enthalpy, J
specific enthalpy in J/kg or molar enthalpy, J/mol
Henry's law constant, Eq. (11.6)
height, m
electric current, Eq. (2.76)
dimensionless Henry's law constant, Eq. (11.9)
Nernst partition coefficient, Eq. (12.6)
equilibrium constant of reaction, Eq. (16.74), dimensionless
equilibrium constant of reaction in terms of fugacities, in Eq. (16.76), dimensionless
equilibrium constant of reaction in terms of partial pressures in the gas phase, in Eq.
(16.75), dimensionless
equilibrium constant of reaction in terms of mole fractions, Eq. (16.76),
dimensionless
mass transfer coefficient in the liquid phase, Eq. (11.11)
equilibrium constant of reaction in terms of mole fractions in gas phase, Eq. (16.78)
mass transfer coefficient in the liquid phase, Eq. (11.10)
equilibrium constant of reaction in terms of fugacity coefficients, Eq. (16.79)
Boltzmann's constant, 1.38×10^{-23} J/K
reaction equilibrium constant; may have dimensions; see Section 16.13
length, m
length in x-direction, m
length, m
molecular mass (or molecular weight)
function of two or three variables, Chapter 4
number of systems in an ensemble, Chapter 14
number-average molecular mass (or molecular weight)
mass, kg
mass flow rate, kg/s
unit vector

xxiv

List of symbols	
Ν	number of moles
Ν	number of molecules, Chapter 14
Ν	number of components
N	function of two or three variables
$N_{\rm A}$	Avogadro's number, 6.023×10^{23} molecules/mol
N_i	number of moles of component <i>i</i>
$N_{\rm s}$	number of molecules at surface
п	number of molecules
п	number of moles
п	efficiency of a heat engine, Chapter 7
п	number of systems with the same properties, Chapter 14
n	unit vector
np	efficiency of a heat pump
n _R	efficiency of a refrigerator or air-conditioner
Р	number of phases in the Gibbs phase rule Eq. (8.89)
P_i	probability of a state or of a configuration, Chapter 14
р	pressure, Pa, atm, psi, or cm of water
р	pressure matrix
р	pressure tensor
\overline{p}	ensemble-average pressure, atm
p _c	critical pressure, Pa, bar, or atm
p°	vapor pressure, Pa, bar, or atm
p_0	reference or atmospheric pressure, atm, or Pa
$p_{\rm r}$	reduced or dimensionless pressure, $p/p_{\rm c}$
p_{ext}	external pressure outside a system
p_{f}	pressure in film
$p_{\rm g}$	gauge pressure, atm, or Pa, $p - p_0$
p_{int}	internal pressure, atm
p_{i}	pressure inside a spherical drop of bubble, Eq. (15.55)
p_{o}	pressure for a spherical interface
p_r	pressure for a flat interface (infinite radius of aurwature)
p_{∞}	vacuum pressure atm or $Pa = n = n$
$p_{\rm v}$	pressure in the r-direction
p_x	pressure in the <i>y</i> -direction
P_y	pressure in the <i>z</i> -direction
Pz n	components of the pressure matrix
$\mathbf{p}_{xx},$ $\mathbf{p}_{xx},$ etc	components of the pressure matrix
$p_{\lambda y}, \dots, p_1$	partial pressure of component 1 in a gas mixture, atm
O	heat. J
õ	heat flow rate, J/s
$\frac{\tilde{o}}{O}$	heat per mol or per unit mass, J/mol or J/kg or (J/s)/(kg/s)
\tilde{o}	canonical partition function, Eq. (14.24)
~	1 / 1 /

List of symbols

xxv

O_{rov}	reversible heat
<i>q</i>	electric charge, Eq. (2.74)
R	universal gas constant, 8.314 J/mol/K
R	radius, m
R	electrical resistance, Ω
r	radius, m
r _i	inside radius in heat exchanger, Section 6.6.7
r_{0}	outside radius in heat exchanger, Section 6.6.7
r	radial coordinate
S	area, m ²
S	entropy, J/K
\overline{S}	specific entropy in J/K \cdot kg or molar entropy in J/K \cdot mol
S	selectivity, Eq. (10.1)
Т	absolute temperature, K
$T_{\rm c}$	critical temperature, K
$T_{\rm C}$	cold fluid temperature in heat exchanger
$T_{\rm H}$	hot fluid temperature in heat exchanger
$T_{\rm id}$	ideal gas temperature, K
$T_{\rm r}$	reduced or dimensionless temperature, T/T_c
$T_{\rm r}$	temperature of surroundings, K
t	time, s
t	unit tangent
U	internal energy, J
\overline{U}	specific internal energy, J/kg, or molar internal energy, J/mol
U	overall heat transfer coefficient, in $J/s \cdot K \cdot m^2$, Eq. (6.32)
$U_{\rm i}$	overall heat transfer coefficient, in $J/s \cdot K \cdot m^2$ based on inside area
Uo	overall heat transfer coefficient, in $J/s \cdot K \cdot m^2$ based on outside area
$\overline{U}_{ m tr}$	translational kinetic energy, Eq. (5.13)
и	velocity of molecule, m/s
V	voltage, V, Eq. (2.76)
V	volume, m ³
\overline{V}_{c}	critical molar volume, m ³ /mol
$V_{\rm r}$	reduced or dimensionless molar volume, $\overline{V}/\overline{V}_{c}$
V_1	volume of liquid phase, m ³
V	specific molar volume, m ³ /kg, or molar volume, m ³ /mol
V_1	partial molar volume, m ³ /mol
v	velocity, m/s
W	steam quality, no units
W	work, J
W	rate of work, J/s
W	rate of total work, J/s
W _{el}	electrical work, Eq. (2.74)
W _{irrev}	irreversible work

xxvi

List of symbols

$W_{\rm rev}$	reversible work
$W_{\rm s}$	shaft work
$\dot{W}_{ m s}$	rate of shaft work
W_{T}	total work
X	displacement or distance, m
x	mole fraction in mixture, usually in a liquid phase, x_1 or x_2
x^{A}	mole fraction of A in mixture
x_1^A	binodal mole fraction
У	mole fraction in a mixture, usually in a gas or vapor phase
У	coordinate, or distance
Ζ	compressibility factor,
\overline{Z}_1	partial molar compressibility factor
Ζ	coordinate or height or depth, m
Ζ	concentration, Section 16.13, mol/l

Superscripts

E	excess property over the ideal solution
∞	at infinite dilution as the mole fraction of the solute goes to zero
L	liquid phase
mix	after mixing, or of mixing, two or more components to form a solution
V	vapor phase

Subscripts

b	binodal, Section 9.5
sp	spinodal, Section 9.5

Greek symbols

α	Lagrange multiplier in Section 14.4
β	Lagrange multiplier in Section 14.4, equal to $1/(k_{\rm B}T)$, Eq. (14.36)
β_p	Volume expansivity, K^{-1}
Γ or Γ_2^*	surface excess molar density, mol/m ² , Eq. (15.35)
$\Gamma_{\rm c}$	surface density of component i ($i = 1, 2,$)
γ	surface tension, mN/m or dyn/cm, Eq. (15.28)
γo	surface tension of solvent, mN/m
γ	ratio of heat capacities, C_p/C_v
Δ	difference or sum
δ	thickness, m
δ"	small quantity of <i>n</i>

 ε height, m or cm

List of symbols

xxvii

З	extent of reaction, equilibrium
<i>ɛ</i> d	extent of reaction, dynamic, Section 16.4
E _{eq}	extent of reaction, equilibrium
θ	angle
θ	empirical temperature, in degrees Celsius (or Fahrenheit)
κ_T	isothermal compressibility, bar ⁻¹
λ	distance or thickness, m
λ	Lagrange multiplier, Section 17.4
μ	chemical potential, J/mol
μ	viscosity, poise (C.G.S. units) or Pa · s (S.I. units)
v	Joule-Thomson coefficient, K/atm
$v_{\rm JT}$	Joule-Thomson coefficient, Eq. (6.72), K/atm
v	stoichiometric coefficient of a reaction, Chapter 16
П	osmotic pressure, N or atm
ρ	density, g/cm ³ or kg/m ³
$ ho_{\mathrm{a}}$	density of air
$ ho_{ m g}$	density of gas phase
ρ_1	density of liquid phase
$ ho_{ m s}$	density of solid phase
τ	stress, N/m ²
τ	stress tensor
ϕ_i°	fugacity coefficient of pure component i
$\hat{\phi}_i$	fugacity coefficient of component <i>i</i> in solution
Ω	number of systems in an ensemble, Chapter 14
ω	Pitzer's acentric factor, Eq. (5.79)

Other symbols

Js	surface integral
\int_{V}	volume integral
\int_{C}	line integral
\oint_{C}	line integral along a closed line