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Protective measurement: an introduction

shan gao

Protective measurement, in the language of standard quantum mechanics, is a
method to measure the expectation value of an observable on a single quantum sys-
tem (Aharonov and Vaidman, 1993; Aharonov, Anandan and Vaidman, 1993). For
a conventional impulsive measurement, the state of the measured system is strongly
entangled with the state of the measuring device during the measurement, and the
measurement result is one of the eigenvalues of the measured observable. By con-
trast, during a protective measurement, the measured state is protected by an appro-
priate procedure so that it neither changes nor becomes entangled with the state of
the measuring device appreciably. In this way, such protective measurements can
measure the expectation values of observables on a single quantum system, and
in particular, the wave function of the system can also be measured as expecta-
tion values of certain observables. It is expected that protective measurements can
be performed in the near future with the rapid development of weak measurement
technologies (e.g. Kocsis et al., 2011; Lundeen et al., 2011). In this chapter, we
will give a clear introduction to protective measurement in quantum mechanics.

1.1 Standard quantum mechanics and impulsive measurement

The standard formulation of quantum mechanics, which was first developed by
Dirac (1930) and von Neumann (1955), is based on the following basic principles.

1 Physical states
The state of a physical system is represented by a normalized wave function

or unit vector |ψ(t)〉 in a Hilbert space.1 The Hilbert space is complete in the
sense that every possible physical state can be represented by a state vector in
the space.

1 The Hilbert space is a complete vector space with scalar product. The common notion of state includes both
proper vectors normalizable to unity in the Hilbert space and so-called improper vectors normalizable only to
the Dirac delta functions.
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2 Shan Gao

2 Physical properties
Every measurable property or observable of a physical system is represented

by a Hermitian operator on the Hilbert space associated with the system. A phys-
ical system has a determinate value for an observable if and only if it is in an
eigenstate of the observable (this is often called the eigenvalue–eigenstate link).

3 Composition rule
The Hilbert space associated with a composite system is the tensor product

of the Hilbert spaces associated with the systems of which it is composed.
Similarly, the Hilbert space associated with independent properties is the tensor
product of the Hilbert spaces associated with each property.

4 Evolution law

(1) Linear evolution
The state of a physical system |ψ(t)〉 obeys the linear Schrödinger equation
i�∂ |ψ(t)〉 /∂t = H |ψ(t)〉 (when it is not measured), where � is Planck’s con-
stant divided by 2π, and H is the Hamiltonian operator that depends on the
energy properties of the system.

(2) Non-linear collapse evolution
If a physical system is in a state |ψ〉 = ∑

i ci |ai〉, where |ai〉 is the eigenstate
of an observable A with eigenvalue ai, then an (impulsive) measurement of
the observable A will instantaneously and randomly collapse the state into
one of the eigenstates |ai〉 with probability |ci|2. This is called the collapse
postulate, and the non-linear stochastic process is called the reduction of the
state vector or the collapse of the wave function.

The link between the mathematical formalism and experiments is provided by
the Born rule. It says that the probability of the above measurement of the observ-
able A yielding the result ai is |ci|2. For a continuous property such as position x, the
probability of obtaining a measurement result between x and x + dx is |〈x|ψ〉|2dx.
Note that the Born rule can be derived from the collapse postulate by resorting to
the eigenvalue–eigenstate link, but it does not necessarily depend on the postulate.

The conventional impulsive measurements can be formulated as follows.
According to the standard von Neumann procedure, measuring an observable
A in a quantum state |ψ〉 involves an interaction Hamiltonian

HI = g(t)PA (1.1)

coupling the measured system to an appropriate measuring device, where P is the
conjugate momentum of the pointer variable X of the device. The time-dependent
coupling strength g(t) is a smooth function normalized to

∫
dtg(t) = 1 during the

measurement interval τ, and g(0) = g(τ) = 0. The initial state of the pointer at
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Protective measurement: an introduction 3

t = 0 is supposed to be a Gaussian wave packet of eigenstates of X with width w0,
centered around the eigenvalue x0, which is denoted by |φ(x0)〉.

For an impulsive measurement, the interaction HI is of very short duration and
so strong that it dominates the rest of the Hamiltonian (i.e. the effect of the free
Hamiltonians of the measuring device and the measured system can be neglected).
Then the state of the combined system at the end of the interaction can be written as

|t = τ〉 = e−
i
�

PA |ψ〉 |φ(x0)〉 . (1.2)

By expanding |ψ〉 in the eigenstates of A, |ai〉, we obtain

|t = τ〉 =
∑

i

e−
i
�

Paici |ai〉 |φ(x0)〉 , (1.3)

where ci are the expansion coefficients. The exponential term shifts the center of
the pointer by ai:

|t = τ〉 =
∑

i

ci |ai〉 |φ(x0 + ai)〉 . (1.4)

This is an entangled state, where the eigenstates of A with eigenvalues ai get corre-
lated to measuring device states in which the pointer is shifted by these values ai.
Then, by the collapse postulate, the state will instantaneously and randomly col-
lapse into one of its branches |ai〉 |φ(x0 + ai)〉 with probability |ci|2. This means that
the measurement result can only be one of the eigenvalues of the measured observ-
able A, say ai, with a certain probability |ci|2. The expectation value of A is then
obtained as the statistical average of eigenvalues for an ensemble of identically
prepared systems, namely 〈A〉 = ∑

i |ci|2ai.

1.2 Weak measurement

Impulsive measurements are only one kind of quantum measurement, for which
the coupling between the measured system and the measuring device is very strong,
and the results are only the eigenvalues of an observable. We can also perform other
kinds of measurement by adjusting the coupling strength. An interesting exam-
ple is weak measurement (Aharonov, Albert and Vaidman, 1988; Aharonov and
Vaidman, 1990), for which the measurement result is the expectation value of the
measured observable.

A weak measurement is a standard measuring procedure with weakened cou-
pling. Like impulsive measurements, the interaction Hamiltonian is also given by
(1.1) for a weak measurement. The weakness of the interaction is achieved by
preparing the initial state of the measuring device in such a way that the conjugate
momentum of the pointer variable is localized around zero with small uncertainty,
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4 Shan Gao

and thus the interaction Hamiltonian (1.1) is small. As a simple example, let the
initial state of the pointer in position space be:

〈x |φ〉 = (w2
0π)−1/4e−x2/2w2

0 . (1.5)

The corresponding initial probability distribution is

Pi(x) = (w2
0π)−1/2e−x2/w2

0 . (1.6)

Expanding the initial state of the system |ψ〉 in the eigenstates |ai〉 of the measured
observable A, |ψ〉 = ∑

i ci|ai〉, then after the interaction (1.1) the state of the system
and the measuring device is:

|t = τ〉 = (w2
0π)−1/4

∑
i

ci|ai〉e−(x−ai)2/2w2
0 . (1.7)

The probability distribution of the pointer variable corresponding to the final state
(1.7) is:

Pf(x) = (w2
0π)−1/2

∑
i

|ci|2e−(x−ai)2/w2
0 . (1.8)

In the case of an impulsive measurement, this is a weighted sum of the ini-
tial probability distribution localized around various eigenvalues ai. Therefore, the
reading of the pointer variable at the end of the measurement always yields a value
close to one of the eigenvalues. By contrast, the limit of weak measurement corre-
sponds to w0 � ai for all eigenvalues ai. Then we can perform the Taylor expan-
sion of the sum (1.8) around x = 0 up to first order and rewrite the final probability
distribution of the pointer variable in the following way:

Pf(x) ≈ (w2
0π)−1/2

∑
i

|ci|2[1 − (x − ai)
2/w2

0] ≈ (w2
0π)−1/2e−(x−∑i |ci |2ai)2/w2

0 . (1.9)

This is the initial probability distribution shifted by the value
∑

i |ci|2ai (Aharonov
and Vaidman, 2008). It indicates that the result of the weak measurement is the
expectation value of the measured observable in the measured state:

〈A〉 ≡ 〈ψ|A|ψ〉 =
∑

i

|ci|2ai. (1.10)

Certainly, since the width of the pointer wave packet is much greater than the
shift of the center of the pointer, namely w0 � 〈A〉, the above weak measurement of
a single system is very imprecise. However, by performing the weak measurement
on an ensemble of N identically prepared systems the precision can be improved
by a factor

√
N. This scheme of weak measurement has been realized and proved

useful in quantum optical experiments (see, e.g. Kocsis et al., 2011; Lundeen et al.,
2011).

Although weak measurements, like conventional impulsive measurements, also
need to measure an ensemble of identically prepared quantum systems, they are
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Protective measurement: an introduction 5

conceptually different. For impulsive measurements, every identically prepared
system in the ensemble shifts the pointer of the measuring device by one of the
eigenvalues of the measured observable. By contrast, for weak measurements,
every identically prepared system in the ensemble shifts the pointer of the mea-
suring device directly by the expectation value of the measured observable.

1.3 Protective measurement

Protective measurements are improved methods of weak measurements in the
sense that they can measure the expectation values of observables on a sin-
gle quantum system (Aharonov and Vaidman, 1993; Aharonov, Anandan and
Vaidman, 1993). For an impulsive measurement, if the measured system, prior to
the measurement of an observable A, is not in an eigenstate of A, then its state will
be invariably entangled with the state of the device due to the interaction. A protec-
tive measurement differs from an impulsive measurement (as well as from a weak
measurement) in that the measured state is protected from being entangled and
changed appreciably when the measurement is being made. A universal protection
scheme is via the quantum Zeno effect. Let’s see how this can be done.

1.3.1 Measurements with artificial protection

Let |ψ〉 be an arbitrary known state of a single quantum system at a given instant
t = 0. To protect this state from being changed, we make projective measure-
ments of an observable P(t), for which |ψ〉 is a non-degenerate eigenstate, a large
number of times which are dense in the measurement interval [0, τ] (Aharonov,
Anandan and Vaidman, 1993). For example, P(t) is measured in [0, τ] at times
tn = (n/N)τ, n = 1, 2, ...,N, where N is an arbitrarily large number. At the same
time, we make an impulsive measurement of observable A in the interval [0, τ],
which is described by the interaction Hamiltonian (1.1). The initial state of the
pointer is supposed to be a Gaussian wave packet of width w0 centered at initial
position x0, denoted by |φ(x0)〉.

Then the branch of the state of the combined system after τ, in which each
projective measurement of P(tn) results in the state of the measured system being
in |ψ〉, is given by

|t = τ〉 = |ψ〉 〈ψ|e−
i
�

τ
N H(tN )... |ψ〉 〈ψ|e−

i
�

τ
N H(t2) |ψ〉 〈ψ|

× e−
i
�

τ
N H(t1) |ψ〉 |φ(x0)〉

= |ψ〉 〈ψ|e−
i
�

τ
N g(tN )PA... |ψ〉 〈ψ|e−

i
�

τ
N g(t2)PA |ψ〉 〈ψ|

× e−
i
�

τ
N g(t1)PA |ψ〉 |φ(x0)〉. (1.11)
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6 Shan Gao

Thus in the limit of N → ∞, we have

|t = τ〉 = |ψ〉 e−
i
�

∫ τ
0 g(t)〈ψ|A|ψ〉Pdt |φ(x0)〉 = |ψ〉 |φ(x0 + 〈A〉)〉 . (1.12)

Since the total probability of other branches is proportional to τ2/N to first order of
N, the above state will be the state of the combined system after τ when N → ∞.
This demonstrates that for an arbitrary but known state of a quantum system at a
given instant, we can protect the state from being changed via the quantum Zeno
effect by frequent projective measurements, and an independent measurement of
an observable A, which is made at the same time, yields the expectation value of
the observable in the measured state.

By a conventional impulsive measurement on a single quantum system, one
obtains one of the eigenvalues of the measured observable, and the expectation
value of the observable can only be obtained as the statistical average of eigen-
values for an ensemble of identically prepared systems. Thus it seems surprising
that a protective measurement can yield the expectation value of the measured
observable directly from a single quantum system. In fact, the appearance of expec-
tation values as measurement results is quite natural when the measured state is not
changed and the entanglement during conventional measurements does not take
place as for protective measurements (Aharonov, Anandan and Vaidman, 1993). In
this case, the evolution of the combining state is

|ψ(0)〉 |φ(0)〉 → |ψ(t)〉 |φ(t)〉 , t > 0, (1.13)

where |ψ(t)〉 is the same as |ψ(0)〉 up to a phase factor during the measurement inter-
val [0, τ]. The interaction Hamiltonian is still given by (1.1). Then, by Ehrenfest’s
theorem we have

d
dt
〈ψ(t)φ(t)|X |ψ(t)φ(t)〉 = g(t)〈ψ(0)|A |ψ(0)〉 , (1.14)

where X is the pointer variable. This further leads to

〈φ(τ)|X |φ(τ)〉 − 〈φ(0)|X |φ(0)〉 = 〈ψ(0)|A |ψ(0)〉 . (1.15)

This means that the shift of the center of the pointer of the device gives the expec-
tation value of the measured observable in the measured state.

1.3.2 Measurements with natural protection

In some special cases, the universal protection procedure via the quantum Zeno
effect is not necessary, and the system’s Hamiltonian can help protect its state from
changing when the measurement interaction is weak and adiabatic. For example,
for a quantum system in a discrete non-degenerate energy eigenstate, the system
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Protective measurement: an introduction 7

itself supplies the protection of the state due to energy conservation. By the adia-
batic theorem, the adiabatic interaction during the measurement ensures that the
measured system cannot make a transition from one discrete energy eigenstate
to another. Moreover, according to first-order perturbation theory, for any given
value of P, the energy of the measured energy eigenstate shifts by an infinitesimal
amount: δE = 〈HI〉 = g(t)P〈A〉, and the corresponding time evolution e−iP〈A〉/� then
shifts the pointer by the expectation value 〈A〉. For degenerate energy eigenstates,
we may not use the universal protection procedure either. The simplest way is to
add a protective potential to change the energies of other states and lift the degen-
eracy. Then the measured state remains unchanged, but is now protected by energy
conservation like non-degenerate energy eigenstates.

As a simple example, we consider a quantum system in a discrete non-
degenerate energy eigenstate |En〉. In this case, the system itself supplies the
protection of the state and no artificial protection is needed. The interaction Hamil-
tonian for a protective measurement of an observable A in this state is also given by
(1.1) as for conventional impulsive measurements. But differently from impulsive
measurements, for which the interaction is very strong and almost instantaneous,
the protective measurements make use of the opposite limit where the interaction
of the measuring device with the system is weak and adiabatic, and thus the free
Hamiltonians cannot be neglected. Let the total Hamiltonian of the combined
system be

H = HS + HD + HI, (1.16)

where HS and HD are the free Hamiltonians of the measured system and the mea-
suring device, respectively, and HI = g(t)PA is the interaction Hamiltonian. As
before, we suppose the time-dependent coupling strength g(t) is a smooth function
normalized to

∫
dtg(t) = 1 in the measurement interval [0,T ], and g(0) = g(T ) = 0,

and the initial state of the pointer is a Gaussian wave packet of width w0 centered
at initial position x0, denoted by |φ(x0)〉.

The state of the combined system after T is then given by

|t = T 〉 = e−
i
�

∫ T
0 H(t)dt |En〉 |φ(x0)〉 . (1.17)

By ignoring the switching on and switching off processes, the full Hamiltonian
(with g(t) = 1/T ) is time-independent and no time-ordering is needed.2 Then we
obtain

|t = T 〉 = e−
i
�

HT |En〉 |φ(x0)〉 , (1.18)

2 The change in the total Hamiltonian during these processes is smaller than PA/T , and thus the approximate
treatment given below is valid. For a more strict analysis see Dass and Qureshi (1999).
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8 Shan Gao

where H = HS + HD + PA/T . We further expand |φ(x0)〉 in the eigenstate of HD,∣∣∣∣Ed
j

〉
, and write

|t = T 〉 = e−
i
�

HT
∑

j

c j |En〉 |Ed
j 〉. (1.19)

Let the exact eigenstates of H be
∣∣∣Ψk,m

〉
and the corresponding eigenvalues be

E(k,m); we have

|t = T 〉 =
∑

j

c j

∑
k,m

e−
i
�

E(k,m)T 〈Ψk,m|En, E
d
j 〉|Ψk,m〉. (1.20)

Since the interaction is very weak, the total Hamiltonian H can be thought of as
H0 = HS+HD perturbed by PA/T . Using the fact that PA/T is a small perturbation
and that the eigenstates of H0 are of the form |Ek〉 |Ed

m〉, the perturbation theory
gives ∣∣∣Ψk,m

〉
= |Ek〉 |Ed

m〉 + O(1/T ),

E(k,m) = Ek + Ed
m +

1
T
〈A〉k〈P〉m + O(1/T 2). (1.21)

Note that it is a necessary condition for (1.21) to hold that |Ek〉 is a non-degenerate
eigenstate of HS. Substituting (1.21) in (1.20) and taking the limit T → ∞ yields

|t = T 〉T→∞ =
∑

j

e−
i
�

(EnT+Ed
j T+〈A〉n〈P〉 j)c j |En〉 |Ed

j 〉. (1.22)

For the case where P commutes with the free Hamiltonian of the device,3 i.e.,
[P,HD] = 0, the eigenstates |Ed

j 〉 of HD are also the eigenstates of P, and thus the
above equation can be rewritten as

|t = T 〉T→∞ = e−
i
�

EnT− i
�

HDT− i
�
〈A〉nP |En〉 |φ(x0)〉 . (1.23)

It can be seen that the third term in the exponent will shift the center of the pointer
by an amount 〈A〉n:

|t = T 〉T→∞ = e−
i
�

EnT− i
�

HDT |En〉 |φ(x0 + 〈A〉n)〉. (1.24)

This indicates that the result of the protective measurement is the expectation value
of the measured observable in the measured state, and moreover, the measured state
is not changed by the protective measurement (except for an overall phase factor).

It is worth noting that since the position variable of the pointer does not commute
with its free Hamiltonian, the pointer wave packet will spread during the measure-
ment interval. For example, the kinematic energy term P2/2M in the free Hamilto-
nian of the pointer will spread the wave packet without shifting the center, and the

3 For the derivation for the case [P,HD] � 0 see Dass and Qureshi (1999).
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Protective measurement: an introduction 9

width of the wave packet at the end of interaction will be w(T ) = [ 1
2 (w2

0 +
T 2

M2w2
0
)]

1
2

(Dass and Qureshi, 1999). However, the spreading of the pointer wave packet can
be made as small as possible by increasing the mass M of the pointer, and thus it
will not interfere with resolving the shift of the center of the pointer in principle.

1.3.3 Measurements of the wave function of a single system

Since the wave function can be reconstructed from the expectation values of a
sufficient number of observables, the wave function of a single quantum system
can be measured by a series of protective measurements. Let the explicit form of
the measured state at a given instant t be ψ(x), and the measured observable A be
(normalized) projection operators on small spatial regions Vn having volume vn:

A =

⎧⎪⎪⎨⎪⎪⎩
1
vn
, if x ∈ Vn,

0, if x � Vn.
(1.25)

A protective measurement of A then yields

〈A〉 = 1
vn

∫
Vn

|ψ(x)|2dv, (1.26)

which is the average of the density ρ(x)= |ψ(x)|2 over the small region Vn. Similarly,
we can measure another observable B = �

2mi (A∇ + ∇A). The measurement yields

〈B〉 = 1
vn

∫
Vn

�

2mi
(ψ∗∇ψ − ψ∇ψ∗)dv =

1
vn

∫
Vn

j(x)dv. (1.27)

This is the average value of the flux density j(x) in the region Vn. Then when
vn → 0 and after performing measurements in sufficiently many regions Vn we can
measure ρ(x) and j(x) everywhere in space. Since the wave function ψ(x, t) can be
uniquely expressed by ρ(x, t) and j(x, t) (except for an overall phase factor), the
whole wave function of the measured system at a given instant can be measured by
protective measurements.

1.4 Further discussion

Protective measurement is a surprising measuring method, by which one can mea-
sure the expectation value of an observable on a single quantum system, even if
the system is not in an eigenstate of the measured observable. This remarkable
feature makes protective measurements quite distinct from conventional impulsive
measurements. It is unsurprising that there appeared numerous objections to the
validity and meaning of protective measurements (see, e.g. Unruh, 1994; Rovelli,
1994; Ghose and Home, 1995; Uffink, 1999, 2013). Although misunderstandings
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10 Shan Gao

have been clarified (Aharonov, Anandan and Vaidman, 1996; Dass and Qureshi,
1999; Vaidman, 2009; Gao, 2013), it is still debatable whether protective mea-
surement has important implications for our understanding of quantum mechanics,
especially for the ontological status of the wave function. In the following, we will
emphasize three key points that may help us understand protective measurement,
and briefly review the current state of debate on its possible implications.

First of all, a single quantum system being in an arbitrary known state can
be protectively measured in principle. The state of the system being protected to
be unchanged permits the state as well as the expectation values of observables in
the state to be measurable. In this sense, protective measurements are not a special
kind of quantum measurement, but the very way to measure the actual state of a
quantum system at a given instant. By comparison, a non-protective measurement
such as an impulsive measurement will change the measured state, and the result-
ing measurement outcome (i.e. one of the eigenvalues of the measured observable)
does not reflect the original state of the measured system. Besides, when a quan-
tum system interacts with another system under non-protective conditions, its state
also evolves in time, and thus the expectation values of observables do not manifest
themselves explicitly in the interaction either. For example, the interaction between
two charged quantum systems is not directly dependent on the expectation values
of their charges, but described by the potential terms in the Schrödinger equation
(see Chapter 15).

Next, a realistic protective measurement can never be performed on a single
quantum system with absolute certainty. For example, for a realistic protective
measurement of an observable A on a non-degenerate energy eigenstate whose
measurement interval T is finite, there is always a tiny probability proportional to
1/T 2 of obtaining a different result 〈A〉⊥, where ⊥ refers to a normalized state in
the subspace normal to the measured state as picked out by first-order perturbation
theory. However, this effect can be made arbitrarily small when the measurement
interval T is arbitrarily long. In this sense, an ideal protective measurement can
measure the expectation values of observables on a single quantum system with
certainty in principle.

Thirdly, we stress that the validity of the scheme of protective measurements
does not rely on the standard von Neumann formulation of measurements. In the
above formulation of protective measurement, the measuring system can be a
microscopic system such as an electron, and the shift of the center of the wave
packet of the measuring system is only determined by the Schrödinger equation.
Since the state of the measured system is not changed during the protective mea-
surement, a large number of identically prepared measuring systems can be used
to protectively measure the original measured system, and the centers of their
wave packets have the same shift. Then the shift can be read out by conventional

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-06963-3 - Protective Measurement and Quantum Reality: Towards a New Understanding 
of Quantum Mechanics
Shan Gao
Excerpt
More information

http://www.cambridge.org/9781107069633
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107069633: 


